
EUROGRAPHICS 2025 / A. Bousseau and A. Dai
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 2

2D Neural Fields with Learned Discontinuities

Chenxi Liu1 , Siqi Wang2 , Matthew Fisher3 , Deepali Aneja3 , and Alec Jacobson1,3

1University of Toronto, Toronto, Canada
2New York University, New York, USA
3Adobe Research, San Francisco, USA

Abstract

Effective representation of 2D images is fundamental in digital image processing, where traditional methods like raster and
vector graphics struggle with sharpness and textural complexity, respectively. Current neural fields offer high fidelity and
resolution independence but require predefined meshes with known discontinuities, restricting their utility. We observe that by
treating all mesh edges as potential discontinuities, we can represent the discontinuity magnitudes as continuous variables and
optimize. We further introduce a novel discontinuous neural field model that jointly approximates the target image and recovers
discontinuities. Through systematic evaluations, our neural field outperforms other methods that fit unknown discontinuities
with discontinuous representations, exceeding Field of Junction and Boundary Attention by over 11dB in both denoising and
super-resolution tasks and achieving 3.5× smaller Chamfer distances than Mumford–Shah-based methods. It also surpasses
InstantNGP with improvements of more than 5dB (denoising) and 10dB (super-resolution). Additionally, our approach shows
remarkable capability in approximating complex artistic and natural images and cleaning up diffusion-generated depth maps.

CCS Concepts
• Computing methodologies → Image representations; Reconstruction; Neural networks;

1. Introduction

Digital image representations — such as pixel arrays or vector
graphics — discretize image functions that map 2D locations to
colors. For a variety of reasons (e.g., occlusions in captured 3D
scenes, layers in graphic designs, material boundaries), typical im-
age functions are well-modeled as continuous functions almost ev-
erywhere, with sparse discontinuities appearing along 1D curves.
Unfortunately, images stored as regular grids of pixel colors do not
directly model discontinuities and assume a fixed resolution. Mean-
while, vector graphics formats (e.g., .svg) represent resolution-
independent discontinuities directly using curves, fill boundaries,
or layer overlaps, but these formats provide minimal support for
continuous signals elsewhere (e.g., solid colors, basic gradients).

Recently, Belhe et al. [BGF*23] proposed storing images as the
output of a small neural network fed with a spatially varying fea-
ture vector. That feature vector is carefully interpolated over a trian-
gle mesh that is constructed to ensure discontinuities along certain
edges. The weights of the neural network are optimized to recon-
struct samples of the image function. This representation is very
compact and especially well-suited for noisy input samples. Un-
fortunately, discontinuities must be given in advance as input, and
the function space used for interpolation by Belhe et al. does not
clearly indicate how to treat discontinuity locations as optimiza-
tion variables. When discontinuties are missing — even partially
— their reconstruction is noticeably poor (see Fig. 1).

in
pu

t
(s

pp
 =

 6
4)

ou
r

le
ar

ne
d

fie
ld

ours (2x)

[Belhe’23] (2x)

input (2x)

[B
el

he
 e

t
al

. 2
02

3]

input geometric
discontinuities

ours (2x)

[Belhe’23] (2x)

input (2x)

Figure 1: Discontinuity-aware 2D neural field [BGF*23] requires
accurate 2D discontinuities as input. In their application of denois-
ing 3D renderings, not all types of discontinuities are always avail-
able. False negatives caused by sharp texture and refracted geome-
tries lead to blurs. Zoom scales indicate inference scale.

In this paper, we propose a non-trivial change to Belhe et al.’s
method so image fitting no longer requires discontinuities to be
known in advance. While our problem statement resembles that of

© 2025 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0003-3613-1662
https://orcid.org/0000-0001-9722-0314
https://orcid.org/0000-0002-8908-3417
https://orcid.org/0000-0001-9610-5648
https://orcid.org/0000-0003-4603-7143

2 of 14 Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities

(d) MS pixel (e) MS mesh

PSNR: 32.96 dB PSNR: 34.30 dB

(c) FoJ

PSNR: 31.43 dB

(b) under-sampled
input (spp = 200)

(g) ours
(a) GT

(spp = 2000)

1.5x

(f) InstantNGP

PSNR: 38.70 dB PSNR: 43.18 dB

ours (30x)

InstantNGP
(30x)

(h) zoom-ins

Figure 2: (a,b) Diffusion curves define an example harmonic function field with sharp discontinuities [OBW*08]. (c) Denoising method,
Field of Junctions (FoJ) [VZ21], fails to recover clear discontinuities due to using constant-patch-based approximation. (d, e) MS functional
based methods jointly approximate the target and detect discontinuities (see red edges in insets) [WLL22], similar to our method. However,
both versions fail to achieve these goals due to limited function expressiveness. (f) Continuous neural fields, such as InstantNGP [MESK22],
do not represent discontinuities, causing blurs when zoomed-in (h). (g) Our accurate approximation and recovered discontinuities.

Belhe et al., the absence of predefined discontinuities introduces
challenges that we address with a significantly different solution:
optimizing a novel function space that supports parametric discon-
tinuities. During fitting, we treat all mesh edges as potential discon-
tinuities, introducing variables to model the magnitude of the value-
jump across the edge. These variables are continuous and happily
optimized along with feature vectors and mesh vertex positions dur-
ing gradient-based reconstruction. Unlike Belhe et al.’s function
space, our function space easily affords a post-processing proce-
dure to identify and convert almost-continuous edges into continu-
ous edges, represented by fewer feature variables. This results in a
field with improved storage efficiency and preserved fidelity.

We demonstrate that our neural fields with learned disconti-
nuities directly support denoising and super-resolution. We com-
pare to methods in the same category that fit unknown disconti-
nuities with discontinuous representation: Field of Junction (FoJ)
[VZ21], Boundary Attention [PHH*24], and Mumford–Shah based
methods. Using a novel systematically synthesized diffusion curve
dataset, we show that our method of matching size outperforms
FoJ and Boundary Attention by > 11dB (denoising and super-
resolution), Mumford–Shah based methods by > 8dB (denoising)
and > 7dB (super-resolution), as well as common continuous rep-
resentation, InstantNGP [MESK22], by > 5dB (denoising) and >
10dB (super-resolution). Visually, our neural field maintains sharp
region boundaries at large zoom levels (30× in Fig. 11,2,9), while
InstantNGP blurs boundaries. Our method recovers more accurate
discontinuities than Mumford-Shah-based denoising [WLL22]:
3.5× smaller Chamfer distance to the ground truth. We show that
our neural fields can approximate typical vector graphics images
corrupted by JPEG compression. The use cases of our method also
include general 2D data, such as diffusion-generated depth maps,
which our method segments with clear cuts between depth disconti-
nuities. Finally, we stress-test our method with complicated artistic
drawings and natural images (Fig. 11,13). We release our data and
code here: discontinuity2d.github.io.

2. Related Work

Geometric representation for images Geometric image repre-
sentations, such as vector graphics, address raster image limita-
tions by encoding discontinuities as shapes with simple color func-
tions. Methods combining accurate geometric boundaries with in-
terior samples focus on representation design, interpolation, and
real-time rendering [BWG03; TC04; Sen04; RBW04; TC*05;
PZ08; PK10; RL16]. Another approach represents digital images
with discrete curves or region boundaries and smooth interior
functions [TG22]. Diffusion curves [OBW*08] defines images as
harmonic functions with curve Dirichlet boundary conditions, a
space our method can accurately approximate (Section 6). Triangle
mesh-based representations [DACB96; DDI06; SW04; TA11] and
more advanced curve- and patch-based primitives [LL06; SLWS07;
XLY09; LHM09; ZDZ17] are introduced for vectorization of nat-
ural images. These approaches, while similar to ours in merging
discrete geometries and functional representations for interiors, of-
ten construct geometric boundaries separately, relying on edge de-
tection, segmentation, or user input. In contrast, our method jointly
optimizes discontinuity locations and interior colors using a mesh
without predefined cuts.

Neural fields Neural fields are widely used for representing spa-
tial functions like images and signed distance fields (SDFs), often
parameterized by neural networks [XTS*22]. Early work by Song
et al. [SWWW15] introduced coordinate neural networks for im-
age encoding, a technique applicable to large image compression
[MST*21; SMB*20; MGB*21]. Although these methods capture
high-frequency details, they often fail to represent true discontinu-
ities, causing blurring at high zoom levels.

Hybrid neural fields, or feature fields, combine neural net-
works with discrete data structures like grids [CLW21; MLL*21;
TLY*21; YLT*21; SGY*21; MESK22; CXG*22; TMN*23].
These offer reduced computation, better network capacity uti-
lization, and explicit geometric representation. While most hy-
brid fields don’t explicitly address discontinuities, recent meth-

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://discontinuity2d.github.io/

Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities 3 of 14

input

ours

FoJ
(a) input (b) FoJ (c) [PHH*24] (d) ours

Figure 3: (a) Natural photos pose challenges for approximation. (b) FoJ [VZ21] with a hand-picked patch size R = 4 slightly blurs the input.
(c) Its successor, Boundary Attention [PHH*24], significantly over-simplifies the input as it is trained for denoising rather than approximation.
(d) Our method approximates the input with sharper edges.

ods like ReLU fields [KRWM22] attempt to approximate them
with steep ReLUs, but still face blurring issues as shown by
Belhe et al. [BGF*23]. Other approaches, like those by Reddy
et al. [RZW*21], represent true discontinuities but are tailored
for specific cases like fonts. Discontinuity-aware 2D neural fields
[BGF*23], an inspiration for our approach, show promise but
require user-provided discontinuous edges (Fig. 1). Our method
fits unknown discontinuities and is compatible with discontinuity-
aware 2D neural field offering efficient storage and inference.

Closest to our work, Field of Junctions (FoJ) [VZ21] uses a field
of patches as their discontinuous representation with hand-picked
hyperparameters, especially for denoising tasks. Its succeeding
method, Boundary Attention, a concurrent work, uses supervised
learning with highly-noisy training data to determine these hyper-
parameters for the same patch-based representation [PHH*24]. We
compare to these two methods and show that their focus is on de-
noising rather than accurate approximation (Fig. 2c,3).

Differentiable rendering Addressing visual discontinuity in
differentiable rendering is a persistent challenge [ZJL20; SZR*23].
Traditional automatic differentiations often overlook discontinu-
ities’ contributions to gradients [BMM*21]. Differentiable ren-
dering techniques include smoothed rasterization [LB14; KUH18;
LLCL19; LHK*20], Monte Carlo-based methods with bound-
ary and interior sampling [LADL18; LLGR20; LHJ19; BLD20;
ZRJ23], analytic solutions [BMM*21], and finite difference ap-
proaches [YBAF22; DHB24]. Our approach introduces a differen-
tiable neural primitive capable of representing discontinuities. By
framing our approximation problem as an inverse rendering task,
our method efficiently handles discontinuities by leveraging exist-
ing differentiable rendering techniques.

Mumford–Shah functional The Mumford–Shah (MS) func-
tional, proposed for image segmentation [MS89], models images
as piecewise-smooth functions with explicit discontinuities. The
Ambrosio-Tortorelli approximation [AT90] made solving for MS
functionals tractable with techniques like ADMM. This functional

has been widely used in 2D image tasks [TYW01; VC02; LFP22]
and applied to 3D surfaces [TT16; BCGL18; WLL22] and volumes
[CFGL16]. Our method, similar to the MS functional, jointly recov-
ers piecewise-smooth functions and discrete discontinuities. Unlike
level-set-based methods [VC02; ES02], ours supports open bound-
aries and produces more accurate discontinuities free of narrow
bands [TT16; BCGL18] and staircasing artifacts [TYW01; LFP22].
While Wang et al. [WLL22] also discretize discontinuities on mesh
edges, their representation (constant colors per face) lacks the ex-
pressiveness of our neural model (Fig. 2).

3. Preliminaries

We review the continuity criteria proposed by Belhe et
al. [BGF*23]. Given a 2D image function I(x),x ∈ R2, we aim to
approximate it with a 2D neural field that is continuous everywhere
except at locations with sharp changes in input. In our implementa-
tion, I(x) is given by nearest-neighbor sampling of a raster image.

The desired properties of such 2D neural fields are formu-
lated by Belhe et al. [BGF*23]. Let Ω be a 2D domain and
Γ = {γ0, · · · ,γn−1 | γi ∈ Ω,∀i} be curves that can only intersect
each other at endpoints ∂Γ. The directional discontinuity is de-
fined with respect to a point x ∈ R2, a polar coordinate system
centered at x, and an angular coordinate α ∈ R. The directional
limit of a function at a position x along a direction θ is defined as
h(x,θ) = limr→0+ f (C(r,θ)), where C(r,θ) maps polar coordinate
to Cartesian coordinate (see x1 in inset). A function is directionally
discontinuous at x,α if limθ→α+ h(x,θ) ̸= limθ→α− h(x,θ).

x
4

x
3

x
2

x
1

lim ≠ lim
θ→α- θ→α+ h (x

1
, d

1
)

h (x
1
, d

0
)Following this continuity criteria, a

field f : Ω→ Rd is: (1) continuous at x ∈
Ω \Γ (e.g., x3 in inset); (2) directionally
discontinuous for the two tangent direc-
tions at x ∈ Γ\∂Γ (e.g., x2); (3) direction-
ally discontinuous at the tangent direction
pointing inwards to the curve(s) at x ∈ ∂Γ

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 14 Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities

(a) one-ring coordinate (b) per-edge linear function (c) per-vertex feature

t0

t1

t2

t3

t0 t1 t2 t3

r0

l0

w0

G0 = w0 (t0 · l0 + (1 - t0) · r0) F = b + Σ Gi

t0

F

(d) per-vertex feature in 2D

Figure 4: (a) Given a query position (white dot), per-vertex feature is constructed in the normalized angular coordinate centered at the
corresponding vertex (red dot). (b) A potential discontinuity is positioned at each edge by defining a linear function Gi. The function Gi is
parameterized by continuous variables (w, l,r) with respect to a local coordinate ti at this edge (indicated by the cyan-to-orange gradient). (c)
The per-vertex feature F̂ is the sum of these per-edge function Gi, potentially discontinuous, and a bias. (d) If all edges are associated with
wi ̸= 0, this per-vertex feature function is discontinuous exactly across these edges.

(e.g., x4). Note that γi can be a curve [BGF*23]. For simplicity, we
only consider the case where γi is a line segment and approximate
curve geometries by adjusting the triangle density.

4. Method

Our neural field is built upon an underlying triangle mesh and
discontinuous feature function defined locally within each vertex
one-ring. We first analyze the local per-vertex feature function and
then examine how feature variables are defined on the mesh (Sec-
tion 4.1). This discontinuous feature function allows discontinuity
across mesh edges from which we learn the target discontinuous
edge set Γ. We approximate the target image by initializing a trian-
gle mesh (Section 4.2.1), fitting a neural field with all edges poten-
tially discontinuous (Section 4.2.2), and refining to enforce conti-
nuity on almost-continuous edges (Section 4.2.3).

4.1. Neural Field with Discontinuous Features

Given a triangle mesh in R2, we define a learnable discontinuous
feature function basis within vertex one-rings. Optimization of dis-
continuous functions would typically require discrete operations,
challenging automatic differentiation. We observe that by treating
all mesh edges as being potentially discontinuous, we can repre-
sent the magnitude of discontinuity with continuous variables. In
this way, we can optimize continuous variables with the standard
autodiff-gradient-based approach.

F̂1

F̂0F̂2
F

In a 2D domain Ω of a triangle mesh
M = (V,T), where V,T are vertex and face
set, the feature value at a point x ∈ Ω in-
tersecting a triangle Ti = (v0

i ,v
1
i ,v

2
i) is de-

termined by the barycentric interpolation of
three per-vertex local features

F(x) = (1−λ1−λ2)F̂
0
i (x)+λ1F̂1

i (x)+λ2F̂2
i (x),λ1,λ2 ∈ [0,1],

(1)

where F̂is are defined in its corresponding vertex one-ring N (vi).
We parameterize the vertex one-ring using the polar coordinate
system with angular coordinate normalized to [0,1). We introduce
our discontinuous per-vertex feature in this local coordinate (Sec-
tion 4.1.1) then return to the target 2D domain (Section 4.1.2).

4.1.1. Discontinuous feature in one-ring

Consider a simple 1D linear function g(x) = ax+b. We can restrict
its domain to [0,1) and define x = θ/2π as the normalized angular
coordinate in a vertex one-ring, where θ is the counterclockwise
angle to an arbitrary reference edge (see the inset below).

0 1

In this way, we construct a discontinuity
at x = 0 across the reference angle in the
one-ring when a ̸= 0. This construction en-
ables standard autodiff to calculate the left
and right derivatives of g(x) at the discon-
tinuity location. To construct the discontinu-
ity at edges other than the reference one, we
introduce an additional local coordinate xi =
ti(x) = fmod((θ− θi)/2π+ 1,1) centered at
each edge ei with angle θi in the one-ring.
For a toy example, consider edge e1 with an-
gle θ1 = π/3. Along the reference edge e0,
we have t1(x) = fmod((0−π/3)/2π+1,1) = 5/6. We further de-
fine a linear function ϕi(xi) = aixi +bi per local coordinate. These
functions form a basis for piecewise linear functions

g(x) = ∑
ei∈N (vi)

ϕi(ti(x)) = ∑
ei∈N (vi)

(aiti(x)+bi) , (2)

which are discontinuous at the edge ei if ai ̸= 0. Note that its discon-
tinuous pieces all share the same slope of ∑ei∈N (vi) ai (see Fig. 4a).

To improve the expressiveness, we extend features to Rk

F̂(x) = b+ ∑
ei∈N (vi)

Gi(ti(x)) = b+ ∑
ei∈N (vi)

wi (ti · li +(1− ti) · ri)

= b+ ∑
ei∈N (vi)

(wi(li− ri)ti +wiri) , (3)

where intuitively wi ∈ R controls whether a discontinuity is elimi-
nated; li,ri ∈Rk are left and right features defined on either side of
an edge ei (Fig. 4b); the last term in Eq. 3 defines a linear interpo-
lation between these two features; b ∈Rk is a global bias (Fig. 4c).

We conduct a simple 1D fitting experiment to verify that our
per-vertex feature can represent a discontinuous signal (inset). To
fit the test non-linear signal, we pass F̂(x) to a shallow MLP with
two hidden layers of 64 neurons. The target function (blue) is a
function of translated sine pieces and discontinuities at four points.
For reference, we construct a 1D feature field (feature dimension

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities 5 of 14

feature
basis

k = 5) with features defined at these four
locations (equivalent to four edges) and lin-
early interpolated between them (magenta).
We compare this reference to our 1D per-
vertex feature (k = 2) with potential discon-
tinuities at the matching locations (orange,
feature basis functions are Gi in Eq. 3). In
contrast to our faithful discontinuous ap-
proximation, the reference field not only fits
the discontinuities (red dashed lines) with
inaccurate steep continuous jumps but also
fails to stay close to the continuous pieces.

4.1.2. Discontinuous field in 2D

We return to the barycentric interpolation (Eq. 1) of per-vertex local
features F̂i (Eq. 3) and describe how feature variables are defined
on mesh. Given a vertex vi, the local feature is

F̂i(x) = bi + ∑
v j∈N (vi),i̸= j

Fi, j(t
j
i (x)) (4)

= bi + ∑
v j∈N (vi),i̸= j

wi, j

(
t j
i (x) · li, j +(1− t j

i (x)) · ri, j

)
(5)

= bi + ∑
v j∈N (vi),i̸= j

(
wi, j(li, j− ri, j)t

j
i (x)+wi, jri, j

)
. (6)

v0

v1

v2

b

l0,1
r0,1

r1,0
l1,0

HereN (vi) is vi one-ring and vi,v j are
connected by an edge; bi ∈ Rk is a bias
defined at the center vi; t j

i (x) maps x ∈ Ω

to the local polar coordinate system cen-
tered at vi with (vi,v j) as the polar axis.
To make the basis in Eq. 6 a linear inter-
polation, we normalize t j

i (x) from [0,2π)
to [0,1). Note that the bias bi is introduced so a vertex reduces to
a regular continuous vertex [BGF*23] when all adjacent edges are
continuous. The feature li, j,ri, j ∈ Rk and the discontinuity weight
wi, j ∈ R function similarly as the case of vertex one-ring. The fea-
tures li, j ̸= l j,i,ri, j ̸= r j,i are defined on the half-edges granting
freedom for adjacent vertices to have local “colors” while the dis-
continuity weight wi, j = w j,i is shared between two vertices for
consistent continuity behavior along an edge.

We pass feature F(x) to an MLP (Rk→ R3) for our neural field

f (x) = MLP(F(x)). (7)

Our neural fields use a shallow MLP: two hidden layers of 128
neurons with tanh activations. The inference algorithm is in Algo-
rithm 1 where AngleCCW computes the counter-clockwise angle
between two vectors.

4.1.3. Comparison to feature space in Belhe et al. [BGF*23]

Belhe et al.’s per-vertex features are also defined in local polar co-
ordinate

F̂i = Fcw
i

θ
ccw
i

θcw
i +θccw

i
+Fccw

i
θ

cw
i

θcw
i +θccw

i
. (8)

This interpolation scheme (Eq. 2 [BGF*23]) finds the clos-
est discontinuous edges clockwise (“cw”) and counter-clockwise

Algorithm 1: Field Inference

Function infer (x, M)
T,λ1,λ2← PointInFace(x,M) ;
forall vi in T = (v0,v1,v2) do

forall e j
i in AdjacentHalfEdge(vi) do

θ
j
i ← AngleCCW((x−vi),e

j
i) ;

t j
i ← fmod(θ−θ

j
i

2π
+1,1);

end
F̂i(x)←

bi +∑v j∈N (vi),i ̸= j

(
wi, j(li, j− ri, j)t

j
i +wi, jri, j

)
Eq. 6;

end
F(x)← (1−λ1−λ2)F̂0(x)+λ1F̂1(x)+λ2F̂2(x) Eq. 1 ;
return MLP(F(x));

end

(a) [Belhe et al. 2023] (c) a�er feature removal(b) our feature

cannot be closely
approximated
a�er removal

…and linearly
approximated

can be
removed…

Figure 5: (a) Our feature (green) differs from Belhe et al.’s fea-
ture (cyan). (b) This allows us to easily discard almost-continuous
edges.

(“ccw”), then radially (based on θs) interpolates the half-edge fea-
tures Fcw

i ,Fccw
i (corresponding to our l,r features). Unlike the en-

tire coverage of 2π of our interpolation, theirs only covers the do-
main between two consecutive discontinuities. Additionally, our lo-
cal feature function has a constant slope in each piece while theirs
can have various slopes (e.g., Fig. 5a). However, our design is tai-
lored to handle unknown discontinuities. When a basis Gi vanishes,
the edge is continuous, we can easily remove its associated fea-
tures. Compared to ours, Belhe et al.’s feature definition allows
almost-continuous edges to have significantly different slopes in
its two adjacent domains. This difference makes linear approxima-
tion (magenta line in Fig. 5a) inaccurate after redundant feature
removal, and as a result, Belhe et al.’s needs to save more redun-
dant features. In our ablations, our method manages to decrease the
number of edges with features by 1/2 to 1/68 (Sec. A).

The disadvantage of having constant piecewise slopes is miti-
gated by the MLP as experimentally demonstrated in Section 6.
Furthermore, our feature and interpolation scheme satisfy the con-
tinuity criteria proposed by Belhe et al. (Section 4). We show this
by drawing a connection between our edges and the ones of Belhe
et al.’s: since our w is shared per edge between the two adjacent ver-
tices, the continuity of our field is consistent along edges, making
our edges equivalent to Belhe et al.’s in the continuity criteria proof.
The discontinuous edge set Γ is a subset of the mesh edges E and
consists of edges where wi(li, j − ri, j) ̸= 0. On each edge, we de-

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 14 Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities

(a) input

(b) Canny edges (c) TriWild mesh

lossL2

(d) constant face colors

Figure 6: We initialize by triangulating Canny edges [Can86] with
TriWild [HSG*19], then deforming and remeshing interleavedly.
The deformation is posed as per-face constant color approximation.

fine the largest feature value jump among all half edges and feature
dimensions as Di, j = max(wi(li, j− ri, j)). This value, discontinuity
indicator, reflects the magnitude of the feature space discontinuity.

4.2. Learning Discontinuous 2D Neural Field

With our discontinuous 2D neural field defined, we now describe
the procedure for fitting it to a raster input. The procedure first
initializes a triangle mesh that is approximately aligned with the
target discontinuities (Section 4.2.1). Our method then optimizes
the appearance of the field while more accurately aligning the dis-
continuities (Section 4.2.2). Finally, almost-continuous edges are
discarded to enforce continuous areas and improve representation
efficiency (Section 4.2.3).

4.2.1. Mesh initialization

We initialize the triangle mesh M = (V,T) to be roughly aligned
with target discontinuities (Fig. 6). Note that our method does not
require exact edges as it is able to refine edge locations in the next
optimization step (Section 4.2.2). But rough alignments are still
necessary to obtain discontinuous edges in the early iterations so
we can apply differentiable rendering techniques to modify discon-
tinuous edge locations (Fig. 7).

We first roughly detect discontinuities with a Canny edge detec-
tor [Can86]. We then connect positive pixels to their correspond-
ing 8-neighbors and apply TriWild [HSG*19] to generate a trian-
gle mesh M0. Since the results from the Canny edge detector are
inaccurate and limited to the pixel grid, it is only for ensuring the
desired triangle density around potential discontinuities.

We use a field f0(x;M) with per-face constant colors as a proxy
for our initialization. We approximate the target with f0 by opti-
mizing

min
M

∫
Ω

∥ f0(x;M)− I(x)∥2 dx+λboundary
1
|∂M| ∑

v∈∂M

∥∥∥v−v0
∥∥∥2

,

(9)

where the second term is a MSE loss for softly fixing the bound-
ary (∂M) to their initial positions v0s (λboundary = 10−2). We dis-
cretize the first term by stratified sampling triangles and compute
gradients using SoftRasterizer [LLCL19], which can be replaced by
other differentiable renderers. We interleave the deformation with
optional remeshing steps. See App. B for details.

4.2.2. Field optimization

Given a roughly aligned triangle mesh M, we optimize our field to
approximate the input (Fig. 7). Our loss function is defined as

L =
∫

Ω

∥ f (x;V,Θ)− I(x)∥2 dx+λdiscont

∫
E
∥w(l− r)∥1 dx, (10)

where the first term is a regular L2 fitting loss with varying vertex
positions V and neural field parameters Θ (MLP parameters, feature
functions F, and biases b); the second term is a sparsity inducing
term (λdiscont = 5× 10−3) penalizing feature space value jumps
across edges. We discretize the second term into ∑ei, j∈H

∥∥ei, j
∥∥ ·∥∥wi, j(li, j− ri, j)

∥∥
1, where ei, j ∈H is a half-edge with length

∥∥ei, j
∥∥,

and wi, j, li, j,ri, j are corresponding feature variables.

Note that our loss is similar to that of the MS functional, which
contains a fitting term (corresponding to our first term), a smooth-
ness term, and a discontinuity sparsifying term (corresponding to
our second term). We do not include an explicit smoothness term
and rely on MLP’s smoothness bias.

The first term depends on our field function f with discontinu-
ities defined by vertices V and feature functions F. To correctly es-
timate the gradient of this integral, we apply edge-sampling Monte
Carlo estimation [LADL18]. We observe that the discontinuity in-
dicator D = max(w(l−r)) gives a reasonable estimation about dis-
continuous edges. As continuous edges do not contribute to this
gradient, we importance sample the discontinuous edges for effi-
ciency. Although the initial mesh contains edges close to the exact
discontinuity locations, the imperfection can result in low disconti-
nuity indication in areas adjacent to true discontinuities. Therefore,
we extend the important edge set to edges with D > β and their
adjacent edges. We sample these important edges with 5× proba-
bilities than other edges. For detailed gradient formulas, see Ap-
pendix B.

30 iterations 100 iterations 400 iterations

D = 0.5

D = 0

discontinuities
accumulate

discontinuities
align

Figure 7: We jointly optimize our field and its underlying mesh.
(a) In the early epochs, our indicated discontinuities begin to accu-
mulate around the target discontinuities. (b) As optimization pro-
gresses, our method produces close interior color approximation
and simultaneously aligns discontinuities.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities 7 of 14

0 0.1 0.2 0.3 0.4 0.5 0.6

100

101

104

103

102

0.7

adaptive rounded discontinuities &
final result

> 0.1

> 0.5

adaptively rounded range

> 0.01

> 0.02

Figure 8: Example log histogram of discontinuity indicator D. The
majority of edges are identified as continuous, allowing for efficient
optimization and storage of our neural field. We apply an adaptive
greedily rounding strategy to flexibly determine the final discontin-
uous edges.

4.2.3. Rounding

Once our neural field sufficiently approximates the input, we retain
almost-continuous edges but remove their associated features. We
refer to this step as “rounding”, a term borrowed from integer pro-
gramming [CCZ*14]. After rounding, our neural field is enforced
to be continuous across the affected edges. We only round in one
direction — setting w = 0 on almost-continuous edges while leav-
ing the remaining ws free.

We employ an adaptive rounding strategy (Fig. 8). First, we
round by simply thresholding the discontinuity indicator D, label-
ing all edges with D < β as continuous. Then, we greedily discard
edges using a priority queue of D similarly to classic mesh sim-
plification. We discard an edge if the accumulated MSE increase
is less than σ and keep it otherwise. To discard an edge, we push
its contribution 0.5 ·w(l− r)+wr to the center vertex bias. Thanks
to the locality of our features, this greedy rounding can be done
efficiently. After the rounding step, we continue refining this new
rounded neural field and the mesh with more iterations.

5. Implementation

We implemented our method in PyTorch [PGM*19]. To avoid
flipped triangles caused by sparse gradients, we apply the large-step
precondition [NJJ21] for mesh initialization and field optimization,
with weights of 1, 0.5 respectively. We use ADAM [KB15] for
both steps with (β1,β2) = (0.9,0.999) and learning rates of 1 and
2×10−2 respectively.

To ensure our ws serving as a control over discontinuities, we
assign w = sigmoid(10w̃) where w̃ is the actual feature parame-
ter. During the optimization, we use subpixel stratified sampling of
spp = 22, a key to seamlessly accounting for input anti-aliasing; we
set the edge sample number to 42×W ×H. We accumulate gradi-
ents from all interior and edge samples per epoch, scheduling our
optimization with 70 epochs of interior fitting and 130 epochs of in-

Table 1: Quantitative measures for denoising tasks.

Methods
Denoising Denoising + Super-

Resolution (2×)
Denoising JPEG
Vector (Fig. 10, 15b)

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
Per-Vertex 30.758 0.0593 30.344 0.0747 25.321 0.0508
InstantNGP 39.016 0.0431 32.715 0.0261 33.027 0.0159
[BGF*23]+Canny 37.027 0.0316 35.453 0.0484 27.352 0.0367
MS Pixel 35.563 0.0319 - - 26.568 0.0696
MS Mesh 36.159 0.0321 36.118 0.0466 27.733 0.0151
FoJ 32.756 0.0451 32.073 0.0560 20.683 0.1157
[PHH*24] 21.076 0.0689 - - 11.412 0.1082
Ours 44.486 0.0261 43.913 0.0423 33.168 0.0086

Table 2: Quantitative measures for discontinuity approximation
task.

Methods

Approximating
Drawings (Fig. 13, 15a)

Approximating
Photos (Fig. 3, 15d)

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
[BGF*23]+Canny 38.314 0.0337 33.064 0.0853
MS Pixel 28.440 0.1242 24.134 0.3504
MS Mesh 32.179 0.0472 21.863 0.1649
FoJ 31.715 0.0898 25.860 0.3585
[PHH*24] 17.607 0.1542 21.221 0.3352
Ours 42.614 0.0228 34.009 0.1119

terior and edge optimization. After the rounding step, we continue
optimization with both sampling for additional 200 epochs.

We demonstrate a typical distribution of D (Fig. 8). The thresh-
old β defines the hard cutoff of continuous edges and mostly affects
the computational cost. The MSE change threshold σ directly af-
fects the result. We set β = 0.02, σ = 5×10−6 when not explicitly
specified.

6. Evaluation

We evaluate our method with various applications: denoising,
super-resolution, approximation, and segmentation. We approxi-
mate different types of target functions: constant functions, gra-
dients in vector graphics, harmonic functions in diffusion curves,
more complicated functions in synthetic 3D renderings (Fig. 1),
human-drawn artistic images, natural images, and spatial data
(depth maps). We evaluate our method against trivially applying
Belhe et al.’s method with Canny edges as discontinuities, and
methods that fit discontinuous representation without priors: MS
based methods [WLL22], FoJ [VZ21], and Boundary Attention
[PHH*24]. Additionally, we compare to continuous neural fields,
represented by a simple reference feature field with per-vertex fea-
tures and InstantNGP [MESK22], demonstrating that discontinuity
representation is necessary for these tasks. We show additional re-
sults in our gallery (Fig. 15). See Appendix D for setup details.

6.1. Denoising

Noise in images comes from many sources. We test on diffusion
curves with noisy Monte Carlo samples rendered using walk-on-
spheres (WoS) method [Mul56; SC20]. We randomly generate 40
diffusion curves containing line segments, rectangles, and circles.
Half of these only contain integer-coordinate rectangles and thus

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 14 Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities

PSNR: 34.17 dB PSNR: 35.38 dB

(c) MS pixel (d) MS mesh

PSNR: 43.97 dB

InstantNGP (30x)

ours (30x)

(b) under-sampled
input (spp = 200)

(f) ours(a) GT
(spp = 2000)

PSNR: 37.73 dB

(e) InstantNGP (g) zoom-ins

Figure 9: We evaluate our model on randomly generated diffusion curves and assess the results for denoising effects and image quality under
zoom, compared against continuous neural fields, e.g., InstantNGP [MESK22], and MS functional based methods [WLL22].

(b) JPEG compressed raster (c) our approximation(a) original vector

2x

Figure 10: We verify that our neural field can approximate simple
constant color fills and gradients under JPEG compression.

have no anti-aliasing. These random diffusion curves are rendered
with a low number of samples per pixel (spp = 200) in 5122 res-
olution and the ground truth (GT) denoised images are generated
with spp = 2000. As demonstrated in Fig. 2, 9, our field simulta-
neously approximates the target harmonic functions and denoises
thanks to the smoothness bias of MLP, while the comparison meth-
ods either struggle to approximate or over-fit to noise. We conduct
quantitative comparisons (Table 1), in which our method achieves
a significant improvement (> 5dB) over the second best method,
InstantNGP. Moreover, we verify our method’s capability of recov-
ering discontinuities. We quantify the performance by measuring
Chamfer distance between Canny edges, discontinuous edges de-
tected by mesh-based MS [WLL22], those detected by our method,
and the ground truth diffusion curve geometries. Canny edges de-
tected with the same parameters as in our fitting pipeline are 5.5×
further than ours to the GT (Chamfer: 0.900 vs. 0.165). Mesh-based
MS produces discontinuous edges that are 3.5× Chamfer distance
away (0.580) from the GT compared to our results.

Additionally, we qualitatively evaluate our method with the task
of denoising JPEG-compressed vector images (constant fills in

Fig. 10 and human-created gradients in Fig. 15b). Our method
not only approximates these two types of functions but also re-
duces JPEG compression artifacts without prior knowledge about
the task.

raster input (4x)

InstantNGP (4x)

ours (4x)

raster input (30x)

InstantNGP (30x)

ours (30x)

InstantNGP (30x)

ours (30x)

raster input (30x)

ra
st

er
 in

pu
t

(1
x)

In
st

an
tN

G
P

(1
x)

ou
rs

 (1
x)

Figure 11: Our neural field supports edge-preserving super-
resolution while continuous neural field, such as InstantNGP
[MESK22], blurs region boundaries under close view.

6.2. Super-Resolution

We qualitatively show zoom-ins (1.5×, 2×, 4×, 30×) of the ap-
proximations across this paper (Fig. 1, 2, 3, 9, 11, 15). As presented
by the previous work [BGF*23] and in Fig. 2, 9, 11, although con-
tinuous neural fields like InstantNGP closely approximate the in-
put in the original scale, once zoomed in, especially at high zoom
levels, they start to exhibit blurs due to lack of discontinuity rep-
resentation. We combine the super-resolution quantitative evalua-
tion with the denoising evaluation by measuring the same result-
ing approximations inferred under 2× original resolutions (exclud-
ing Boundary Attention [PHH*24] due to implementation difficul-
ties). We measure against the clean diffusion curve images with

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities 9 of 14

(a) di�usion generated depth map & our cleanup (b) li�ed point clouds

our approximationsinput depth maps

(c) point cloud zoom-ins

original images & li�ed inputs our approximations input point cloud zoom-ins our approximations

Figure 12: Segmentation of diffusion-generated depth data. (a) Depth map generated by diffusion model [KOH*23] is corrupted by model-
induced noises, particularly around discontinuities. (b) Our neural fields closely approximate input data while reducing floaters and yielding
clean cuts between depth discontinuities. See (c) for point cloud zoom-ins.

(a) original raster
4x

(b) our approximation (c) Adobe Illustrator
Image Trace

Figure 13: Approximation of artistic images. Our method fits
resolution-independent fields to artistic images and qualitatively
outperforms common vectorization methods in terms of approxi-
mation and representation. We manually select the Adobe Illustra-
tor Image Trace parameters to achieve the best approximation.

spp = 2000 and 10242 canvas size. We remark that while the two
discontinuity-aware methods, mesh-based MS and ours, output re-
sults with similar PSNR as the denoising evaluation, InstantNGP’s
results experience a drop of PSNR due to the blur artifacts, widen-
ing the gap with our method. LPIPS attempts to measure semantic
similarity and is less sensitive than PSNR to the absolute function
values in the vicinity of discontinuities.

6.3. Approximation

Apart from the synthetic images, we approximate artistic drawings
and natural images. This approximation process can be considered
comparable to vectorization, as the resulting discontinuous neural
fields are resolution-independent, a key property of vector images.
In Fig. 13, 15a, we compare our approximation of artistic inputs
to the vectorization of Adobe Illustrator Image Trace, a typical tool
using solid fills. Contrasted with the limited expressiveness of solid
fills, our neural field is able to preciously represent the targets and

support clear zoom-in views. As solid-fill vectorization tools, e.g.,
Adobe Illustrator, Potrace, dominate for this task, we also demon-
strate a blending application. By adjusting the rounding parameters,
our neural field can blend solid-fill regions, creating smooth color
gradients (Fig. 14) — an effect hard to achieve with vectorization
tools. While our method does not generate outputs in standard vec-
tor graphics formats like SVG and lacks an editing tool, developing
one for our hybrid neural field, based on triangle meshes, is an in-
teresting and feasible direction to enhance the expressiveness of
traditional vector graphics formats.

We stress test our method on natural images. We show in Fig. 3,
15d two successful approximations with mild denoising effects,

blends more

D > 0.01 D > 0.05 D > 0.1original vector

Figure 14: Blending posterized vector images. Vectorization us-
ing only solid color fills generates posterized vector images. Our
method can be applied to blend solid fills and create a resolution-
independent image with color gradients (highlighted in zoom-ins).

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 14 Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities

2x

(c) depth data segmentation (d) photo approximation

our approximation Adobe Illustrator Image Traceoriginal raster

4x

input (4x) ours (4x)

original image our appoximationsoriginal li�ed input

JPEG compressed raster our approximationoriginal vector

(a) artistic drawing approximation (b) denoising JPEG noise

Figure 15: Additional results for all our tasks: (a,d) approximation, (b) denoising, (c) segmentation.

similar to the edge-preserving bilateral filter. Quantitative measures
are given in Table 2.

6.4. Segmentation

Beyond RGB(A) images, 2D image functions also include general
2D functions, spatial data, such as depth, normal maps, optical
flows, and even CLIP feature maps [RKH*21]. We evaluate on
diffusion-generated depth maps [KOH*23] (Fig. 12, 15c). Unlike
typical scanned depth data, they contain noise originated from neu-
ral network, especially around depth discontinuities. We demon-
strate that our method can conduct edge-based segmentation using
clean cuts separating depth discontinuities and reducing floaters.

7. Limitations and Future Work

input (2.6x) misaligned

misaligned
initial mesh

Our method only supports regular trian-
gle meshes instead of the curved trian-
gle meshes as Belhe et al.’s, which re-
mains future work. We expect this exten-
sion to further improve the ability of our
neural field to approximate natural images
(Fig. 13). Additionally, our fitting proce-
dure relies on the initial mesh to be reason-
ably aligned with the target discontinuities
(Section 4.2.1). This may not hold when the
target visual feature is small and close to the
size of noise or when the colors across the discontinuities are close.
Applying subdivision or remeshing as well as exploring more flexi-

ble underlying structures, then adapting our proposed feature func-
tions to these structures could be interesting future directions. To
analyze the importance of a reasonably aligned initial mesh, we ex-
periment with Fig. 1 (right) by removing the Canny edges within
a square of side length 0.5 times the width, centered on the canvas
(inset). Although our approach can still partially recover clear dis-
continuities, the sharp discontinuities within the center square ap-
pear blurred in some locations, primarily because the initial edges
are too distant or an insufficient density of initial edges.

The approximation constructed by our method has its limita-
tions. While our method performs well on synthetic images or
drawings with cleaner and sparser discontinuities, its performance
on natural images is less accurate, resembling the behavior of an
edge-preserving bilateral filter. This highlights a common trade-
off between accurately capturing discontinuities and achieving ef-
fective denoising. Additionally, our use of 2×2 subpixel stratified
sampling with nearest-neighbor interpolation during optimization
is generally sufficient for most raster inputs but can introduce alias-
ing artifacts in some cases, such as the left example in Fig. 1. Em-
ploying a softer interpolation filter could potentially mitigate these
artifacts and improve overall performance.

Our field is single-level compared to neural fields with multi-
level feature grids, such as InstantNGP [MESK22]. This design
provides denoising power and compressed field size — the sizes
of our fields commonly match those of InstantNGPs with the 214

hash table size (compared to their default 224). Despite these ben-
efits, efficient representation of high-frequency details, which can

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities 11 of 14

remain homogeneous within a continuous region, is a relevant open
question.

8. Conclusion

We introduce a mesh-based discontinuous 2D neural field that
learns unknown discontinuities, advancing the discontinuity-aware
neural fields proposed by Belhe et al. [BGF*23]. By treating all
mesh edges as potential discontinuities, our method solves for the
magnitude of discontinuities through continuous optimization. Our
approach outperforms continuous neural fields, such as InstantNGP
[MESK22], in denoising and super-resolution tasks, maintaining
sharp boundaries even at high zoom levels. Our improvement of
Belhe et al.’s initial framework provides immediate benefits for
applications, including the approximation of artistic drawings and
photos and the cleanup of diffusion-generated depth data.

References
[Ale19] ALEXA, MARC. “Harmonic triangulations”. ACM Transactions

on Graphics (TOG) 38.4 (2019), 1–14 14.

[AT90] AMBROSIO, LUIGI and TORTORELLI, VINCENZO MARIA. “Ap-
proximation of functional depending on jumps by elliptic functional
via Γ-convergence”. Communications on Pure and Applied Mathemat-
ics 43.8 (1990), 999–1036 3.

[BCGL18] BONNEEL, NICOLAS, COEURJOLLY, DAVID, GUETH,
PIERRE, and LACHAUD, JACQUES-OLIVIER. “Mumford-Shah Mesh
Processing using the Ambrosio-Tortorelli Functional”. Computer
Graphics Forum. Vol. 37. 7. Wiley Online Library. 2018, 75–85 3.

[BGF*23] BELHE, YASH, GHARBI, MICHAËL, FISHER, MATTHEW, et al.
“Discontinuity-aware 2D neural fields”. ACM Transactions on Graph-
ics (Proceedings of SIGGRAPH Asia) 41.6 (2023). DOI: 10.1145/
3550454.3555484 1, 3–5, 7, 8, 11.

[BLD20] BANGARU, SAI PRAVEEN, LI, TZU-MAO, and DURAND,
FRÉDO. “Unbiased warped-area sampling for differentiable rendering”.
ACM Transactions on Graphics (TOG) 39.6 (2020), 1–18 3.

[BMM*21] BANGARU, SAI PRAVEEN, MICHEL, JESSE, MU, KEVIN,
et al. “Systematically differentiating parametric discontinuities”. ACM
Transactions on Graphics (TOG) 40.4 (2021), 1–18 3.

[BWG03] BALA, KAVITA, WALTER, BRUCE, and GREENBERG, DON-
ALD P. “Combining edges and points for interactive high-quality ren-
dering”. ACM Transactions on Graphics (TOG) 22.3 (2003), 631–640 2.

[Can86] CANNY, JOHN. “A computational approach to edge detection”.
IEEE Transactions on pattern analysis and machine intelligence 6
(1986), 679–698 6.

[CCZ*14] CONFORTI, MICHELE, CORNUÉJOLS, GÉRARD, ZAMBELLI,
GIACOMO, et al. Integer programming models. Springer, 2014 7.

[CFGL16] COEURJOLLY, DAVID, FOARE, MARION, GUETH, PIERRE,
and LACHAUD, JACQUES-OLIVIER. “Piecewise smooth reconstruction
of normal vector field on digital data”. Computer Graphics Forum.
Vol. 35. 7. Wiley Online Library. 2016, 157–167 3.

[CLW21] CHEN, YINBO, LIU, SIFEI, and WANG, XIAOLONG. “Learn-
ing continuous image representation with local implicit image function”.
Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. 2021, 8628–8638 2.

[CXG*22] CHEN, ANPEI, XU, ZEXIANG, GEIGER, ANDREAS, et al.
“Tensorf: Tensorial radiance fields”. European Conference on Computer
Vision. Springer. 2022, 333–350 2.

[DACB96] DAVOINE, FRANCK, ANTONINI, MARC, CHASSERY, J-M,
and BARLAUD, MICHEL. “Fractal image compression based on Delau-
nay triangulation and vector quantization”. IEEE Transactions on Image
Processing 5.2 (1996), 338–346 2.

[DDI06] DEMARET, LAURENT, DYN, NIRA, and ISKE, ARMIN. “Image
compression by linear splines over adaptive triangulations”. Signal Pro-
cessing 86.7 (2006), 1604–1616 2.

[DHB24] DELIOT, THOMAS, HEITZ, ERIC, and BELCOUR, LAURENT.
“Transforming a Non-Differentiable Rasterizer into a Differentiable One
with Stochastic Gradient Estimation”. arXiv preprint arXiv:2404.09758
(2024) 3.

[ES02] ESEDOGLU, SELIM and SHEN, JIANHONG. “Digital inpainting
based on the Mumford–Shah–Euler image model”. European Journal
of Applied Mathematics 13.4 (2002), 353–370 3.

[HSG*19] HU, YIXIN, SCHNEIDER, TESEO, GAO, XIFENG, et al. “Tri-
Wild: robust triangulation with curve constraints”. ACM Transactions on
Graphics (TOG) 38.4 (2019), 1–15 6.

[Ima23] IMAGEMAGICK. ImageMagick. Version 7.1.1-9. May 21, 2023.
URL: https://imagemagick.org 14.

[Ink21] INKSCAPE. Inkscape. Version 1.1.1. Sept. 22, 2021. URL: https:
//inkscape.org/ 14.

[KB15] KINGMA, DIEDERIK and BA, JIMMY. “Adam: A Method for
Stochastic Optimization”. International Conference on Learning Rep-
resentations (ICLR). San Diega, CA, USA, 2015 7.

[KOH*23] KE, BINGXIN, OBUKHOV, ANTON, HUANG, SHENGYU, et al.
“Repurposing diffusion-based image generators for monocular depth es-
timation”. arXiv preprint arXiv:2312.02145 (2023) 9, 10.

[KRWM22] KARNEWAR, ANIMESH, RITSCHEL, TOBIAS, WANG,
OLIVER, and MITRA, NILOY. “ReLU fields: The little non-linearity that
could”. ACM SIGGRAPH 2022 Conference Proceedings. 2022, 1–9 3,
13.

[KUH18] KATO, HIROHARU, USHIKU, YOSHITAKA, and HARADA, TAT-
SUYA. “Neural 3d mesh renderer”. Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, 3907–3916 3.

[LADL18] LI, TZU-MAO, AITTALA, MIIKA, DURAND, FRÉDO, and
LEHTINEN, JAAKKO. “Differentiable monte carlo ray tracing through
edge sampling”. ACM Transactions on Graphics (TOG) 37.6 (2018), 1–
11 3, 6, 14.

[LB14] LOPER, MATTHEW M and BLACK, MICHAEL J. “OpenDR: An
approximate differentiable renderer”. Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part VII 13. Springer. 2014, 154–169 3.

[LFP22] LE, HOANG TRIEU VY, FOARE, MARION, and PUSTELNIK,
NELLY. “Proximal based strategies for solving Discrete Mumford-Shah
with Ambrosio-Tortorelli penalization on edges”. IEEE Signal Process-
ing Letters 29 (2022), 952–956 3.

[LHJ19] LOUBET, GUILLAUME, HOLZSCHUCH, NICOLAS, and JAKOB,
WENZEL. “Reparameterizing discontinuous integrands for differentiable
rendering”. ACM Transactions on Graphics (TOG) 38.6 (2019), 1–14 3.

[LHK*20] LAINE, SAMULI, HELLSTEN, JANNE, KARRAS, TERO, et al.
“Modular primitives for high-performance differentiable rendering”.
ACM Transactions on Graphics (ToG) 39.6 (2020), 1–14 3.

[LHM09] LAI, YU-KUN, HU, SHI-MIN, and MARTIN, RALPH R. “Auto-
matic and topology-preserving gradient mesh generation for image vec-
torization”. ACM Transactions on Graphics (TOG) 28.3 (2009), 1–8 2.

[LL06] LECOT, GREGORY and LEVY, BRUNO. “Ardeco: Automatic re-
gion detection and conversion”. 17th Eurographics Symposium on
Rendering-EGSR’06. 2006, 349–360 2.

[LLCL19] LIU, SHICHEN, LI, TIANYE, CHEN, WEIKAI, and LI, HAO.
“Soft rasterizer: A differentiable renderer for image-based 3d reason-
ing”. Proceedings of the IEEE/CVF international conference on com-
puter vision. 2019, 7708–7717 3, 6.

[LLGR20] LI, TZU-MAO, LUKÁČ, MICHAL, GHARBI, MICHAËL, and
RAGAN-KELLEY, JONATHAN. “Differentiable vector graphics rasteri-
zation for editing and learning”. ACM Transactions on Graphics (TOG)
39.6 (2020), 1–15 3.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1145/3550454.3555484
https://doi.org/10.1145/3550454.3555484
https://imagemagick.org
https://inkscape.org/
https://inkscape.org/

12 of 14 Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities

[MESK22] MÜLLER, THOMAS, EVANS, ALEX, SCHIED, CHRISTOPH,
and KELLER, ALEXANDER. “Instant neural graphics primitives with a
multiresolution hash encoding”. ACM transactions on graphics (TOG)
41.4 (2022), 1–15 2, 7, 8, 10, 11.

[MGB*21] MEHTA, ISHIT, GHARBI, MICHAËL, BARNES, CONNELLY,
et al. “Modulated periodic activations for generalizable local functional
representations”. Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 2021, 14214–14223 2.

[MLL*21] MARTEL, JULIEN NP, LINDELL, DAVID B, LIN, CONNOR Z,
et al. “Acorn: Adaptive coordinate networks for neural scene representa-
tion”. arXiv preprint arXiv:2105.02788 (2021) 2.

[MS89] MUMFORD, DAVID BRYANT and SHAH, JAYANT. “Optimal ap-
proximations by piecewise smooth functions and associated variational
problems”. Communications on pure and applied mathematics (1989) 3.

[MST*21] MILDENHALL, BEN, SRINIVASAN, PRATUL P, TANCIK,
MATTHEW, et al. “NeRF: Representing scenes as neural radiance fields
for view synthesis”. Communications of the ACM 65.1 (2021), 99–106 2.

[Mül21] MÜLLER, THOMAS. tiny-cuda-nn. Version 1.7. Apr. 2021. URL:
https://github.com/NVlabs/tiny-cuda-nn 14.

[Mul56] MULLER, MERVIN E. “Some continuous Monte Carlo meth-
ods for the Dirichlet problem”. The Annals of Mathematical Statistics
(1956), 569–589 7.

[NJJ21] NICOLET, BAPTISTE, JACOBSON, ALEC, and JAKOB, WENZEL.
“Large steps in inverse rendering of geometry”. ACM Transactions on
Graphics (TOG) 40.6 (2021), 1–13 7.

[OBW*08] ORZAN, ALEXANDRINA, BOUSSEAU, ADRIEN, WIN-
NEMÖLLER, HOLGER, et al. “Diffusion curves: a vector representation
for smooth-shaded images”. ACM Transactions on Graphics (TOG)
27.3 (2008), 1–8 2.

[Pal22] PALFINGER, WERNER. “Continuous remeshing for inverse render-
ing”. Computer Animation and Virtual Worlds 33.5 (2022), e2101 14.

[PGM*19] PASZKE, ADAM, GROSS, SAM, MASSA, FRANCISCO, et al.
“Pytorch: An imperative style, high-performance deep learning library”.
Advances in neural information processing systems 32 (2019) 7.

[PHH*24] POLANSKY, MIA GAIA, HERRMANN, CHARLES, HUR, JUN-
HWA, et al. Boundary Attention: Learning to Localize Boundaries under
High Noise. 2024. arXiv: 2401.00935 [cs.CV] 2, 3, 7, 8.

[PK10] PAVIĆ, DARKO and KOBBELT, LEIF. “Two-Colored Pixels”. Com-
puter Graphics Forum. Vol. 29. 2. Wiley Online Library. 2010, 743–
752 2.

[PZ08] PARILOV, EVGUENI and ZORIN, DENIS. “Real-time rendering of
textures with feature curves”. ACM Transactions on Graphics (TOG)
27.1 (2008), 1–15 2.

[RBW04] RAMANARAYANAN, GANESH, BALA, KAVITA, and WALTER,
BRUCE. Feature-based textures. Tech. rep. Cornell University, 2004 2.

[RKH*21] RADFORD, ALEC, KIM, JONG WOOK, HALLACY, CHRIS,
et al. “Learning transferable visual models from natural language
supervision”. International conference on machine learning. PMLR.
2021, 8748–8763 10.

[RL16] RESHETOV, ALEXANDER and LUEBKE, DAVID. “Infinite resolu-
tion textures.” High Performance Graphics. 2016, 139–150 2.

[RZW*21] REDDY, PRADYUMNA, ZHANG, ZHIFEI, WANG, ZHAOWEN,
et al. “A multi-implicit neural representation for fonts”. Advances in
Neural Information Processing Systems 34 (2021), 12637–12647 3.

[SC20] SAWHNEY, ROHAN and CRANE, KEENAN. “Monte Carlo geome-
try processing: A grid-free approach to PDE-based methods on volumet-
ric domains”. ACM Transactions on Graphics 39.4 (2020) 7.

[Sen04] SEN, PRADEEP. “Silhouette maps for improved texture magnifi-
cation”. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware. 2004, 65–73 2.

[SGY*21] SHEN, TIANCHANG, GAO, JUN, YIN, KANGXUE, et al. “Deep
marching tetrahedra: a hybrid representation for high-resolution 3d shape
synthesis”. Advances in Neural Information Processing Systems 34
(2021), 6087–6101 2.

[SLWS07] SUN, JIAN, LIANG, LIN, WEN, FANG, and SHUM, HEUNG-
YEUNG. “Image vectorization using optimized gradient meshes”. ACM
Transactions on Graphics (TOG) 26.3 (2007), 11–es 2.

[SMB*20] SITZMANN, VINCENT, MARTEL, JULIEN, BERGMAN,
ALEXANDER, et al. “Implicit neural representations with periodic
activation functions”. Advances in neural information processing
systems 33 (2020), 7462–7473 2.

[SW04] SU, DAN and WILLIS, PHILIP. “Image interpolation by pixel-
level data-dependent triangulation”. Computer graphics forum. Vol. 23.
2. Wiley Online Library. 2004, 189–201 2.

[SWWW15] SONG, YING, WANG, JIAPING, WEI, LI-YI, and WANG,
WENCHENG. “Vector regression functions for texture compression”.
ACM Transactions on Graphics (TOG) 35.1 (2015), 1–10 2.

[SZR*23] SPIELBERG, ANDREW, ZHONG, FANGCHENG, REMATAS,
KONSTANTINOS, et al. “Differentiable visual computing for inverse
problems and machine learning”. Nature Machine Intelligence 5.11
(2023), 1189–1199 3.

[TA11] TU, XI and ADAMS, MICHAEL D. “Image representation using tri-
angle meshes with explicit discontinuities”. Proceedings of 2011 IEEE
Pacific Rim Conference on Communications, Computers and Signal Pro-
cessing. IEEE. 2011, 97–101 2.

[TC*05] TARINI, MARCO, CIGNONI, PAOLO, et al. “Pinchmaps: Textures
with customizable discontinuities”. Computer Graphics Forum. Vol. 24.
2005, 557–568 2.

[TC04] TUMBLIN, JACK and CHOUDHURY, PRASUN. “Bixels: Picture
samples with sharp embedded boundaries.” Rendering Techniques 255
(2004), 264 2.

[TG22] TIAN, XINGZE and GÜNTHER, TOBIAS. “A survey of smooth
vector graphics: Recent advances in representation, creation, rasteriza-
tion and image vectorization”. IEEE Transactions on Visualization and
Computer Graphics (2022) 2.

[TLY*21] TAKIKAWA, TOWAKI, LITALIEN, JOEY, YIN, KANGXUE, et al.
“Neural geometric level of detail: Real-time rendering with implicit 3d
shapes”. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2021, 11358–11367 2.

[TMN*23] TAKIKAWA, TOWAKI, MÜLLER, THOMAS, NIMIER-DAVID,
MERLIN, et al. “Compact Neural Graphics Primitives with Learned Hash
Probing”. SIGGRAPH Asia 2023 Conference Papers. 2023, 1–10 2.

[TT16] TONG, WEIHUA and TAI, XUECHENG. “A variational approach
for detecting feature lines on meshes”. Journal of Computational Math-
ematics (2016), 87–112 3.

[TYW01] TSAI, ANDY, YEZZI, ANTHONY, and WILLSKY, ALAN S.
“Curve evolution implementation of the Mumford-Shah functional for
image segmentation, denoising, interpolation, and magnification”. IEEE
transactions on Image Processing 10.8 (2001), 1169–1186 3.

[VC02] VESE, LUMINITA A and CHAN, TONY F. “A multiphase level
set framework for image segmentation using the Mumford and Shah
model”. International journal of computer vision 50 (2002), 271–293 3.

[VZ21] VERBIN, DOR and ZICKLER, TODD. “Field of Junctions: Extract-
ing Boundary Structure at Low SNR”. Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). Oct. 2021, 6869–
6878 2, 3, 7, 14.

[WLL22] WANG, CHUNXUE, LIU, ZHENG, and LIU, LIGANG. “Feature-
preserving Mumford–Shah mesh processing via nonsmooth nonconvex
regularization”. Computers & Graphics 106 (2022), 222–236 2, 3, 7, 8,
14.

[XLY09] XIA, TIAN, LIAO, BINBIN, and YU, YIZHOU. “Patch-based im-
age vectorization with automatic curvilinear feature alignment”. ACM
Transactions on Graphics (TOG) 28.5 (2009), 1–10 2.

[XTS*22] XIE, YIHENG, TAKIKAWA, TOWAKI, SAITO, SHUNSUKE, et
al. “Neural fields in visual computing and beyond”. Computer Graphics
Forum. Vol. 41. 2. Wiley Online Library. 2022, 641–676 2.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://github.com/NVlabs/tiny-cuda-nn
https://arxiv.org/abs/2401.00935

Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities 13 of 14

[YBAF22] YANG, YUTING, BARNES, CONNELLY, ADAMS, ANDREW,
and FINKELSTEIN, ADAM. “A δ: autodiff for discontinuous programs-
applied to shaders”. ACM Transactions on Graphics (TOG) 41.4
(2022), 1–24 3.

[YLT*21] YU, ALEX, LI, RUILONG, TANCIK, MATTHEW, et al. “Plenoc-
trees for real-time rendering of neural radiance fields”. Proceed-
ings of the IEEE/CVF International Conference on Computer Vision.
2021, 5752–5761 2.

[ZDZ17] ZHAO, SHUANG, DURAND, FRÉDO, and ZHENG, CHANGXI.
“Inverse diffusion curves using shape optimization”. IEEE transactions
on visualization and computer graphics 24.7 (2017), 2153–2166 2.

[ZJL20] ZHAO, SHUANG, JAKOB, WENZEL, and LI, TZU-MAO.
“Physics-based differentiable rendering: a comprehensive introduction”.
ACM SIGGRAPH 2020 Courses 14 (2020), 1–14 3.

[ZRJ23] ZHANG, ZIYI, ROUSSEL, NICOLAS, and JAKOB, WENZEL. “Pro-
jective Sampling for Differentiable Rendering of Geometry”. ACM
Transactions on Graphics (TOG) 42.6 (2023), 1–14 3.

Appendix A: Ablations

Feature design We compare against two simpler versions of our
neural field: the per-vertex field and the per-edge field (Fig. 16).
The per-vertex field is a hybrid feature field with features stored
at the vertex. Additionally, we ablate our design of discontinu-
ous edges by introducing a per-edge field. This field interpolates
the features stored on the two consecutive half-edges of the query
face (purple arrows in Fig. 16). This interpolation is similar to our
method but the feature of this configuration is continuous across
edges. Both versions are significantly worse than our model as re-
ported in Table 3a and shown in our supplementary materials. Sim-
ilar to the InstantNGP results, we observe that LPIPS is less sensi-
tive to the absolute function values in the vicinity of discontinuities.

λdiscont sensitivity We analyze the sensitivity of the parameter
λdiscont (5×10−3 by default) in Eq. 10 by repeating the ablation ex-
periments on our diffusion curve test set. When λdiscont = 0, the loss
function lacks the sparsity inducing term for discontinuous edges,
resulting in a slight increase in their number due to small-scale dis-
continuous edges in almost continuous areas. As λdiscont increases,
the discontinuous edges become cleaner, but start to lose detail near
shape intersection regions. Quantitatively, Table 3b shows that the
alternative values of λdiscont yield PSNR results with negligible im-
provements (< 1% on average).

Activation We choose tanh for activations since we observe
that ReLU competes with discontinuous edges when approximat-
ing discontinuities. As utilized by ReLU fields [KRWM22], ReLU
activations tend to create steep slopes that approximate true dis-
continuities, serving an overlap role as our discontinuous features.
In Fig. 17, our neural field with ReLU activations is less smooth
compared to the version with tanh activations. As we rely on the
smoothness of MLP, we decide on tanh for activations.

Importance sampling We randomly sample edges using the
same number of samples without importance sampling on the dif-
fusion curve test set. As the sampling edge number increases by
roughly 8×, the Monte-Carlo edge sampling converges slower,
leading to inaccurate discontinuity locations (blurs) and worse
PSNR (by 0.6%) and Chamfer (by 35.2%).

Rounding We compare the edge counts and the parameter num-
bers before and after the rounding step. Without the rounding, all

(a) per-vertex field

v0

v1

v2

b

l0,1

l1,0

(b) per-edge field (c) our design

v0

v1

v2

b
v0

v1

v2

b

l0,1
r0,1

r1,0
l1,0

Figure 16: Different designs of mesh-based feature fields.

(a) input (spp = 200) (b) tanh (c) ReLU

2x

Figure 17: ReLU activations generate redundant discontinuities.

edges are considered potentially discontinuous and thus present in
the resulting field — a similar setting as trivially applying Belhe et
al.’s to our problem setting. After rounding, the number of edges
with features decreases to 1/68 on the diffusion curve test set and
the number of parameters reduces to 1/5. On more complicated in-
puts, the decreases are as follows: Fig. 10, 15b shows 1/4 for edge
counts and 1/3 for parameters; Fig. 13, 15a shows 1/27 for edge
counts and 1/5 for parameters; Fig. 2, 15d shows 1/2 for both.

Appendix B: Implementation Details

Mesh initialization During our mesh initialization, we interleave
the deformation with optional remeshing steps. In a remeshing step,
we apply in order

1. Edge collapses: We remove a face with area smaller than 2×
10−5 of the canvas area or with an angle greater than 120◦ by
collapsing its shortest edge.

2. Edge splits: We split a face with L2 fitting loss greater than
Lsplit = 2 by splitting its longest edge at the mid point.

3. Edge flips: We first flip edges so the triangulation is Delaunay
then apply flips to minimize a hybrid loss of L2 fitting loss and
Delaunay loss.

The hybrid loss is defined as

∑
e∈Fi,Fj

∥∥ f0(x;Fi,Fj ∈M)− I(x)
∥∥2

+λDelaunaytrace(L), (11)

where Fi,Fj are the two faces defined by an edge; L is the positive

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

14 of 14 Chenxi Liu, Siqi Wang, Matthew Fisher, Deepali Aneja, & Alec Jacobson / 2D Neural Fields with Learned Discontinuities

Table 3: Ablation studies. (a) Feature design and (b) effect of vary-
ing λdiscont (5×10−3 by default).

Methods
Denoising

Denoising +
Super-resolution (2×)

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
Per-Vertex 30.758 0.0593 30.344 0.0747
Per-Edge 36.682 0.0178 35.518 0.0361
Ours 44.486 0.0261 43.913 0.0423

(a) Feature design.

Default 0 10−3 10−2 10−1

PSNR ↑ 44.486 44.416 44.539 44.708 43.519
Ratio ↑ 100.0% 99.8% 100.1% 100.5% 97.8%

(b) Effect of varying λdiscont.

semi-definite cotan Laplacian operator defined by the four vertices
in Fi,Fj; λDelaunay is set to 0.5. It is shown that the trace of the
cotan Laplacian is decreased by Delaunay flips and reaches a global
minimum when the 2D triangulation is Delaunay [Ale19].

Field optimization To jointly optimize our neural field in trian-
gle interiors and the triangle mesh, we compute the gradient of
the rendering integral with respect to moving triangle area. This
is achieved via the common differentiable rendering technique of
edge-sampling Monte Carlo estimation [LADL18]

∇
∫

Ω

∥ f (x;V,Θ)− I(x)∥2 dx (12)

=

(
∇T

∫
Ω

f (x;V,Θ)dx
)
·
∫

Ω

(f (x;V,Θ)− I(x))dx. (13)

This gradient can be estimated as

∇
∫

Ω

f dx (14)

=
∫

Ω\E

∂

∂Θ
f dx+ ∑

ei∈E

∫
αi(x)=0

∇V αi(x)
∥∇V αi(x)∥

f (x)d p(x), (15)

where the first term is the regular gradient of the field with respect
to the field parameter in the face interiors; the second term is the
gradient with respect to the vertices along discontinuous edges. The
edges in the second term are defined by implicit functions α(x).

Appendix C: Parameter Configurations

Mesh Initialization We detect Canny edges with low and high
thresholds of 100 and 200. To reduce the salt-and-pepper noises in
the 3D renderings, we smooth the image with a Gaussian kernel of
size 3 before Canny edge detection. We call TriWild with a target
edge length ratio of 10−2. We deform the mesh with SoftRasterizer
(sharpness kernel size of 10−1) for 200 epochs and remesh every
50 epochs. The per-face colors are set to be the face mean color in
every iteration rather than kept as variables. Our remeshing imple-
mentation is based on the continuous remeshing PyTorch imple-
mentation [Pal22]. We employ per-triangle stratified sampling to
avoid flipping very small triangles during mesh initialization. For

the artistic drawing inputs where noise is minimal and faithful ap-
proximation is the goal, the TriWild target edge length ratio is ad-
justed to 3×10−3 and the mesh deformation is run for 100 epochs
without remeshing.

Field Optimization We initialize all our neural field weights us-
ing the standard Xavier normal distribution and all biases as zero.

Appendix D: Comparison Setup

Rendering We render the resolution-independent results of mesh-
based MS, InstantNGP, and our method using subpixel grid sam-
ples (spp = 42) for better visual effects given the target resolution.

JPEG compressed vector images We generate an input raster im-
age by normalizing a vector image such that its longer axis occupies
90% of the 512×512 white canvas, then rasterizing the image with
INKSCAPE and compressing it into a JPEG image with a quality of
50 via IMAGEMAGICK.

InstantNGP We use the tiny-cuda-nn [Mül21] based implemen-
tation for subpixel inference. We match the size of InstantNGP and
our neural field by adjusting InstantNGP’s hash table size. We en-
sure InstantNGP’s convergence by running for 10k iterations.

Mumford-Shah functional We reimplement a mesh-based MS
denoising algorithm [WLL22] and run it on the resulting aligned
mesh from our method. The pixel-based MS denoising algorithm
is implemented by replacing WANG, LIU, and LIU’s discretiza-
tion with the one on pixel grids. We conduct experiments with pa-
rameters: α = 1,β = 0.01,γ = 100,epsilon = 0.01 and 10 itera-
tions of alternating optimization. For comparison fairness, we grid
search the discontinuity threshold of mesh-based MS in the range
of v = [0.01,0.09] (step size of 0.01) and [0.1,0.5] (step size of 0.1)
given the Chamfer distance.

Field of Junctions We use the official implementation of FofJ
[VZ21]. We manually tune the parameters for the most accurate
approximation. Our experiment uses η = 0.01, δ = 0.1, patch size
R = 17, stride s = 5 for a 512× 512 image, consistency weights
λB = 0.5, λC = 0.1, Ninit = 30 iterations, Niter = 1000 iterations, the
number of values to query N = 10 in Algorithm 2, a learning rate
of 0.03 for the vertex positions and 0.003 for the junction angles in
the refinement step to generate the global boundaries and smoothed
image.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

