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Bayes formula (finite dimensions)
Given:

πpr(m) : prior p.d.f. of model parameters m

πobs(d) : prior p.d.f. of measurement error d

πmodel(d|m) : conditional p.d.f. combining d and m (model)

Then, the posterior p.d.f. of the model parameters is given by:

πpost(m|d) ∝ πpr(m) πlike(d|m)

πpr(m) πobs(d)

πpost(m)
model connect-

ing m and d
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Outline

Posterior approximations

Linear/linearized problems
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Approximation of the posterior distribution

Despite the explicit form of πpost(m|d), its exploration is difficult due to:

▶ the high/infinite dimension of m

▶ the expensive PDE-based parameter-to-observable map f

πpost(m)
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Approximation of the posterior distribution
Despite the explicit form of πpost(m|d), its exploration is difficult due to:

▶ the high/infinite dimension of m
▶ the expensive PDE-based parameter-to-observable map f

πpost(m)

Approximation I: MAP estimation
Find the maximum a posteriori (MAP) point.

▶ requires solution of PDE-constrained optimization problem ∼
deterministic inversion

▶ Computation of derivatives using adjoint methods: 2(+) PDE solves per
gradient
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Approximation of the posterior distribution
Despite the explicit form of πpost(m|d), its exploration is difficult due to:

▶ the high/infinite dimension of m

▶ the expensive PDE-based parameter-to-observable map f

πpost(m)

Approximation II: Gaussian around MAP point
Use a Gaussian approximation around the MAP point based on second
derivatives (Hessians) of J
▶ requires the Hessian matrix which is not directly available for

PDE-constrained problems. . . but the Hessian can be applied to vectors
by solving 2(+) PDEs
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Approximation of the posterior distribution
Despite the explicit form of πpost(m|d), its exploration is difficult due to:
▶ the high/infinite dimension of m
▶ the expensive PDE-based parameter-to-observable map f

πpost(m)

Approximation III: Sampling
Use sampling (Metropolis Hastings/Marcov chain Monte Carlo) to
approximate statistics

▶ sampling in high dimensions is challenging, requires many evaluations of
f (and good proposal distributions)

▶ Exploit low rank properties of update of distribution; “feels” the curse of
the effective dimensionality rather than the discretization dimension
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Gaussian distributions: Finite dimensions

Finite-dimensional N (m0,Γ), m0 ∈ Rn, Γ ∈ Rn×n spd. Interested in:

▶ Samples from this distribution: s = m0 + Γ1/2n, where ni is iid.

▶ Diagonal of Γ contains variances (tomorrow we will use its trace as
measure for information gain in OED)

▶ Need to apply Γ and its inverse (precision matrix) to vectors fast

▶ Gaussian density:

π(m) ∝ exp
(
−1

2 ∥ m−m0 ∥2Γ−1

)
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Gaussian distributions: Infinite dimensions

Let D ⊂ Rd, d ∈ N be a bounded domain.

Infinite-dimensions: N (m0, C), m0 ∈ L2(D), C : L2(D) 7→ L2(D) a
trace-class operator.

▶ Defines a distribution of functions

▶ In infinite dimensions, no Lebesgue density exists. Typically use a
Gaussian as reference density (e.g. in formulation of the Bayes theorem
in infinite dimensions)

▶ Discretization possible but needs to be careful with inner products etc.

▶ I use specific Matern kernel covariance operators related to PDE
operators → fast solvers:

C = (−α∆+ βI)−δ, α, β > 0

This operators is trace-class for δ = 1 in 1D, and δ = 2 in 2D and 3D.
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Gaussian prior and noise

Assume additive Gaussian noise e in the measurements

d = f(m) + e, e ∼ N (0,Γnoise)

and Gaussian prior Γpr with mean m0, then the posterior density is:

πpost(m) ∝ exp
(
−1

2 ∥ f(m)− d ∥2
Γ−1
noise

−1
2 ∥ m−mpr ∥2Γ−1

pr

)

The “maximum a posteriori” point is

mMAP

def
= arg max

m
πpost(m)

= arg min
m

1
2 ∥ f(m)− d ∥2

Γ−1
noise

+1
2 ∥ m−mpr ∥2Γ−1

pr

⇒ deterministic inverse problem with appropriate weighted norms!
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Gaussian prior and noise

▶ Solution of inverse problem in Bayesian approach is this distribution
πpost(m) = πpost(m|d).

▶ Can be written down explicitly, but not immediately useful to work with.
Want: ability to draw samples, compute moments (mean,
covariance,. . . )

▶ Characterization of distribution (e.g., through moments) gives a
complete picture of the inverse problem

▶ Main reference if m is a function: A. Stuart, Acta Numerica ’10

▶ Goal: making things computable for (discretized) parameter functions
m and expensive-to-compute maps f
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Gaussian prior and noise and linear f
Assume that

d = Fm

is linear. Then, the posterior p.d.f. is given by:

πpost(m) ∝ exp
(
−1

2(m−mMAP)
T (F TΓ−1

noise
F + Γ−1

pr
)(m−mMAP)

)
Thus, the posterior is also Gaussian, i.e.,

m ∼ N (mMAP,Γpost)

The covariance matrix is the inverse Hessian of the negative log of the
posterior, i.e., the usual function from deterministic inversion:

Γ−1
post

= F TΓ−1
noise

F + Γ−1
pr

= ∇2
m(− log πpost) 10 / 14



Approximation of the covariance matrix

The covariance matrix is the inverse Hessian.
Idea: Never form H explicitly, but:

▶ use that H is the sum of the misfit Hessian, which often is a compact
operator, and of the inverse prior, usually a differential operator:

H = F TΓ−1
noise

F + Γ−1
pr

▶ Use a low-rank approximation of the first term (requires fixed number of
incremental forward/adjoint solutions)

▶ Use Sherman-Morrison-Woodbury formula for inversion
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Low-rank approximation

Γpost = H−1 =
(
F TΓ−1

noiseF + Γ−1
pr

)−1

= Γ1/2
pr

(
Γ1/2
pr F TΓ−1

noiseF Γ1/2
pr + I

)−1
Γ1/2
pr

low rank approx.
≈ Γ1/2

pr

(
V rΛrV

T
r + I

)−1
Γ1/2
pr

SMW
= Γ1/2

pr

[
I − V rDrV

T
r +O

(
n∑

i=r+1

λi

λi + 1

)]
Γ1/2
pr ,

where V r,Λr are the eigenvalues and eigenvectors of the
prior-preconditioned Hessian, and Dr = diag(λi/(λi + 1)).

Low-rank ideas: Liberty, et al. (2007); Biros & Chaillat (2011); Demanet et
al. (2011); Halko, Martinsson, Tropp (2011);. . .
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Low-rank-based posterior covariance

The posterior covariance is given by the prior minus the information gained
by the data:

Γpost ≈ Γpr − Γ1/2
pr V rDrV

T
r Γ

1/2
pr

Full Hessian is never assembled. Complexity of Newton step, the sampling
from the posterior p.d.f., computation of the variance etc. are scalable
(i.e. the required number of PDE solves is independent of the discretization)
if:

▶ the prior-preconditioned misfit Hessian is compact with
mesh-independent spectrum (as for many inverse problems)

▶ low-rank algorithms (we use Lanczos or a randomized singular value
decomposition) resolves the dominant spectrum in a fixed number of
Hessian-vector products

▶ matrix-free Hessian-vector products using adjoint methods
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Time dependent advection-diffusion
https://hippylib.github.io/tutorials_v3.0.0/4_AdvectionDiffusionBayesian/

▶ Forward problem: Given initial condition
m, solve

ut − κ∆u+ v · ∇u = 0 in D × [0, T ]

u(0,x) = m in D
κ∇u · n = 0 on ∂D × [0, T ]

Inverse problem: Recover unknown initial
condition m = m(x) from point
observations at time instances. Optimal
design will be location of point sensors.

D

v 2
=

1

v
2
=
−
1

▶ m = m(x): unknown initial condition
▶ v: Velocity field — solve steady-state Navier-Stokes
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