Numerical Methods |: Numerical linear algebra

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

September 21, 2017

/23

Solving linear systems

We study the solution of linear systems of the form
Az =b

with A € R™" x, b € R™. We assume that this system has a
unique solution, i.e., A is invertible.

Solving linear systems is needed in many applications. Often, we
have to solve

» large systems (can be up to millions of unknowns, and more)
» as fast as possible, and
> accurately and reliably.

There exist explicit formulas for solving linear systems but they are
extremely expensive (e.g., Kramer's rule requires computing
determinants).

N

Solving linear systems
Triangular systems (forward substitution):

Iy O -+ oo 0 T1 by

lor Iz O -+ 0 : :

lnl lnn T, bn
Yl = ‘pl/ﬂ“ | divigle.-

Y= (‘fr&.x\)/gu fdivision | mad); | addition

(\7" /em Xi— fm,ft. s }(Ml,,xh—?/]d;\,) v\»l mﬂ/ n-| addi'l""'s'

Solving linear systems
Triangular systems, implementation:

lll o - ... 0 1 bl
lo1 oo 0 0 : _ .
o UL

AB:\@XM , row-YRsed A%i‘l{y’“(@(l”‘““ ”‘mm}\‘

() = b/ (1) fo 4= Fe

e 3 g W= b))

x (3)= G- L (i 4t lp)’m(ﬂ b(gt):) \o(/ﬁl ~Ug)*
W1 g L@“""(‘D{

2l

= %h)/L(V‘\V‘) fzbsé‘ﬁ”

Solving linear systems

Triangular systems: <P

Forward and backward substitution, requires

1
n(n+1) multiplications/divisions,
n(n —1)

5 additions.

Overall: ~ n? floating point operations (flops).

We count flops to estimate the computational time/effort. Besides
floating point operations, computer memory access has a
significant influence on the efficiency of numerical methods (see
experiments in homework #2).

Solving linear systems

Gaussian elimination—LU factorization

air - ain| |21 b1

Gn1 - Qnn T, by,

Gaussian elimination: “new row = row 7 - [;; row 1"

a1l A1n X1
/ !/
0 a22 . e . e a2n o
/ /
i 0 an2 . e . e ann_ _I’I’L_

New system matrix/rhs is: A®) = L1 4, b® =

b1
/
2

by

b

L1b.

Solving linear systems

Gaussian elimination—LU factorization

air - ain| |21 b1

Gn1 - Qnn T, by,

Gaussian elimination: “new row = row 7 - [;; row 1"

ail PPN e PN ain xr1 —bl-
0 ! e e / /
a22 Qon | |22 b5
" " N R Y4
0 a3z - ay, =8
o ' "
0 0 apz - apn| |Ta [n]

New system matrix/rhs is: AB) = Lo A, b3 = LyLb.

Solving linear systems

Gaussian elimination—LU factorization
We obtain:
A™ =L, LA, b =L, 1---Lb,

with the Frobenius matrices

1

1
—lgp1r 1

—lnk 1

Note that L,;l are also Frobenius matrices, but with different sign
for the [;;'s.

23

Solving linear systems

Gaussian elimination—LU factorization

Vi
- X v
We obtain: /KO(’M h 8 J LL‘“\A

A =, b =L,y L1b,
with the Frobenius matrices ’—\ O
- U= L LA

::D A fa) Z/ U
L= —lgp1r 1 / :
—l:n,k ; 1 (Lh—a' L(>

Note that L,;l are also Frobenius matrices, but with different sign
for the [;;'s.

8/23

Solving linear systems

aip a2 - a1n
a1 a2 a2n
Gnl Aan2 Gnn
1 0 U1 U2
l21 1 0 0 U292
ln1 lno 1 0 0
u1p = ai
U2 = a2

lo1u11 = an

larur2 + ugy = age

Uln
U2n

Unn

/23

Solving linear systems

Gaussian elimination—LU factorization

Algorithm for solving linear system Az = b (assuming diagonal
elements do not vanish):

1. Compute triangular factorization A = LU.
2. Solve Lz = b (forward substitution).
3. Solve Uz = z (backward substitution).

Ax=lb 20 LUx L+ Sde Lz=b o(nt)
Ux ~ & @{“L)

10/23

Solving linear systems

Gaussian elimination—LU factorization

Algorithm for solving linear system Az = b (assuming diagonal
elements do not vanish):

?foi% o _— &(7;0()8
1. Compute triangular factorization A = LU. < 2

2. Solve Lz = b (forward substitution).

3. Solve Uz = z (backward substitution).

Notes:
» Main cost is LU factorization.

» Factorization can be reused for different right hand sides b.
Mot Sohing Ax=b 2 x=A\b;
o @w X= Ty (A)'K b,

10/23

Solving linear systems
LU with pivoting

If diagonal “pivoting” element is zero (or very small), one has to
exchange rows and/or columns—otherwise the LU factorization fails.

Basic idea:
Choose largest element (in absolute value) in the row that is
eliminated as pivot.

Fang: A= > — Gouw elniabir foito

,&Juwgz g 2 o
(o= Ly, LU (L)

11/23

Solving linear systems
LU with pivoting

Example with a 3 digit computer:

[E;q | Y (égo[UJ: :)ﬂ = {'[)CK>
(> (‘Q)z (Z> Lad- S’y o0 949
[
Gown dinatin, o machin wik 3 acurak digdo ¢
SN ot \
—~— ! (
I e O \|-¥ | I
(S N [[

\
2= L0 2| el

= Y‘ODD gﬂ) X'(- O

12/23

Wh{x A uqcuj one 1" h

Solving linear systems tack vow & ool tas ot

LU with pivoting [0O
Pivoting can be expressed by permutation matrices Py, resulting in <o or >
the LU decomposition (the permutation 7 also affects L and U). °le
Theorem: For every invertible matrix A, there exists a permutation
matrix Py such that

P,A=LU

is possible. The permutation can be chosen such that all entries in
L are <1.

Prod (St (A FOmek ol adivo [ik cobumr Ok 207
[o's pumde vews suds Hrol-

K= h 6= Egﬂ
< Q(“\ & - S
A(l\: LI AQ _ L, ?7;(/A\ {

) 3
it Ly have abs. vahva = o

\

F B

13/23

Solving linear systems
LU with pivoting
}u pak

U= %

L%/
/L\- L‘(& T -
11@«),« .

X'«(n) L

L,,

f"l‘*"y
KAk

U= LY L, %

Lh»m /L’\n~‘3
/N AN
— LuLablus o P h =02

Solving linear systems

Choleski factorization

A matrix is symmetric positive definite (spd), if A = AT and for all
x € R", x # 0, the inner product (Az,x) > 0.
For spd matrices, we can compute the factorization:

A=LDL",

where L is a lower triangular matrix with 1's on the diagonal, and
D is a positive diagonal matrix.

The Choleski factorization is obtained by multiplying the square
root of D (which exists!) with L:

A=LL".

Choleski factorization requires ~ Z- multiplications and n square

6
roots.

Kinds of linear systems

Solvers such as MATLAB's \ take advantage of matrix properties:

» Dense matrix storage: Only entries are stored as 1D array
(column or row wise)

> Sparse matrix storage: Most a;; = 0: only store nonzero
entries; stores indices and value; occur in many applications

Qu "- -Qe

A= | > dmg Audt clous %iwL colbann
S Gd e - .Ag.

SM/M oﬂﬂ/\gs)om (o= 2429 ‘“MHOSM
o valuw ay amd 1,3.

16 /23

Kinds of linear systems
Solvers such as MATLAB's \ take advantage of matrix properties:

» Fast algorithms for special matrices: for computing Az, FFT,

FMM, ... fon-io thral 0 factodaon .
» Sparse: Most a;; = 0: avoid fill-in in factorizations
» Structured/unstructured: is the sparsity pattern easy to
describe without storing it explicitly? 2

Spava N /

e ¥ L 0 W

17 /23

Kinds of linear systems and solvers

Symmetry, positivity . ..
» Special factorizations for (skew) symmetric matrices
» Special factorizations for positive definite matrices (Choleski)

» Diagonally dominant matrices don’t need pivoting

MATLAB's \ (i.e., UMFPACK) chooses the optimal algorithms
after studying properties of the matrix (details in the “backslash”
book: Tim Davis: Direct methods for sparse linear systems, SIAM,
2006.)

Kinds of linear systems and solvers

UMFPACK's decision tree for dense matrices

Use triangular

Use QR solver solver

Is A triangular?

Is A permuted
triangular?

Use permuted
triangular solver

Use Is A upper
Hessenberg Hesse,ﬁ)perg¢ Is A Hermitian?
solver

19/23

Kinds of linear systems and sol
UMFPACK's decision tree for dense matrices

Use
Hessenberg
solver

Is A upper
Hessenberg?

Use LU solver

Use
Cholesky
solver

Is A permuted
triangular?

QIS

triangular solver

Use permuted

Does A have
areal and positive
diagonal?

NO

Use LDL solver

Does Cholesky
succeed?

19/23

Kinds of linear systems and solvers

UMFPACK's decision tree for sparse matrices

Is A square?

Compute the

Use QR solver bandwidth of A

Is A diagonal?

Use diagonal
solver

Does A look
triangular?
(Upper or lower
bandwidth of 0)

Use tridiagonal

IsA
solver tridiagonal?

Is A actually

Is the band

Use banded | YES density of A > triangular? Use triangular
K . d f | . sol b \d\agna\ is solver
Inds of linegr “systems=afg Solwers

UMFPACK's decision tree for sparsexpratrices

Use permuted
triangular solver

Is A permuted
triangular?

Does A have
areal and positive
diagonal?

YES

Does Cholesky

Iver
succeed? Use LU solver

Use Cholesky Use LDL solver
solver

20/23

Kinds of linear systems and solvers

Factorization-based /direct solvers (dense/sparse LU, Choleski)
require the matrix

- to fit into memory,

- to be explicitly available (sometimes only a function that
applies the matrix to a vector is available) and to fit in
memory,

+ but compute exact (besides rounding error) solution
Iterative solvers

- find an e-approximation of the solution,

+ able to solve very large problems,

-+ often only require a function that computes Ax for given x

+ might be faster or slower than a factorization-based method

21

Kinds of linear systems and solvers
MATLAB demo

» What are the different storage formats (sparse/dense)? Is it
always better to use one of them?

» How long does it take to solve sparse/dense systems?
> What is fill in and how to avoid it?

Kinds of linear systems and solvers
MATLAB demo

Sparse/sense storage:

A=rand(2,2);

B=sparse(4);

whos

Fill-in:

A=bucky + 4x*speye(60);

r = symrcm(A);

spy(A); spy(A(r,r)); spy(chol(A)); spy(chol(A(r,r)));

Which sparse solver?
spparms (’ spumoni’,1);
A=gallery(’poisson’,8);
b=randn(64,1);

A\b;

