Elliptic optimal control problems with L^1 -control cost and applications for the placement of control devices *

Georg Stadler[†]

October 10, 2008

Correction of proof for Theorem 4.3.

Theorem 4.3 Let the initialization u^0 be sufficiently close to the solution \bar{u} of P. Then the iterates u^k of Algorithm 1 converge superlinearly to \bar{u} in $L^2(\Omega)$. Moreover, the corresponding states y^k converge superlinearly to \bar{y} in $H_0^1(\Omega)$.

Proof To apply Theorem 4.1, it remains to show that the generalized derivative (4.7) is invertible and that the norms of the inverse linear mappings are bounded. Define $\mathfrak{I} := \mathfrak{I}_- \cup \mathfrak{I}_+$, and for $\mathfrak{S} \subset \Omega$ and $v \in L^2(\Omega)$ the restriction operator $E_{\mathfrak{S}} : L^2(\Omega) \to L^2(\mathfrak{S})$ by $E_{\mathfrak{S}}(v) := v_{|\mathfrak{S}}$. The corresponding adjoint opeator is the extension-by-zero operator $E_{\mathfrak{S}}^* : L^2(\mathfrak{S}) \to L^2(\Omega)$. To show that $\mathcal{G}(u)$ has a bounded inverse, we assume for arbitrary $w \in L^2(\Omega)$ that $\mathcal{G}(u)(v) = w$. From the explicit form (4.7), one immediately obtains that $E_{\Omega \setminus \mathfrak{I}} \mathsf{v} = E_{\Omega \setminus \mathfrak{I}} \mathsf{w}$. Thus, $v_{\mathfrak{I}} := E_{\mathfrak{I}} v \in L^2(\mathfrak{I})$ satisfies

$$\alpha^{-1}E_{\mathfrak{I}}A^{-\star}A^{-1}E_{\mathfrak{I}}^{\star}v_{\mathfrak{I}} + v_{\mathfrak{I}} = E_{\mathfrak{I}}w - \alpha^{-1}E_{\mathfrak{I}}A^{-\star}A^{-1}E_{\Omega\backslash\mathfrak{I}}^{\star}E_{\Omega\backslash\mathfrak{I}}w.$$
(*)

We now define the new scalar product $\langle \cdot, \cdot \rangle$ on \mathfrak{I} by

$$\langle v_1, v_2 \rangle := (v_1, v_2)_J + \alpha^{-1} (A^{-1} E_{\mathfrak{I}}^{\star} v_1, A^{-1} E_{\mathfrak{I}}^{\star} v_2)_{\Omega},$$

^{*}Published in Coputational Optimization and Applications, 2008; This note corrects an inaccuracy in a proof from the original paper.

[†]Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX 78712, USA; georgst@ices.utexas.edu.

for $v_1, v_2 \in L^2(\mathcal{I})$. Clearly, $\langle \cdot, \cdot \rangle$ satisfies

$$\langle v_1, v_1 \rangle \ge (v_1, v_1)_{\mathfrak{I}_2}$$

that is, the product $\langle \cdot, \cdot \rangle$ is coercive with constant 1 independently from J. Using the Lax-Milgram lemma, one finds that (*) admits a unique solution $v_{\mathfrak{I}} \in L^2(\mathfrak{I})$. Moreover, this solution satisfies

$$\|v_{\mathfrak{I}}\|_{L^{2}(\mathfrak{I})} \leq C \|w\|_{L^{2}(\Omega)}$$

with a constant C > 0 independent from \mathfrak{I} and thus from u. This proves the boundedness of $\mathcal{G}(u)^{-1}$ for all $u \in L^2(\Omega)$, which ends the proof. \Box

Acknowledgement

I would like to thank Gerd Wachsmuth from the University of Chemnitz (Germany) for pointing me to the error in the original proof.