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Overview

Linear least squares and orthogonalization methods
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Review: Least-squares problems

Given data points/measurements

(t
i

, b

i

), i = 1, . . . ,m

and a model function � that relates t and b:

b = �(t;x1, . . . , xn),

where x1, . . . , xn are model function parameters. If the model is
supposed to describe the data, the deviations/errors

�
i

= b

i

� �(t
i

, x1, . . . , xn)

should be small. Thus, to fit the model to the measurements, one
must choose x1, . . . , xn appropriately.
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Review: Linear least-squares

We assume (for now) that the model depends linearly on
x1, . . . , xn, e.g.:

�(t;x1, . . . xn) = a1(t)x1 + . . .+ a

n

(t)x
n

Choosing the least square error, this results in

min
x

kAx� bk,

where x = (x1, . . . , xn)T , b = (b1, . . . , bm)T , and a

ij

= a

j

(t
i

).

In the following, we study the over-determined case, i.e., m � n.
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Linear least-squares problems–QR factorization

Consider non-square matrices A 2 Rm⇥n with m � n and
rank(A) = n. Then the system

Ax = b

does, in general, not have a solution (more equations than
unknowns). We thus instead solve a minimization problem

min
x

kAx� bk2.

The minimum x̄ of this optimization problem is characterized by
the normal equations:

A

T

Ax̄ = A

T

b.
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Linear least-squares problems–QR factorization

To avoid the multiplication A

T

A and to use a suitable
factorization of A that aids in solving the normal equation, we use
the QR-factorization:

A = QR =
⇥
Q1, Q2

⇤ 
R1

0

�
= Q1R1,

where Q 2 Rm⇥m is an orthonormal matrix (QQ

T = I), and
R 2 Rm⇥n consists of an upper triangular matrix and a block of
zeros.
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Linear least-squares problems–QR factorization

How can the QR factorization be used to solve the normal
equation?

min
x

kAx� bk2 = min
x

kQT (Ax� b)k2 min
x

k

b1 �R1x

b2

�
k2,

where Q

T

b =


b1

b2

�
.

Thus, the least squares solution is x = R

�1
b1 and the residual is

kb2k.

7 / 42



Linear least-squares problems–QR factorization

How can we compute the QR factorization?

Givens rotations
Use sequence of rotations in 2D subspaces:
For m ⇡ n: ⇠ n

2
/2 square roots, and 4/3n3 multiplications

For m � n: ⇠ nm square roots, and 2mn

2 multiplications

Householder reflections
Use sequence of reflections in 2D subspaces

For m ⇡ n: 2/3n3 multiplications
For m � n: 2mn

2 multiplications

These methods compute an orthonormal basis of the columns of
A. An alternative is the Gram Schmidt method—however, Gram
Schmidt is unstable and thus sensitive to rounding errors (there are
modified versions that are stable but require more computation).
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QR factorization: Orthogonal transformations
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QR factorization: Givens rotations
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QR factorization: Givens rotations

11 / 42



QR factorization: Householder reflections
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QR factorization: Householder reflections
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Overview

Nonlinear systems
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Fixed point ideas

We intend to solve the nonlinear equation

f(x) = 0, x 2 R.

Reformulation as fixed point method:

x = �(x)

Corresponding iteration: Choose x0 (initialization) and compute
x1, x2, . . . from

x

k+1 = �(x
k

)

When does this iteration converge?

15 / 42



Fixed point ideas

Example: Solve the nonlinear equation

2x� tan(x) = 0.

Iteration #1: x
k+1 = �1(x

k

) = 0.5 tan(x
k

)

Iteration #2: x
k+1 = �2(x

k

) = arctan(2x
k

)

Iteration #3: x
k+1 = �3(x

k

) = x

k

� 2xk�tan(xk)
1�tan2(xk)
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Convergence of fixed point methods
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Convergence of fixed point methods

A mapping � : [a, b] ! R is called contractive on [a, b] if there is a
0  ⇥ < 1 such that

|�(x)� �(y)|  ⇥|x� y| for all x, y 2 [a, b].

If � is continuously di↵erentiable on [a, b], then

sup
x,y2[a,b]

|�(x)� �(y)|
|x� y| = sup

z2[a,b]
|�0(z)|
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Convergence of fixed point methods

Let � : [a, b] ! [a, b] be contractive with constant ⇥ < 1. Then:

I There exists a unique fixed point x̄ with x̄ = �(x̄)

I For any starting guess x0 in [a, b], the fixed point iteration
converges to x̄ and

|x
k+1 � x

k

|  ⇥|x
k

� x

k�1| (linear convergence)

|x̄� x

k

|  ⇥k

1�⇥
|x1 � x0|.

The second expression allows to estimate the required number of
iterations.
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Convergence of fixed point methods
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Newton’s method

In one dimension, solve f(x) = 0:

Start with x0, and compute x1, x2, . . . from

x

k+1 = x

k

� f(x
k

)

f

0(x
k

)
, k = 0, 1, . . .

Requires f(x
k

) 6= 0 to be well-defined (i.e., tangent has nonzero
slope).
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Newton’s method

Let F : Rn ! Rn, n � 1 and solve

F (x) = 0.

Taylor expansion about starting point x0:

F (x) = F (x0) + F

0(x0)(x� x

0) + o(|x� x

0|) for x ! x

0
.

Hence:
x

1 = x

0 � F

0(x0)�1
F (x0)

Newton iteration: Start with x

0 2 Rn, and for k = 0, 1, . . .
compute

F

0(xk)�x

k = �F (xk), x

k+1 = x

k +�x

k

Requires that F 0(xk) 2 Rn⇥n is invertible.
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Newton’s method

Newton iteration: Start with x

0 2 Rn, and for k = 0, 1, . . .
compute

F

0(xk)�x

k = �F (xk), x

k+1 = x

k +�x

k

Equivalently:
x

k+1 = x

k � F

0(xk)�1
F (xk)

Newton’s method is a�ne invariant, that is, the sequence is
invariant to a�ne transformations:
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Convergence of Newton’s method
Assumptions on F : D ⇢ Rn open and convex, F : D ! Rn

continuously di↵erentiable with F

0(x) is invertible for all x, and
there exists ! � 0 such that

kF 0(x)�1(F 0(x+ sv)� F

0(x))vk  s!kvk2

for all s 2 [0, 1], x 2 D,v 2 Rn with x+ v 2 D.
Assumptions on x

⇤ and x

0: There exists a solution x

⇤ 2 D and a
starting point x0 2 D such that

⇢ := kx⇤ � x

0k  2

!

and B

⇢

(x⇤) ⇢ D

Theorem: Then, the Newton sequence x

k stays in B

⇢

(x⇤) and
lim

k!1 x

k = x

⇤, and

kxk+1 � x

⇤k  !

2
kxk � x

⇤k2
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