Optimal experimental design (OED)

Other names: design of experiments; optimal data collection

e Main question: How/where to (optimally) collect observations in
inverse problems/data assimilation?

e Typically decided upfront (i.e., experiment planning).
@ Particulary important when experiments are costly/slow/dangerous.

o Experimental designs: Sensor locations, projection angles, excitation
frequencies, ...

Classic research question in electrical engineering, drug testing etc.
Also related to active learning in ML.



Diffusive contaminant transport, unknown init. cond.

A linear inverse problem with time-dependent forward model

o Forward model f: advection-diffusion equation
@ Inversion parameter: m initial concentration field

@ Inverse problem: Use a vector d of point measurements of
concentration to infer distribution of m

e Optimal experimental design problem: Find sensor placements (to
collect the data d) that minimize the posterior uncertainty in m



Challenges for linear inverse problem

Infinite-dimensional inference

@ Need proper discretization, and high-dimensional after discretization

Expensive forward/adjoint solves

Need posterior covariance (inverse of Hessian, large, dense)

Optimal design: Combinatorial problem

Reference:

A. Alexanderian, N. Petra, G. Stadler and O. Ghattas. “A-optimal design of experiments for
infinite-dimensional Bayesian linear inverse problems with regularized lp-sparsification”, SIAM
J. Sci. Comput., 36(5), A2122-A2148 (2014).



Bayesian inference in Hilbert spaces
@ D: bounded domain Y = L?(D) m € " parameter

@ Linear parameter-to-observable map: F : "V — R

@ Additive Gaussian noise:
d:JT"m+TI, T]NN(Oyrnoise)
@ Likelihood:

Tike(d|m) o eXp{ — %(}"m — d)*l'_1

noise

(Fm — d)}

@ Measurable space: (¥, B("Y)) fo: prior jidoe: posterior
@ Bayes Theorem (in infinite dimension):
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Bayesian inference in Hilbert spaces

@ Prior measure: fip = N (mpr, Cpr)

Cor 1V =V (trace-class operator)
@ Gaussian prior/noise and linear parameter-to-observable map implies:

d
Hpost = N(mposh Cpost)
@ Posterior covariance:

Coost = (F'Tai F+Cy 1)~1 (independent of m and d!)

noise

L d+ CorMpr)

@ Posterior mean: Mpost = Cpost(F*T e



Optimal experimental design (OED)
@ A-optimal design:
Minimize “average variance” of m

@ Covariance function: ¢(x,y) = Cov{m(x), m(y)}

1

average variance = —/ c(x, x) dx

D[ Jp

@ Covariance operator:
Cool) = [ clx.y)uly)dy
@ Mercer’'s Theorem:
/ c(x, x) dx = tr(Cpost)
D

@ Optimal design criterion (A-optimal design):
Choose a “design” to minimize tr(Cpost)



The design and a weighted inference problem

Finite-dimensional sensor domain

. X1,...,X,
design := R P
Wi, ..y W, ::::::::T::

........

@ x;: candidate sensor locations SRS ats:
o w;: weights T NN
o Ideally: w; € {0,1} B e

@ Relax: 0 < w; <1

@ w-weighted data-likelihood:

1
Tiike(d|m; w) o exp{ — 55 (Fm— d)"W(Fm - d)}
Unoise
e W: diagonal matrix with w on its diagonal; posterior covariance

operator:

1 -1
Coose(W) = (2—PW;E n C;ﬁ)

noise



A-optimal design with sparsity control

mITEIgLﬁZG tr [rpost(w)} +'7P(W)

subject to 0<w<l1
@ P(w): penalty term
@ Discretized posterior covariance operator:
1 K -1 -1
Fpose(w) = (= FWF+T1)
Hmisfit

@ Numerical optimization: interior-point (BFGS approx to Hessian of
OED objective function)



Model problem

Time dependent advection-diffusion

@ Forward problem: |:|

up—kAu+v-Vu=0 in D x [0, T] ﬂ l
u(0,x)=m inD

kVu-n=0 on 9D x [0, T| D
@ Adjoint problem: Sl
T o
—pe— V- (pv) —kBp=-BT A (Bu—d) | - y
.
p(T)=0 . . o
(vp+KVp)-n=0 o 2o

e v e e e e e e e

@ m: Unknown initial condition
@ v: Velocity “wind” field — here: assumed known



A-optimal design: ¢!-sparsity control
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Towards 0-1 design vectors

A family of penalty functions and continuation strategy

N r p
minimize tr[Fpost(w)] + vP-(w)

subject to 0<w<l1

@ Motivated by continuation ideas

from topology optimization 1
o P.(w) = S0, fi(w) R
= —e=1)2
;—(, ngg%s @ 05 e=1/4 ||
— —ec=1/8
fo(X) = { po(x), 3e<x<2e 7? _ 1?16
1, 2¢ <x<1 0 ————
0 02040608 1
bs

@ p-: cubic polynomial computed
such that f. is C!



0-1 designs with continuation
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Comparing ¢ sparsification vs P.
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@ OED improves significantly over random designs
o P.-sparsified designs better than /1-sparsified designs



A-optimal design: the variance field

Optimal Sub-optimal



A-optimal design: the variance field
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A-optimal design: the variance field
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Challenges for linear inverse problem

@ Infinite-dimensional inference

@ Need proper discretization, and high-dimensional after discretization

@ Expensive forward/adjoint solves

@ Need posterior covariance (inverse of Hessian, large, dense)

@ Optimal design: Combinatorial problem



Challenges for linear inverse problem

@ Infinite-dimensional inference (formulation of inference in inf. dim)

@ Need proper discretization, and high-dimensional after discretization
(Matern priors using Laplace-like PDE operators; randomized
estimation of trace)

@ Expensive forward/adjoint solves (matrix-free using adjoints)

@ Need posterior covariance (inverse of Hessian, large, dense) (low-rank
approximation of parameter-to-data map; Sherman-Woodbury)

@ Optimal design: Combinatorial problem (relaxation and penalization; or
greedy approach)



Optimal experimental design (OED)

Above we used A-optimal design, i.e., minimizing the average variance
(trace of the posterior covariance matrix/operator).

Alternative measures:

o D-optimal design: Expected information gain from prior to posterior
using Kullback-Leibler divergence (discretized, becomes determinant of
covariance matrix)

@ E-optimal design: Minimizes the maximal eigenvalue of the covariance
matrix



Optimal experimental design (OED)

Above we used A-optimal design, i.e., minimizing the average variance
(trace of the posterior covariance matrix/operator).

Alternative measures:

o D-optimal design: Expected information gain from prior to posterior
using Kullback-Leibler divergence (discretized, becomes determinant of
covariance matrix)

@ E-optimal design: Minimizes the maximal eigenvalue of the covariance
matrix

o ...

Different design criteria typically give different designs; some are tricky to
interpret in infinite dimensions.



Optimal experimental design (OED)

Challenges (tomorrow's lecture):

e Computing trace of posterior efficiently (posterior is typically not
assembled!)

@ Alternatives to solve the £y optimization problem; greedy approaches
(how suboptimal are they?); Alternatives: norm-reweighting, splitting
approaches, etc

@ This is for linear inverse problems. Things are much less clear for
nonlinear inverse problems as covariance is typically not directly
accessible

@ Here we were certain of our mathematical models—but models can be
uncertain (OED under uncertainty)



