Optimal design of experiments for inverse problems:
Computational aspects, extension to nonlinear problems and uncertain models

Georg Stadler
Courant Institute, New York University
stadler@cims.nyu.edu

Lecture material at: https://cims.nyu.edu/~stadler/oed/

June 30, 2023
Optimal experimental design (OED)
Other names: design of experiments; optimal data collection

- **Main question:** How/where to (optimally) collect observations in inverse problems/data assimilation?
- Typically decided upfront (i.e., experiment planning).
- Particularly important when experiments are **costly/slow/dangerous**.
- **Experimental designs:** Sensor locations, projection angles, excitation frequencies, . . .

Classic research question in electrical engineering, drug testing etc. Also related to *active learning* in ML.
Diffusive contaminant transport, unknown init. cond.
A linear inverse problem with time-dependent forward model

- **Forward model** f: advection-diffusion equation
- **Inversion parameter**: m initial concentration field
- **Inverse problem**: Use a vector d of point measurements of concentration to infer distribution of m
- **Optimal experimental design problem**: Find sensor placements (to collect the data d) that minimize the posterior uncertainty in m
Outline

Computation of posterior trace, other OED optimality criteria

OED with model errors

OED for nonlinear model
A-optimal design with sparsity control

\[
\begin{align*}
\text{minimize} \quad & \text{tr}[\Gamma_{\text{post}}(w)] + \gamma P(w) \\
\text{subject to} \quad & 0 \leq w \leq 1
\end{align*}
\]

- \(P(w) \): penalty term
- Discretized posterior covariance operator:
 \[
 \Gamma_{\text{post}}(w) = \left(\frac{1}{\sigma^2_{\text{noise}}} F^* W F + \Gamma_{\text{pr}}^{-1} \right)^{-1}
 \]

Main challenges:
- Choice of penalty function to achieve binary weights
- Re-computation of inverse covariance trace
- Gradient of posterior trace with respect to \(w \)
Randomized trace estimator:

$$\text{tr} \left[\Gamma_{\text{post}}(w) \right] \approx \frac{1}{n_{\text{tr}}} \sum_{i=1}^{n_{\text{tr}}} \langle z_i, \Gamma_{\text{post}}(w) z_i \rangle =: \phi(w)$$

- z_i random vectors (e.g., Gaussian)

Computation of cost and gradient:

$$\phi(w) = \frac{1}{n_{\text{tr}}} \sum_{i=1}^{n_{\text{tr}}} \langle z_i, q_i \rangle \quad \frac{\partial \phi}{\partial w_j} = -\frac{1}{n_{\text{tr}}} \sum_{i=1}^{n_{\text{tr}}} \langle q_i, \partial_j \mathcal{H}_{\text{misfit}} q_i \rangle$$

- Need $q_i = \Gamma_{\text{post}}(w) z_i$, $i = 1, \ldots, n_{\text{tr}}$

- Need $F q_i$, $i = 1, \ldots, n_{\text{tr}}$ (for computing $\frac{\partial \phi}{\partial w_j}$)
SVD surrogate for the parameter-to-observable map

- Need many applications of F in the optimization process
- Idea: F is low-rank (often) \implies compute low-rank SVD for F
- Better idea: Compute SVD surrogate for $\tilde{F} = F \Gamma_{pr}^{1/2}$
- Use randomized SVD*
- SVD surrogate for \tilde{F}:
 no forward/adjoint PDE solves in OED algorithm

Alternative: Rewrite posterior covariance in observation space

- Reformulate posterior covariance trace in observation space
- Has advantages when we consider a moderate number of observation location candidates
- Requires inverse only in the observation space dimension

A-optimal design: the variance field

Optimal

Sub-optimal
A-optimal design: the variance field

Optimal

Sub-optimal
A-optimal design: the variance field

Optimal

Sub-optimal
Alternative design criteria

Above we used *A-optimal design*, i.e., minimizing the average variance (trace of the posterior covariance matrix/operator).

Alternative measures:

- **D-optimal design**: Expected information gain from prior to posterior using Kullback-Leibler divergence (discretized, becomes determinant of covariance matrix)
- **E-optimal design**: Minimizes the maximal eigenvalue of the covariance matrix
- ...

Different design criteria typically give different designs; some are tricky to interpret in infinite dimensions.
Outline

Computation of posterior trace, other OED optimality criteria

OED with model errors

OED for nonlinear model
Extension I: Forward model with uncertainty

Forward problem with uncertain advection \(\mathbf{v} = \mathbf{v}(\xi) \)

\[
\begin{align*}
 u_t - \kappa \Delta u + \mathbf{v} \cdot \nabla u &= 0 \quad \text{in } D \times [0, T] \\
 u(0, x) &= m \quad \text{in } D \\
 \kappa \nabla u \cdot \mathbf{n} &= 0 \quad \text{on } \partial D \times [0, T]
\end{align*}
\]
Extension I: Forward model with uncertainty

Forward problem with uncertain advection $\mathbf{v} = \mathbf{v}(\xi)$

\[
\begin{align*}
\frac{\partial u}{\partial t} - \kappa \Delta u + \mathbf{v} \cdot \nabla u &= 0 \quad \text{in } \mathcal{D} \times [0, T] \\
u(0, x) &= m \quad \text{in } \mathcal{D} \\
\kappa \nabla u \cdot \mathbf{n} &= 0 \quad \text{on } \partial \mathcal{D} \times [0, T]
\end{align*}
\]

Corresponding posterior covariance matrix:

\[
C_{\text{post}}(\mathbf{w}, \xi) = \left(\frac{1}{\sigma_{\text{noise}}^2} \mathcal{F}(\xi)^* \mathbf{W} \mathcal{F}(\xi) + C_{\text{pr}}^{-1} \right)^{-1}
\]
Extension I: Forward model with uncertainty

Forward problem with uncertain advection $v = v(\xi)$

$$
\begin{align*}
 u_t - \kappa \Delta u + v \cdot \nabla u &= 0 & \text{in } D \times [0, T] \\
 u(0, x) &= m & \text{in } D \\
 \kappa \nabla u \cdot n &= 0 & \text{on } \partial D \times [0, T]
\end{align*}
$$

Corresponding posterior covariance matrix:

$$
C_{\text{post}}(w, \xi) = \left(\frac{1}{\sigma_{\text{noise}}^2} \mathcal{F}(\xi)^* W \mathcal{F}(\xi) + C_{\text{pr}}^{-1} \right)^{-1}
$$

OED formulation:

$$
\min_{w \in [0,1]^d} \text{tr} \left(C_{\text{post}}(w, \xi) \right) + \gamma P_\varepsilon(w)
$$

Extension I: Forward model with uncertainty

Forward problem with uncertain advection $v = v(\xi)$

$$u_t - \kappa \Delta u + v \cdot \nabla u = 0 \quad \text{in } D \times [0, T]$$
$$u(0, x) = m \quad \text{in } D$$
$$\kappa \nabla u \cdot n = 0 \quad \text{on } \partial D \times [0, T]$$

Corresponding posterior covariance matrix:

$$C_{\text{post}}(w, \xi) = \left(\frac{1}{\sigma_{\text{noise}}^2} \mathcal{F}(\xi)^* W \mathcal{F}(\xi) + C_{\text{pr}}^{-1} \right)^{-1}$$

OED formulation:

$$\min_{w \in [0,1]^d} \int_{\Omega} \text{tr} \left(C_{\text{post}}(w, \xi) \right) P(d\xi) + \gamma P_\varepsilon(w)$$

Reference:

(1) Computation of trace, “measurement space approach”

\[\phi(\xi, w) = \text{tr} \left[\left(\frac{1}{\sigma^2} F(\xi)^* W F(\xi) + C_0^{-1} \right)^{-1} \right] \]

- Avoid having to approximate trace of an infinite-dimensional operator
- We can show that we can rewrite \(\phi(\xi, w) \) as:

\[\phi(\xi, w) = \text{tr} (C_0) - \text{tr} \left[\frac{1}{\sigma^2} C_0 F^*(\xi) S^{-1}(\xi, w) W F(\xi) C_0 \right] \]

where \((I + \frac{1}{\sigma^2} W F(\xi) C_0 F^*(\xi)) = S(\xi, w)\)
(1) Computation of trace, “measurement space approach”

Rearranging terms in the trace, we have:

\[\phi(\xi, w) = \text{tr}(C_0) - \text{tr}\left[\frac{1}{\sigma^2} S^{-1}(\xi, w) W F(\xi) C_0^2 F^*(\xi) \right] \]

\[= \text{tr}(C_0) - \text{tr}[K(\xi, w)] \]

First term independent of \(w \) \implies\ drop it

Optimal design now satisfies:

\[w^* = \text{argmin}_{w \in [0,1]^d} - \int_\Omega \text{tr}[K(\xi, w)] P(d\xi) + \gamma \psi(w) \]

The dimensionality of the operator is reduced in this formulation

Trace of an operator in observation space (finite)
(2) Discretization of the uncertainty

- Approximate the expected value of the average pointwise posterior variance
- Assuming we can sample $\xi_i \in \Omega$, we use SAA to approximate the integral

$$\int_{\Omega} \text{tr} [K(\xi, w)] P(d\xi) \approx \frac{1}{N} \sum_{i=1}^{N} \text{tr} [K(\xi_i, w)]$$
(3) Elimination of PDEs from the minimization

OEDUU objective (with discretized operators):

\[
\frac{1}{N} \sum_{i=1}^{N} \text{tr} [K(\xi_i, w)] = \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{d} \langle e_j, K(\xi_i, w)e_j \rangle \right)
\]

where

\[
K(\xi_i, w) = \frac{1}{\sigma^2} S^{-1}(\xi, w) W F_i C_0^2 F_i^*
\]

\[
S(\xi_i, w) = \left(I + \frac{1}{\sigma^2} W F_i C_0 F_i^* \right)
\]

Expensive to optimize:

- in each step of minimization need to compute trace for each sample
- evaluation of trace requires \(d\) applications of \(K(\xi_i, w)\)
- each application requires 2 PDE solves plus applying the inverse of an operator containing 2 PDE solves
(3) Elimination of PDEs from the minimization

Find a low-rank approximation to \(C^\frac{1}{2} F(\xi_i) = \tilde{F}_i \)

- Eigenspectrum decays quickly, thus feasible
- Done via randomized range-finder techniques (Halko et al., 2011)

Storing separate basis vectors for each \(\tilde{F}_i \) is infeasible

- Different choices of \(\mathbf{v}(\xi) \) may have similar learning directions
- **Solution**: find a space that captures the “effective” composite range space

Find \(Q \in \mathbb{R}^{d \times k} \) and \(\hat{Q} \in \mathbb{R}^{m \times k} \) (\(k \) small) such that \(\forall i \in [1, \cdots, N] \):

\[
\tilde{F}_i \approx QQ^* \tilde{F}_i \hat{Q}\hat{Q}^*
\]
Joint basis algorithm:

Algorithm 1 Composite randomized range-finder algorithm

1. N random matrices $\Omega_i \in \mathbb{R}^{d \times r}$, $\hat{\Omega}_i \in \mathbb{R}^{n \times r}$, $i = 1, \ldots, N$.
2. $Y_i = \tilde{F}_i \Omega_i$, $\hat{Y}_i = \tilde{F}_i^T \hat{\Omega}_i$.
3. Set $Y = [Y_1, \ldots, Y_N]$ and $\hat{Y} = [\hat{Y}_1, \ldots, \hat{Y}_N]$.
4. Compute SVDs of $Y = U \Sigma V^T$ and of $\hat{Y} = \hat{U} \hat{\Sigma} \hat{V}^T$.
5. Truncate SVDs up to desired tolerance.
6. $Q = U[:, 1 : k]$ and $\hat{Q} = \hat{U}[:, 1 : k]$.
7. **return** Q and \hat{Q}.
(4) Reduced basis and clustering

Potential issues:

▶ Still need to apply \tilde{F}_i to k vectors to compute $Q^* \tilde{F}_i \hat{Q}$

▶ Requires minimal-residual solution to

\[
B_i \hat{Q}^T \Omega_i = Q^T Y_i, \tag{1}
\]

\[
B_i^T Q^T \hat{\Omega}_i = \hat{Q}^T \hat{Y}_i \tag{2}
\]

▶ Memory usage \uparrow as $N \uparrow$

▶ Cluster “similar” uncertain parameters ξ together
▶ Definition of “similarity” metric problem specific
▶ For each cluster, compute a composite basis and store it
▶ Reduces basis size and PDE solves needed
(4) Reduced basis and clustering

Potential issues:

- Still need to apply \tilde{F}_i to k vectors to compute $Q^*\tilde{F}_i\hat{Q}$
- Find $B_i \approx Q^*\tilde{F}_i\hat{Q}$
- Requires minimal-residual solution to

\begin{align}
B_i\hat{Q}^T\Omega_i &= Q^TY_i, \\
B_i^TQ^T\hat{\Omega}_i &= \hat{Q}^T\hat{Y}_i
\end{align}

- Memory usage ↑ as N ↑
Synthesizing a distribution for ν

Solve Bayesian inverse problem for ξ using synthetic data

$-\nabla \cdot (e^{\xi} \nabla p) = 0$ in D,

$p = 0$ on Γ_L,

$p = 1$ on Γ_R,

$e^{\xi} \nabla p \cdot n = 0$ on Γ_N

$\xrightarrow{\text{Sample}}$ $\xi_i \sim$ sample ν_i

$\xrightarrow{\text{Leads to}}$ $\pi_\xi(\xi)$

$\pi_\xi(\xi)$: Gaussian approximation at MAP
Subsurface flow OEDUU

\[w^* = \arg\min_{w \in [0,1]^d} - \frac{1}{N} \sum_{i=1}^{N} K(v_i, w) + \gamma \psi(w) \]

- Solve minimization problem many times with different \(\psi(w) \)
 - Change \(\psi(w) \) to approximate \(\ell_0 \) “norm” better in each iteration
- Each minimization solved with gradient-based method (projected BFGS)
- Number of minimization problems needed to solve \(\approx 10 \)
Design comparisons

How well do the designs do for initial condition inversion using the “true” ν?

MAP points
Design comparisons

How well do the designs do for initial condition inversion using the “true” v?

Pointwise variance reduction
Deterministic vs. designs under uncertainty

\[-E(\text{tr}(K(\omega)))\]

Number of sensors

- OED
- OEDUU with 100 samples
Extension II: Nonlinear forward model

- Nonlinear model, Gaussian prior and noise \(\not\Rightarrow\) Gaussian posterior
- Use Gaussian approximation to posterior: for given \(\mathbf{w}\) and \(\mathbf{d}\)
 - Compute the maximum a posteriori probability (MAP) estimate \(m_{\text{MAP}}(\mathbf{w}; \mathbf{d})\)
 - Gaussian approximation to posterior at MAP point

\[
\mathcal{N}(m_{\text{MAP}}(\mathbf{w}; \mathbf{d}), \mathcal{H}^{-1}[m_{\text{MAP}}(\mathbf{w}; \mathbf{d}), \mathbf{w}; \mathbf{d}])
\]

- Data \(\mathbf{d}\) not available \textit{a priori}

Example: Log permeability \(m\) inversion from pressure measurements \(u(x_i)\):

\[
- \nabla \cdot (\exp(m) \nabla u) = f \quad \text{in} \ D
\]
\[
u = 0 \quad \text{on} \ \Gamma_D
\]
\[
\exp(m) \nabla u \cdot n = g \quad \text{on} \ \Gamma_N
\]

Reference:

Outline

Computation of posterior trace, other OED optimality criteria

OED with model errors

OED for nonlinear model
Extension II: Nonlinear forward model

- General formulation: minimize average posterior variance:

\[
\minimize_w \quad \operatorname{tr} \left(\mathcal{H}^{-1} \left[m_{\text{MAP}}(w; d), w; d \right] \right)
\]
Extension II: Nonlinear forward model

- General formulation: minimize expected average posterior variance:

\[
\min_w \int \left\{ \text{tr} \left(H^{-1} [m_{MAP}(w; d), w; d] \right) \right\} d\mu(d)
\]
Extension II: Nonlinear forward model

- General formulation: minimize expected average posterior variance:

\[
\min_w \int \left\{ \text{tr}\left(\mathcal{H}^{-1}[m_{\text{MAP}}(w; d), w; d] \right) \right\} d\mu(d) + \gamma P(w)
\]

- \(\gamma P(w)\): sparsifying penalty function
Extension II: Nonlinear forward model

- General formulation: minimize expected average posterior variance:

\[
\min_w \int \left\{ \text{tr} \left[H^{-1} [m_{\text{MAP}}(w; d), w; d] \right] \right\} d\mu(d) + \gamma P(w)
\]

- \(\gamma P(w) \): sparsifying penalty function

- In practice: get data from a few training models \(m_1, \ldots, m_n \)

- \(m_i \): draws from prior

- Training data:

\[
d_i = f(m_i) + \eta_i, \quad i = 1, \ldots, n
\]
Extension II: Nonlinear forward model

- General formulation: minimize expected average posterior variance:

\[
\min_w \int \left\{ \text{tr} \left(\mathcal{H}^{-1} \left[\text{MAP}(w; d), w; d \right] \right) \right\} \ d\mu(d) + \gamma P(w)
\]

- \(\gamma P(w) \): sparsifying penalty function

- In practice: get data from a few training models \(m_1, \ldots, m_n \)

- \(m_i \): draws from prior

- Training data:

\[
d_i = f(m_i) + \eta_i, \quad i = 1, \ldots, n
\]

- The problem to solve in practice:

\[
\min_w \frac{1}{n} \sum_{i=1}^{n} \text{tr} \left(\mathcal{H}^{-1} \left[\text{MAP}(w; d_i), w; d_i \right] \right) + \gamma P(w)
\]
Application: subsurface flow

- **Forward problem**

\[- \nabla \cdot (e^m \nabla u) = f \quad \text{in } \mathcal{D}\]
\[u = 0 \quad \text{on } \Gamma_D\]
\[e^m \nabla u \cdot \mathbf{n} = g \quad \text{on } \Gamma_N\]

- u: pressure-field
- m: log-permeability (inversion parameter)

Left: true parameter, right: pressure-field
Bayesian inverse problem: Gaussian approximation

- Reduced cost functional (for given data \(d\))

\[
\hat{J}(\theta) = \mathcal{J}(u(\theta), \theta)
= \frac{1}{2\sigma_{\text{noise}}^2} (Bu - d)^T W (Bu - d) + \frac{1}{2} \langle C_{\text{pr}}^{-1}(m - m_{\text{prior}}), m - m_{\text{prior}} \rangle
\]

- \(B\) is observation operator
- MAP point is solution to

\[
\minimize_m \hat{J}(m)
\]

where

\[
- \nabla \cdot (e^m \nabla u) = f \quad \text{in } D
\]

\[
u = 0 \quad \text{on } \Gamma_D
\]

\[
e^m \nabla u \cdot n = g \quad \text{on } \Gamma_N
\]

- Covariance of Gaussian approximation to posterior:

\[
\mathcal{H}(m)^{-1} = (\nabla^2 \hat{J}(m))^{-1}
\]
Optimization problem for computing A-optimal design

- OED objective function:

\[\text{tr}(\mathcal{H}^{-1}) = \sum_i \langle z_i, \mathcal{H}^{-1} z_i \rangle = \sum_i \langle z_i, y_i \rangle, \quad \mathcal{H} y_i = z_i \]

- Optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \sum_i \langle z_i, y_i(w) \rangle + \gamma P(w) \\
\text{where} & \\
\text{m}_{\text{MAP}}(w) & = \arg \min_{\theta} \mathcal{J}\left(u(\theta(w)), \theta(w)\right) \\
\mathcal{H}(m_{\text{MAP}}(w)) y_i & = z_i
\end{align*}
\]
Optimization problem for computing A-optimal design

OED objective function:
\[
\text{tr}(\mathcal{H}^{-1}) = \sum_i \langle z_i, \mathcal{H}^{-1} z_i \rangle = \sum_i \langle z_i, y_i \rangle, \quad \mathcal{H} y_i = z_i
\]

\[
\begin{align*}
\text{minimize} & \quad \sum_i \langle z_i, y_i \rangle + \gamma P(w) \\
\text{subject to} & \quad \nabla \cdot (e^m \nabla u) = f \quad \text{(state)} \\
& \quad \nabla \cdot (e^m \nabla p) = -\frac{1}{\sigma_{\text{noise}}^2} \mathcal{B}^* \mathcal{W} (\mathcal{B} u - \mathcal{d}) \quad \text{(adjoint)} \\
& \quad C^{-1}_{pr} (m - m_{\text{prior}}) + e^m \nabla u \cdot \nabla p = 0 \quad \text{(gradient = 0)} \\
& \quad \nabla \cdot (e^m \nabla v_i) = \nabla \cdot (y_i e^m \nabla u) \quad \text{(inc. state)} \\
& \quad \nabla \cdot (e^m \nabla q_i) = \nabla \cdot (y_i e^m \nabla p) - \frac{1}{\sigma_{\text{noise}}^2} \mathcal{B}^* \mathcal{W} \mathcal{B} v_i \quad \text{(inc. adjoint)} \\
& \quad C^{-1}_{pr} y_i + y_i e^m \nabla u \cdot \nabla p + e^m (\nabla v_i \cdot \nabla p + \nabla u \cdot \nabla q_i) = z_i \quad \text{(Hessian solve)}
\end{align*}
\]
Optimization problem for computing A-optimal design

OED objective function:
\[
\text{tr}(\mathcal{H}^{-1}) = \sum_i \langle z_i, \mathcal{H}^{-1} z_i \rangle = \sum_i \langle z_i, y_i \rangle, \quad \mathcal{H} y_i = z_i
\]

\[
\text{minimize} \sum_i \langle z_i, y_i \rangle + \gamma P(w) \quad \text{subject to}
\]

\[
-\nabla \cdot (e^m \nabla u) = f \quad \text{(state)}
\]

\[
-\nabla \cdot (e^m \nabla p) = -\frac{1}{\sigma_{\text{noise}}^2} B^* W (Bu - d) \quad \text{(adjoint)}
\]

\[
C_{\text{pr}}^{-1} (m - m_{\text{prior}}) + e^m \nabla u \cdot \nabla p = 0 \quad \text{(gradient = 0)}
\]

\[
-\nabla \cdot (e^m \nabla v_i) = \nabla \cdot (y_i e^m \nabla u) \quad \text{(inc. state)}
\]

\[
-\nabla \cdot (e^m \nabla q_i) = \nabla \cdot (y_i e^m \nabla p) - \frac{1}{\sigma_{\text{noise}}^2} B^* W B v_i \quad \text{(inc. adjoint)}
\]

\[
C_{\text{pr}}^{-1} y_i + y_i e^m \nabla u \cdot \nabla p + e^m (\nabla v_i \cdot \nabla p + \nabla u \cdot \nabla q_i) = z_i \quad \text{(Hessian solve)}
\]
Optimization problem for computing A-optimal design

OED objective function:
\[
\text{tr}(\mathcal{H}^{-1}) = \sum_i \langle z_i, \mathcal{H}^{-1} z_i \rangle = \sum_i \langle z_i, y_i \rangle, \quad \mathcal{H} y_i = z_i
\]

\[
\minimize_{w \in [0,1]^{ns}} \sum_i \langle z_i, y_i \rangle + \gamma P(w)
\]

subject to
\[
-\nabla \cdot (e^m \nabla u) = f \quad \text{(state)}
\]
\[
-\nabla \cdot (e^m \nabla p) = -\frac{1}{\sigma_{\text{noise}}^2} B^* W (B u - d) \quad \text{(adjoint)}
\]
\[
C_{pr}^{-1} (m - m_{\text{prior}}) + e^m \nabla u \cdot \nabla p = 0 \quad \text{(gradient = 0)}
\]
\[
-\nabla \cdot (e^m \nabla v_i) = \nabla \cdot (y_i e^m \nabla u) \quad \text{(inc. state)}
\]
\[
-\nabla \cdot (e^m \nabla q_i) = \nabla \cdot (y_i e^m \nabla p) - \frac{1}{\sigma_{\text{noise}}^2} B^* W B v_i \quad \text{(inc. adjoint)}
\]
\[
C_{pr}^{-1} y_i + y_i e^m \nabla u \cdot \nabla p + e^m (\nabla v_i \cdot \nabla p + \nabla u \cdot \nabla q_i) = z_i \quad \text{(Hessian solve)}
\]
Optimization problem for computing A-optimal design

OED objective function:
\[\text{tr}(\mathcal{H}^{-1}) = \sum_i \langle z_i, \mathcal{H}^{-1} z_i \rangle = \sum_i \langle z_i, y_i \rangle, \quad \mathcal{H} y_i = z_i \]

\[
\text{minimize} \sum_i \langle z_i, y_i \rangle + \gamma P(w) \quad \text{subject to}
\]
\[-\nabla \cdot (e^m \nabla u) = f \quad \text{(state)}
\]
\[-\nabla \cdot (e^m \nabla p) = -\frac{1}{\sigma_{\text{noise}}^2} B^* W (B u - d) \quad \text{(adjoint)}
\]
\[C_{pr}^{-1} (m - m_{\text{prior}}) + e^m \nabla u \cdot \nabla p = 0 \quad \text{(gradient = 0)}
\]
\[-\nabla \cdot (e^m \nabla v_i) = \nabla \cdot (y_i e^m \nabla u) \quad \text{(inc. state)}
\]
\[-\nabla \cdot (e^m \nabla q_i) = \nabla \cdot (y_i e^m \nabla p) - \frac{1}{\sigma_{\text{noise}}^2} B^* W B v_i \quad \text{(inc. adjoint)}
\]
\[C_{pr}^{-1} y_i + y_i e^m \nabla u \cdot \nabla p + e^m (\nabla v_i \cdot \nabla p + \nabla u \cdot \nabla q_i) = z_i \quad \text{(Hessian solve)}
\]
Optimization problem for computing A-optimal design

OED objective function:
\[
\text{tr}(\mathcal{H}^{-1}) = \sum_i \langle z_i, \mathcal{H}^{-1} z_i \rangle = \sum_i \langle z_i, y_i \rangle, \quad \mathcal{H} y_i = z_i
\]

\[
\min_{\mathbf{w} \in [0,1]^{ns}} \sum_i \langle z_i, y_i \rangle + \gamma P(\mathbf{w})
\]

subject to
\[
-\nabla \cdot (e^m \nabla u) = f \quad \text{(state)}
\]
\[
-\nabla \cdot (e^m \nabla p) = -\frac{1}{\sigma_{\text{noise}}^2} B^* \mathbf{W} (B u - \mathbf{d}) \quad \text{(adjoint)}
\]
\[
C^{-1}_{pr} (m - m_{\text{prior}}) + e^m \nabla u \cdot \nabla p = 0 \quad \text{(gradient = 0)}
\]
\[
-\nabla \cdot (e^m \nabla v_i) = \nabla \cdot (y_i e^m \nabla u) \quad \text{(inc. state)}
\]
\[
-\nabla \cdot (e^m \nabla q_i) = \nabla \cdot (y_i e^m \nabla p) - \frac{1}{\sigma_{\text{noise}}^2} B^* \mathbf{W} B v_i \quad \text{(inc. adjoint)}
\]
\[
C^{-1}_{pr} y_i + y_i e^m \nabla u \cdot \nabla p + e^m (\nabla v_i \cdot \nabla p + \nabla u \cdot \nabla q_i) = z_i \quad \text{(Hessian solve)}
\]
The Lagrangian for the OED problem

- Consider the objective function $\Theta(w) = \langle y, z \rangle$, $\mathcal{H}y = z$

$$
\mathcal{L}^E(w; u, m, p, v, q, y; u^*, m^*, p^*, v^*, q^*, y^*)
= \langle z, y \rangle
+ \langle e^m \nabla u, \nabla u^* \rangle - \langle f, u^* \rangle
+ \langle e^m \nabla p, \nabla p^* \rangle + \sigma_{noise}^{-2} \langle B^* W(Bu - d), p^* \rangle
+ \langle C_{pr}^{-1} (m - m_0), m^* \rangle + \langle m^* e^m \nabla u, \nabla p \rangle
+ \langle e^m \nabla v, \nabla v^* \rangle + \langle ye^m \nabla u, \nabla v^* \rangle
+ \langle e^m \nabla q, \nabla q^* \rangle + \langle ye^m \nabla p, \nabla q^* \rangle + \sigma_{noise}^{-2} \langle B^* WBv, q^* \rangle
+ \langle y^* e^m \nabla v, \nabla p \rangle + \langle y^*, C_{pr}^{-1} y \rangle + \langle y^* e^m \nabla u, \nabla q \rangle + (y^* ye^m \nabla u, \nabla p)
- \langle z, y^* \rangle
$$
The adjoint problem and the gradient

- The adjoint problem for \(u^*, m^*, p^*, v^*, q^*, y^* \)

\[
\sigma_{\text{noise}}^{-2} \mathcal{B}^* \mathcal{W} \mathcal{B} q^* - \nabla \cdot (y^* e^m \nabla p) - \nabla \cdot (e^m \nabla v^*) = 0
\]

\[
e^m \nabla q^* \cdot \nabla p + C_{pr}^{-1} y^* + y^* e^m \nabla u \cdot \nabla p + e^m \nabla u \cdot \nabla v^* = -z
\]

\[
- \nabla \cdot (e^m \nabla q^*) - \nabla \cdot (y^* e^m \nabla u) = 0
\]

\[
\sigma_{\text{noise}}^{-2} \mathcal{B}^* \mathcal{W} \mathcal{B} p^* - \nabla \cdot (m^* e^m \nabla p) - \nabla \cdot (e^m \nabla u^*) = b_1
\]

\[
e^m \nabla p^* \cdot \nabla p + C_{pr}^{-1} m^* + m^* e^m \nabla u \cdot \nabla p + e^m \nabla u \cdot \nabla u^* = b_2
\]

\[
- \nabla \cdot (e^m \nabla p^*) - \nabla \cdot (m^* e^m \nabla u) = b_3
\]

- \(u, m, p, q, v, y, \) and \(q^*, v^*, y^* \) appear in expressions for \(b_1, b_2, b_3 \)

- Gradient:

\[
g(w) = \Gamma_{\text{noise}}^{-1} (\mathcal{B} u - d) \odot \mathcal{B} p^* + \Gamma_{\text{noise}}^{-1} \mathcal{B} v \odot \mathcal{B} q^*
\]

- \(q^*, y^*, \) and \(v^* \) can be eliminated:

\[
q^* = -v, \quad y^* = -y, \quad v^* = -q
\]
The OED objective function and the gradient

- Solve inner optimization \(\Rightarrow m(w), u(m(w)) \) and \(p(m(w)) \)
- Solve for \((v, y, q)\):
 \[
 \frac{\sigma_{\text{noise}}^{-2}}{B} W B v - \nabla \cdot (y e^m \nabla p) - \nabla \cdot (e^m \nabla q) = 0 \\
 e^m \nabla v \cdot \nabla p + C_{pr}^{-1} y + ye^m \nabla u \cdot \nabla p + e^m \nabla u \cdot \nabla q = z \\
 - \nabla \cdot (e^m \nabla v) - \nabla \cdot (ye^m \nabla u) = 0
 \]
- Objective function evaluation: \(\Theta(w) = \langle y, z \rangle \)
- Solve for \((p^*, m^*, u^*)\):
 \[
 \frac{\sigma_{\text{noise}}^{-2}}{B} W B p^* - \nabla \cdot (m^* e^m \nabla p) - \nabla \cdot (e^m \nabla u^*) = b_1 \\
 e^m \nabla p^* \cdot \nabla p + C_{pr}^{-1} m^* + m^* e^m \nabla u \cdot \nabla p + e^m \nabla u \cdot \nabla u^* = b_2 \\
 - \nabla \cdot (e^m \nabla p^*) - \nabla \cdot (m^* e^m \nabla u) = b_3
 \]
- Gradient: \(g(w) = \Gamma_{\text{noise}}^{-1} (B u - d) \odot B p^* - \Gamma_{\text{noise}}^{-1} B v \odot B v \)
Computational cost: the number of PDE solves

r: rank of misfit Hessian

- Independent of mesh
- Weak dependence on sensor dimension

Cost of evaluating the OED objective function and gradient

1. Cost of solving the inner optimization $\sim 2 \times r \times \#\text{Newton iterations}$
2. Cost of computing OED objective $\sim 2 \times r \times n_{tr}$
3. Cost of computing OED gradient $\sim 2 \times n_{tr} + 2 \times r$

Low-rank approx to misfit Hessian \implies Cost in (2) and (3) $\sim 2 \times r$

OED optimization problem:

- Solved via quasi-Newton interior point
- Number of interior point iterations insensitive to parameter/sensor dimension
The prior and training models

- Prior knowledge: parameter value at few points and correlation information

<table>
<thead>
<tr>
<th>truth</th>
<th>prior mean</th>
<th>prior variance</th>
</tr>
</thead>
</table>

- Prior mean m_{prior} is a “smooth” least-squares fit to point measurements
- Prior covariance: $C_{pr} = (\mathcal{A} + \alpha \sum_{i=1}^{N} \delta_i)^{-2}$, \(\mathcal{A} m = -\nabla \cdot (D \nabla m) \)
- Draws from prior used to generate training data for OED
Computing an optimal design with sparsification

- Optimization problem with sparsity control

 \[
 \min_w \sum_i \langle z_i, y_i(w) \rangle + \gamma P_\varepsilon(w)
 \]

 where

 \[
 H(m_{\text{MAP}}(w)) y_i = z_i
 \]

 \[
 m_{\text{MAP}}(w) = \arg \min_\theta J\left(u(\theta(w)), \theta(w)\right)
 \]

- Continuation approach to approximate \(\ell_0\)-penalty

 \[
 P_\varepsilon(w) := \sum_{i=1}^{n_s} f_\varepsilon(w_i)
 \]

- Solve the problem with successively smaller values of \(\varepsilon\)
Effectiveness of the optimal design

- Designs with 14 sensors
- Test quality of inferring the true field
- Comparing MAP point (top row) and posterior variance (Bottom row)
Optimal vs random designs

Sources of sub-optimality:
- Trace estimation
- Use of training data for OED
- Gaussian approximation

\[
\text{relative misfit} = \frac{\| \hat{m}_{\text{MAP}}(\mathbf{w}) - m_{\text{true}} \|}{\| m_{\text{true}} \|}
\]
Scalability with respect to parameter/sensor dimension

- Objective func/grad (CG iters)
- Optimization (BFGS)

Parameter dim:
- iters
- func evals

Sensor dim:
- iters
- func evals
Summary

- What is optimal experimental design in inverse problems?
- Design criteria?
- Linear and linearized problems
- Extensions to problems with model uncertainty and nonlinear problems
- Main challenges: Interpretation for nonlinear problems; computational cost, ...