Optimal design of experiments for inverse problems: Bayesian approach and linear Bayesian problems

Georg Stadler

Courant Institute, New York University stadler@cims.nyu.edu

June 28, 2023

Organization

- Part I (today): Bayesian inverse problems, a concrete exaple (illustrating OED), linear Bayesian inverse problems in high/infinite dimensions
- Part II (Thursday): Optimal experimental design for linear Bayesian inverse problems
- Part II (Friday): Towards OED for nonlinear inverse problems and problems with model uncertainty

Please make the most out of these lectures-ask, interrupt, talk to me, etc.

My background

- Applied Math PHD (from Graz, Austria) in variational inequalities in mechanics, deterministic optimization and optimal control.
- Researcher at UT Austin, where I got into Bayesian inverse problems and optimal design, scalable solvers/algorithms, uncertainty quantification.
- Now at Courant Institute of Mathematical Sciences (part of New York University), working on Math problems in UQ, optimization under uncertainty, recently also rare events and scientific ML.

Driving applications: Climate, fusion, geophysics, viscous flow
Research focus: (Rigorous) Math and algorithms that enable "scalable" methods to solve real-world problems.

Outline

Inverse problems examples

Inverse problems approaches

A concrete example in 2D

Posterior approximations

Linear/linearized problems

Inverse problems/parameter estimation

real-world process

$$
\mathcal{F}(\boldsymbol{m}) \rightarrow \boldsymbol{d}
$$

- \mathcal{F}... physical process
- m... non-directly observable parameters/model; the "cause"
- d... results/observation; the "effect"

Inverse problems/parameter estimation

real-world process

$$
\mathcal{F}(\boldsymbol{m}) \rightarrow \boldsymbol{d}
$$

- F... physical process
- m...non-directly observable parameters/model; the "cause"
- d....results/observation; the "effect"
mathematical model

$$
\boldsymbol{f}(\boldsymbol{m})+\boldsymbol{e}=\boldsymbol{d}
$$

- \boldsymbol{f}... forward mapping/parameter-to-observable map (mathematical description of physical process)
- m... parameter vector or parameter function
- e...measurement and model errors

Inverse problems

mathematical model

$$
\boldsymbol{f}(\boldsymbol{m})(+\boldsymbol{e})=\boldsymbol{d}
$$

forward problem
Given the forward map f and the parameters \boldsymbol{m}, find output \boldsymbol{d}.

- well-posed (unique solution, stable with respect to perturbation)
- causal (in time)
- local (or strongly decaying dependency in space and time)

Inverse problems

mathematical model

$$
\boldsymbol{f}(\boldsymbol{m})(+e)=\boldsymbol{d}
$$

forward problem

Given the forward map f and the parameters \boldsymbol{m}, find output \boldsymbol{d}.

- well-posed (unique solution, stable with respect to perturbation)
- causal (in time)
- local (or strongly decaying dependency in space and time)
inverse problem
Given the forward map f and the output \boldsymbol{d}, infer parameters \boldsymbol{m}.
- ill-posed (few observations/data, many parameters consistent with data)
- non-causal (coupled over entire time horizon)
- global (\boldsymbol{m} depends on model over space and time)

Example I: Image processing

Original image
$\xrightarrow{\mathcal{F}}$

Blurred image

Example I: Image processing

Original image

Blurred image
$-\mathcal{F}$....blurring due to motion while taking a photo (not a PDE solution operator)

- $\boldsymbol{f}=\boldsymbol{F}$... linear convolution operator
- \boldsymbol{m}... left image
- d....right image

Example II: computer tomography (CT)

- d. . . intensity of X-rays going through human head
- m...tissue density
- \boldsymbol{f}... decay of X-rays depending on density

Image shows slices through 3D reconstruction of human brain. Many in vivo imaging methods are inverse problems (MRI, PET scan...).

Example III: Ocean dynamics example

Courtesy Patrick Heimbach, MIT

Example III: Ocean dynamics example

 Navier-Stokes equations- Conservation of mass
- Conservation of momentum
- Conservation of energy
- Conservation of salinity
- Equation of state
- Subgrid parameterizations

TACC Stampede supercomputer

Example III: Ocean dynamics example

xx_wind_timemean: mn: $6.9 \mathrm{e}+00$, mx: $1.2 \mathrm{e}+01, \mathrm{av}-8.2 \mathrm{e}-02$, sd: $9.8 \mathrm{e}-01$

2D and 3D parameter fields

- 3D initial temperature and salinity fields
- 2D time-varying atmospheric state at ocean-atmosphere interface
- surface air temperature
- specific humidity
- downwelling shortwave radiation
- zonal and meridional wind speed
- 3D subgrid model parameter fields
- vertical mixing coefficient
- GM coefficient (geostrophic eddy mixing)
- Redi coefficient (along-isypycnal mixing)

Example IV: Wave-based material inversion (scattering)

Propagate acoustic/elastic/electromagnetic waves through unknown medium

$$
u_{t t}-\frac{1}{\boldsymbol{m}(x)^{2}} \Delta u=0 \quad \text { in } \Omega \subset \mathbb{R}^{d} \quad \text { with boundary and initial conditions }
$$

- $\boldsymbol{m}(x)$... unknown wave speed
- $\boldsymbol{f}: \boldsymbol{m} \rightarrow \boldsymbol{d}$... solution of wave equation with wave speed $\boldsymbol{m}(x)$
- d... seismograms, i.e., point measurements of wave field

Example V: Basal condition in ice dynamics

- d...surface velocity
- \boldsymbol{m}....basal boundary friction condition
- f... velocity usually modelled as solution of incompressible nonlinear Stokes equation

Surface velocity observations

- Modeling the dynamics of polar ice sheets is critical for projections of future sea level rise.
- There remain large uncertainties in the basal boundary conditions, which we want to estimate from surface velocity observations.

Example V: Basal condition in ice dynamics

Surface velocity observations

- Modeling the dynamics of polar ice sheets is critical for projections of future sea level rise.
- There remain large uncertainties in the basal boundary conditions, which we want to estimate from surface velocity observations.

Outline

Inverse problems examples

Inverse problems approaches

A concrete example in 2D

Posterior approximations

Linear/linearized problems

Inversion approach I: Regularization-Occam's razor

 Inverse problem ($\boldsymbol{m} \ldots$... parameters, $\boldsymbol{d} \ldots$...data, $\boldsymbol{e} \ldots$ error):$$
\boldsymbol{f}(\boldsymbol{m})(+e)=\boldsymbol{d}
$$

Formulate as optimization problem:

$$
\min _{\boldsymbol{m}} \frac{1}{2}\|\boldsymbol{f}(\boldsymbol{m})-\boldsymbol{d}\|^{2}+R(\boldsymbol{m})
$$

- data misfit term, $\|\cdot\|$ is a measure of the distance between $\boldsymbol{f}(\boldsymbol{m})$ and \boldsymbol{d}
- regularization term, stabilizes and picks a specific \boldsymbol{m}.

Remarks:

- deterministic problem
- large-scale (PDE-constrained) optimization
- no quantification of uncertainty in \boldsymbol{m}
- influence of $R(\cdot)$ on \boldsymbol{m} unclear

Inversion approach II: Statistical-Bayesian inference

Inverse problem

$$
\boldsymbol{f}(\boldsymbol{m})(+\boldsymbol{e})=\boldsymbol{d}
$$

Interpret $\boldsymbol{m}, \boldsymbol{d}$ as random variables; Solution of inverse problem is a probability density function $\pi_{\text {post }}(\boldsymbol{m})$ for \boldsymbol{m} :

Remarks:

- systematic method to quantify measurement errors and prior knowledge
- allows quantification of uncertainty
- related to regularization approach
- high-dimensional probability density

Inversion approach II: Statistical-Bayesian inference

Inverse problem

$$
\boldsymbol{f}(\boldsymbol{m})(+\boldsymbol{e})=\boldsymbol{d}
$$

Interpret $\boldsymbol{m}, \boldsymbol{d}$ as random variables; Solution of inverse problem is a probability density function $\pi_{\text {post }}(\boldsymbol{m})$ for \boldsymbol{m} :

Target:

- characterize $\pi_{\text {post }}(\boldsymbol{m})$
- for functions \boldsymbol{m} (large vectors after discretization)
- for expensive $\boldsymbol{f}(\cdot)$
- use connection to optimization

Bayes formula (finite dimensions)

Given:
$\pi_{\mathrm{pr}}(\boldsymbol{m})$: prior p.d.f. of model parameters \boldsymbol{m}
$\pi_{\text {obs }}(\boldsymbol{d})$: prior p.d.f. of measurement error \boldsymbol{d}
$\pi \ell$ 体 $(\boldsymbol{d} \mid \boldsymbol{m})$: conditional p.d.f. combining \boldsymbol{d} and \boldsymbol{m} (model)
Then, the posterior p.d.f. of the model parameters is given by:

Bayes formula (infinite dimensions)

In infinite dimensional spaces, a Lebesgue measure cannot be defined \Rightarrow alternative formulation of Bayes formula (A. Stuart, Acta Numerica, (2010)).
Given Gaussian random fields:
$\mu_{0}:=\mathcal{N}\left(m_{0}, \mathcal{C}_{0}\right)$ on $L^{2}(\Omega)$: prior measure of parameters \boldsymbol{m}
$\mu:=\mathcal{N}\left(0, \Gamma_{\text {noise }}\right)$ on \mathbb{R}^{n} : prior measure of finite-dimensional data \boldsymbol{d} $\pi_{\text {model }}(\boldsymbol{d} \mid \boldsymbol{m})$: conditional p.d.f. relating \boldsymbol{d} and \boldsymbol{m} (model)

Then the posterior measure μ^{d} (i.e., the solution of the statistical inverse problem) is given by:

$$
\frac{d \mu^{d}}{d \mu_{0}} \propto \pi(\boldsymbol{d} \mid \boldsymbol{m})
$$

$$
\begin{aligned}
& R(m)=\int\left|\nabla_{m}\right|^{2} d x \\
& =\int(-\Delta+\infty+N)_{m=1}^{2} d x
\end{aligned}
$$

Left side is Radon-Nikodym derivative of posterior with respect to the prior. \mathcal{C}_{0} has be of trace class to make problem well-defined (Tikhonov regularization with gradient not sufficient in 2D or 3D)

Outline

Inverse problems examples

Inverse problems approaches

A concrete example in 2D

Posterior approximations

Linear/linearized problems

A concrete example
From: Allmaras et al, SIREV, 2013
ord) ventral vel.
$z(f)$ location $\theta^{2} \frac{d z}{d t}$

$$
\begin{aligned}
& F=m \frac{d a}{d t}=m g-m C v^{2} \\
& /_{\text {mass }} \text { gantry }_{\text {coup. of }}^{\text {air mince }}
\end{aligned}
$$

ODE: $\frac{d v}{d l^{2}} g-C v^{2}, \frac{d z}{d t}=v$
analytical sal:

$$
t \in\left[d_{0}, T\right]
$$

$$
\begin{aligned}
& v(\delta)=v_{\infty} \tanh \left(\frac{\rho\left(d-d_{0}\right)}{\theta_{\infty}}\right), z(f)=\frac{1}{C} \log \cosh \left(\frac{\rho^{\left(d-d_{0}\right)}}{v_{\infty}}\right) \\
& \sqrt{\vartheta_{C}} \text { terminal velocity, } \quad M=\left(g_{1} C\right)
\end{aligned}
$$

A concrete example
From: Allmaras et al, SIREV, 2013
Forward: know $(g, c) \in \mathbb{R}^{2}, f(m)=\left[\begin{array}{l}z(d) \\ z(d)) \\ \vdots\left(d_{n}\right)\end{array}\right] \in R^{n}$

$$
d-f(m)+\varepsilon
$$

to..., th measmement times
Prior for ger:

$$
\begin{aligned}
& 0 \leq g \leq 20^{\mathrm{m} / \mathrm{s}} \\
& 0 \leq C \leq 0.5 \frac{1}{\mathrm{~m}} \\
& \rho \mathrm{~g} \\
& 20 \\
& \underbrace{}_{0 \sigma}
\end{aligned}
$$

A concrete example
From: Allmaras et al, SIREV, 2013

Meanuemet data ellans:

- bor. res of video
- robation ol object
- bluoung
- initial tima (first asoumed hnower)

$$
g_{i}\left(d_{i} \mid m\right)=\frac{3}{4 s_{i}} \cdot\left(1-\frac{\left|d_{i}-f_{i}(m)\right|^{2}}{\delta_{i}^{2}}\right)
$$

- X [.]

A concrete example
From: Allmaras et al, SIREV, 2013

$$
T_{p a d}(m / d)
$$

Answer: Prob. Shat fere g is $\mathrm{in}[g+s i]$ \&
$C \sin \left[C_{a} C\right]$
Bays:

$$
\Pi_{p o t}(m \mid d)=k \pi_{p r}(m) \pi_{\text {Rive }}(d \mid m)
$$

A concrete example

From: Allmaras et al, SIREV, 2013

$$
\begin{aligned}
& \left.\mathbb{E}(g \mid d) \pi 8.82 \mathrm{~m} / \mathrm{s}^{2} \quad \text { (tush: } 9.79\right) \\
& \mathbb{E}(\mathbb{C}|d| \pi 0.1161 / \mathrm{m}
\end{aligned}
$$

A concrete example:towards OED
From: Allmaras et al, SIREV, 2013

A concrete example: towards OED

From: Allmaras et al, SIREV, 2013

