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Organization

I Part I (today): Bayesian inverse problems, a concrete exaple (illustrating
OED), linear Bayesian inverse problems in high/infinite dimensions

I Part II (Thursday): Optimal experimental design for linear Bayesian
inverse problems

I Part II (Friday): Towards OED for nonlinear inverse problems and
problems with model uncertainty

Please make the most out of these lectures—ask, interrupt, talk to me, etc.
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My background

I Applied Math PHD (from Graz, Austria) in variational inequalities in
mechanics, deterministic optimization and optimal control.

I Researcher at UT Austin, where I got into Bayesian inverse problems and
optimal design, scalable solvers/algorithms, uncertainty quantification.

I Now at Courant Institute of Mathematical Sciences (part of New York
University), working on Math problems in UQ, optimization under
uncertainty, recently also rare events and scientific ML.

Driving applications: Climate, fusion, geophysics, viscous flow

Research focus: (Rigorous) Math and algorithms that enable “scalable”
methods to solve real-world problems.
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Outline

Inverse problems examples

Inverse problems approaches

A concrete example in 2D

Posterior approximations

Linear/linearized problems
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Inverse problems/parameter estimation

real-world process

F(m)! d

I F . . . physical process

I m. . . non-directly observable
parameters/model; the “cause”

I d. . . results/observation; the
“e↵ect”

mathematical model

f(m) + e = d

I f . . . forward mapping/parameter-
to-observable map (mathematical
description of physical process)

I m. . . parameter vector or
parameter function

I e . . . measurement and model
errors
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Inverse problems

mathematical model

f(m)(+e) = d

�!

forward problem
Given the forward map f and the
parameters m, find output d.
I well-posed (unique solution,

stable with respect to
perturbation)

I causal (in time)

I local (or strongly decaying
dependency in space and time)

inverse problem
Given the forward map f and the
output d, infer parameters m.
I ill-posed (few observations/data,

many parameters consistent
with data)

I non-causal (coupled over entire
time horizon)

I global (m depends on model
over space and time)
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Example I: Image processing

F
�!

I F . . . blurring due to motion while taking a photo (not a PDE solution
operator)

I f = F . . . linear convolution operator
I m. . . left image
I d. . . right image

 � inverse problem  �
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Example II: computer tomography (CT)

I d. . . intensity of X-rays going
through human head

I m. . . tissue density

I f . . . decay of X-rays depending
on density

Image shows slices through 3D reconstruction of human brain. Many in vivo
imaging methods are inverse problems (MRI, PET scan. . . ).
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Example III: Ocean dynamics example

How$to$integrate$observational$data$into$predictive$model?$$

Argo T/P, Jason 

GRACE 

WOCE 

Courtesy Patrick Heimbach, MIT 
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Example III: Ocean dynamics example

Navier-Stokes equations
I Conservation of mass

I Conservation of momentum

I Conservation of energy

I Conservation of salinity

I Equation of state

I Subgrid parameterizations TACC Stampede supercomputer
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Example III: Ocean dynamics example

2D and 3D parameter fields
I 3D initial temperature and salinity fields

I 2D time-varying atmospheric state at
ocean–atmosphere interface
I surface air temperature
I specific humidity
I downwelling shortwave radiation
I zonal and meridional wind speed

I 3D subgrid model parameter fields
I vertical mixing coe�cient
I GM coe�cient (geostrophic eddy mixing)
I Redi coe�cient (along-isypycnal mixing)

Courtesy Patrick Heimbach, ICES/GEO 11 / 38



Example IV: Wave-based material inversion (scattering)

Propagate acoustic/elastic/electromagnetic waves through unknown medium

utt �
1

m(x)2
�u = 0 in ⌦ ⇢ Rd with boundary and initial conditions

I m(x). . . unknown wave speed

I f : m! d. . . solution of
wave equation with wave
speed m(x)

I d. . . seismograms, i.e., point
measurements of wave field
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Example V: Basal condition in ice dynamics

Surface velocity observations

I d. . . surface velocity

I m. . . basal boundary friction
condition

I f . . . velocity usually modelled as
solution of incompressible
nonlinear Stokes equation

I Modeling the dynamics of polar ice sheets is critical for projections of
future sea level rise.

I There remain large uncertainties in the basal boundary conditions, which
we want to estimate from surface velocity observations.
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Inversion approach I: Regularization–Occam’s razor

Inverse problem (m. . . parameters, d. . . data, e. . . error):

f(m)(+e) = d

Formulate as optimization problem:

min
m

1

2
kf(m)� dk

2 +R(m)

I data misfit term, k · k is a measure of the distance between f(m) and d

I regularization term, stabilizes and picks a specific m.

Remarks:
I deterministic problem

I large-scale (PDE-constrained) optimization

I no quantification of uncertainty in m

I influence of R(·) on m unclear
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Inversion approach II: Statistical–Bayesian inference

Inverse problem
f(m)(+e) = d

Interpret m, d as random variables; Solution of inverse problem is a
probability density function ⇡post(m) for m:

⇡post(m)

Remarks:
I systematic method to quantify measurement errors and prior knowledge

I allows quantification of uncertainty

I related to regularization approach

I high-dimensional probability density

16 / 38
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Inversion approach II: Statistical–Bayesian inference

Inverse problem
f(m)(+e) = d

Interpret m, d as random variables; Solution of inverse problem is a
probability density function ⇡post(m) for m:

⇡post(m)

Target:
I characterize ⇡post(m)

I for functions m (large vectors after discretization)

I for expensive f(·)

I use connection to optimization
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Bayes formula (finite dimensions)

Given:
⇡pr(m) : prior p.d.f. of model parameters m

⇡obs(d) : prior p.d.f. of measurement error d

⇡model(d|m) : conditional p.d.f. combining d and m (model)

Then, the posterior p.d.f. of the model parameters is given by:

⇡post(m|d) / ⇡pr(m) ⇡like(d|m)

⇡pr(m) ⇡obs(d)

⇡post(m)
model connect-

ing m and d
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Bayes formula (infinite dimensions)

In infinite dimensional spaces, a Lebesgue measure cannot be defined )
alternative formulation of Bayes formula (A. Stuart, Acta Numerica, (2010)).

Given Gaussian random fields:

µ0 := N (m0, C0) on L2(⌦) : prior measure of parameters m

µ := N (0,�noise) on Rn : prior measure of finite-dimensional data d

⇡model(d|m) : conditional p.d.f. relating d and m (model)

Then the posterior measure µd (i.e., the solution of the statistical inverse
problem) is given by:

dµd

dµ0
/ ⇡(d|m),

Left side is Radon-Nikodym derivative of posterior with respect to the prior.
C0 has be of trace class to make problem well-defined (Tikhonov
regularization with gradient not su�cient in 2D or 3D)
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A concrete example
From: Allmaras et al, SIREV, 2013
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A concrete example
From: Allmaras et al, SIREV, 2013
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A concrete example
From: Allmaras et al, SIREV, 2013
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A concrete example
From: Allmaras et al, SIREV, 2013
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A concrete example
From: Allmaras et al, SIREV, 2013
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A concrete example:towards OED
From: Allmaras et al, SIREV, 2013
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A concrete example: towards OED
From: Allmaras et al, SIREV, 2013
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