
Optimal experimental design (OED)
Other names: design of experiments; optimal data collection

Main question: How/where to (optimally) collect observations in
inverse problems/data assimilation?

Typically decided upfront (i.e., experiment planning).

Particulary important when experiments are costly/slow/dangerous.

Experimental designs: Sensor locations, projection angles, excitation
frequencies, . . .

Classic research question in electrical engineering, drug testing etc.
Also related to active learning in ML.



Diffusive contaminant transport, unknown init. cond.
A linear inverse problem with time-dependent forward model

Forward model f : advection-diffusion equation

Inversion parameter: m initial concentration field

Inverse problem: Use a vector d of point measurements of
concentration to infer distribution of m

Optimal experimental design problem: Find sensor placements (to
collect the data d) that minimize the posterior uncertainty in m



Challenges for linear inverse problem

Infinite-dimensional inference

Need proper discretization, and high-dimensional after discretization

Expensive forward/adjoint solves

Need posterior covariance (inverse of Hessian, large, dense)

Optimal design: Combinatorial problem

Reference:
A. Alexanderian, N. Petra, G. Stadler and O. Ghattas. “A-optimal design of experiments for

infinite-dimensional Bayesian linear inverse problems with regularized l0-sparsification”, SIAM

J. Sci. Comput., 36(5), A2122-A2148 (2014).



Bayesian inference in Hilbert spaces

D: bounded domain V = L2(D) m ∈ V: parameter

Linear parameter-to-observable map: F : V → Rq

Additive Gaussian noise:

d = Fm + η, η ∼ N (0,Γnoise)

Likelihood:

πlike(d |m) ∝ exp
{
− 1

2
(Fm − d)∗Γ−1

noise(Fm − d)
}

Measurable space: (V,B(V)) µ0: prior µd
post: posterior

Bayes Theorem (in infinite dimension):

dµd
post

dµpr
∝ πlike(d |m)

(
“dµd

post ∝ πlike(d |m) dµpr”
)



Bayesian inference in Hilbert spaces

Prior measure: µpr = N (mpr, Cpr)

Cpr : V → V (trace-class operator)

Gaussian prior/noise and linear parameter-to-observable map implies:

µd
post = N (mpost, Cpost)

Posterior covariance:

Cpost = (F∗Γ−1
noiseF + C−1

pr )
−1 (independent of m and d !)

Posterior mean: mpost = Cpost(F∗Γ−1
noised + C−1

pr mpr)



Optimal experimental design (OED)
A-optimal design:

Minimize “average variance” of m

Covariance function: c(x , y) = Cov {m(x),m(y)}

average variance =
1

|D|

∫
D
c(x , x) dx

Covariance operator:

[Cpostu](x) =
∫
D
c(x , y)u(y) dy

Mercer’s Theorem: ∫
D
c(x , x) dx = tr(Cpost)

Optimal design criterion (A-optimal design):

Choose a “design” to minimize tr(Cpost)



The design and a weighted inference problem
Finite-dimensional sensor domain

design :=

{
x1, . . . , x ns

w1, . . . ,wns

}
x i : candidate sensor locations

wi : weights

Ideally: wi ∈ {0, 1}
Relax: 0 ≤ wi ≤ 1

w -weighted data-likelihood:

πlike(d |m;w) ∝ exp
{
− 1

2σ2
noise

(Fm − d)TW(Fm − d)
}

W: diagonal matrix with w on its diagonal; posterior covariance
operator:

Cpost(w) =

(
1

σ2
noise

F∗WF + C−1
pr

)−1



A-optimal design with sparsity control

minimize
w∈Rns

tr
[
Γpost(w)

]
+ γP(w)

subject to 0 ≤ w ≤ 1

P(w): penalty term

Discretized posterior covariance operator:

Γpost(w) =
( 1

σ2
noise

F∗WF︸ ︷︷ ︸
Hmisfit

+Γ−1
pr

)−1

Numerical optimization: interior-point (BFGS approx to Hessian of
OED objective function)



Model problem
Time dependent advection-diffusion

Forward problem:

ut − κ∆u + v · ∇u = 0 in D × [0,T ]

u(0, x) = m in D
κ∇u · n = 0 on ∂D × [0,T ]

Adjoint problem:

−pt −∇ · (pv)− κ∆p = −B∗Γ−1
noise(Bu − d)

p(T ) = 0

(vp + κ∇p) · n = 0

D

v 2
=

1

v
2
=
−
1

m: Unknown initial condition

v : Velocity “wind” field — here: assumed known



A-optimal design: ℓ1-sparsity control



Towards 0–1 design vectors
A family of penalty functions and continuation strategy

minimize
w∈Rns

tr
[
Γpost(w)

]
+ γPε(w)

subject to 0 ≤ w ≤ 1

Motivated by continuation ideas
from topology optimization

Pε(w) :=
∑ns

i=1 fε(wi)

fε(x) =


x

ε
, 0 ≤ x ≤ 1

2ε

pε(x),
1
2ε < x ≤ 2ε

1, 2ε < x ≤ 1

pε: cubic polynomial computed
such that fε is C
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0–1 designs with continuation
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Comparing ℓ1 sparsification vs Pε
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Random designs
ℓ1-sparsified designs
Pε-sparsified designs

OED improves significantly over random designs

Pε-sparsified designs better than ℓ1-sparsified designs



A-optimal design: the variance field

Optimal Sub-optimal
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Challenges for linear inverse problem

Infinite-dimensional inference

(formulation of inference in inf. dim)

Need proper discretization, and high-dimensional after discretization

(Matern priors using Laplace-like PDE operators; randomized
estimation of trace)

Expensive forward/adjoint solves

(matrix-free using adjoints)

Need posterior covariance (inverse of Hessian, large, dense)

(low-rank
approximation of parameter-to-data map; Sherman-Woodbury)

Optimal design: Combinatorial problem

(relaxation and penalization; or
greedy approach)
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Optimal experimental design (OED)

Above we used A-optimal design, i.e., minimizing the average variance
(trace of the posterior covariance matrix/operator).

Alternative measures:

D-optimal design: Expected information gain from prior to posterior
using Kullback-Leibler divergence (discretized, becomes determinant of
covariance matrix)

E-optimal design: Minimizes the maximal eigenvalue of the covariance
matrix

. . .

Different design criteria typically give different designs; some are tricky to
interpret in infinite dimensions.
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Optimal experimental design (OED)

Challenges (tomorrow’s lecture):

Computing trace of posterior efficiently (posterior is typically not
assembled!)

Alternatives to solve the ℓ0 optimization problem; greedy approaches
(how suboptimal are they?); Alternatives: norm-reweighting, splitting
approaches, etc

This is for linear inverse problems. Things are much less clear for
nonlinear inverse problems as covariance is typically not directly
accessible

Here we were certain of our mathematical models–but models can be
uncertain (OED under uncertainty)


