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Solving linear systems

We study the solution of linear systems of the form

Ax = b

with A 2 Rn⇥n, x, b 2 Rn. We assume that this system has a
unique solution, i.e., A is invertible.

Solving linear systems is needed in many applications. Often, we
have to solve

I large systems (can be up to millions of unknowns, and more)

I as fast as possible, and

I accurately and reliably.

There exist explicit formulas for solving linear systems but they are
extremely expensive (e.g., Kramer’s rule requires computing
determinants).
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Solving linear systems

Triangular systems (forward substitution):
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Solving linear systems

Triangular systems, implementation:
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Solving linear systems

Triangular systems:

Forward and backward substitution, requires

n(n+ 1)

2
multiplications/divisions,

n(n� 1)

2
additions.

Overall: ⇠ n

2 floating point operations (flops).

We count flops to estimate the computational time/e↵ort. Besides
floating point operations, computer memory access has a
significant influence on the e�ciency of numerical methods (see
experiments in homework #2).
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Solving linear systems

Gaussian elimination—LU factorization
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Gaussian elimination: “new row = row i - li1 row 1”
2

6666664

a11 · · · · · · · · · a1n

0 a

0
22 · · · · · · a

0
2n

...
...

...
...

...
...

0 a

0
n2 · · · · · · a

0
nn

3

7777775

2

6666664

x1

x2
...
...
xn

3

7777775
=

2

666664

b1

b

0
2

b

0
3
...
b

0
n

3

777775

New system matrix/rhs is: A(2) =
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Solving linear systems

Gaussian elimination—LU factorization
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New system matrix/rhs is: A(3) = L2L1A, b(3) = L2L1b.
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Solving linear systems

Gaussian elimination—LU factorization

We obtain:

A

(n) = Ln�1 · · ·L1A, b

(n) = Ln�1 · · ·L1b,

with the Frobenius matrices
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Note that L�1
k are also Frobenius matrices, but with di↵erent sign

for the lj,i’s.
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Solving linear systems
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Solving linear systems

Gaussian elimination—LU factorization

Algorithm for solving linear system Ax = b (assuming diagonal
elements do not vanish):

1. Compute triangular factorization A = LU .

2. Solve Lz = b (forward substitution).

3. Solve Ux = z (backward substitution).

Notes:

I Main cost is LU factorization.

I Factorization can be reused for di↵erent right hand sides b.
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Solving linear systems

LU with pivoting

If diagonal “pivoting” element is zero (or very small), one has to
exchange rows and/or columns–otherwise the LU factorization fails.

Basic idea:
Choose largest element (in absolute value) in the row that is
eliminated as pivot.
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Solving linear systems

LU with pivoting

Example with a 3 digit computer:
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Solving linear systems

LU with pivoting

Pivoting can be expressed by permutation matrices P⇡, resulting in
the LU decomposition (the permutation ⇡ also a↵ects L and U).
Theorem: For every invertible matrix A, there exists a permutation
matrix P⇡ such that

P⇡A = LU

is possible. The permutation can be chosen such that all entries in
L are  1.
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Solving linear systems

LU with pivoting
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Solving linear systems

Choleski factorization

A matrix is symmetric positive definite (spd), if A = A

T and for all
x 2 Rn

,x 6= 0, the inner product hAx,xi > 0.
For spd matrices, we can compute the factorization:

A = LDL

T
,

where L is a lower triangular matrix with 1’s on the diagonal, and
D is a positive diagonal matrix.
The Choleski factorization is obtained by multiplying the square
root of D (which exists!) with L:

A = L̄L̄

T
.

Choleski factorization requires ⇠ n3

6 multiplications and n square
roots.
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Kinds of linear systems

Solvers such as MATLAB’s \ take advantage of matrix properties:

I Dense matrix storage: Only entries are stored as 1D array
(column or row wise)

I Sparse matrix storage: Most aij = 0: only store nonzero
entries; stores indices and value; occur in many applications
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Kinds of linear systems

Solvers such as MATLAB’s \ take advantage of matrix properties:

I Fast algorithms for special matrices: for computing Ax, FFT,
FMM, . . .

I Sparse: Most aij = 0: avoid fill-in in factorizations

I Structured/unstructured: is the sparsity pattern easy to
describe without storing it explicitly?
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Kinds of linear systems and solvers

Symmetry, positivity . . .

I Special factorizations for (skew) symmetric matrices

I Special factorizations for positive definite matrices (Choleski)

I Diagonally dominant matrices don’t need pivoting

MATLAB’s \ (i.e., UMFPACK) chooses the optimal algorithms
after studying properties of the matrix (details in the “backslash”
book: Tim Davis: Direct methods for sparse linear systems, SIAM,
2006.)
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Kinds of linear systems and solvers

UMFPACK’s decision tree for dense matrices
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Kinds of linear systems and solvers

UMFPACK’s decision tree for sparse matrices
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Kinds of linear systems and solvers
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Kinds of linear systems and solvers

Factorization-based/direct solvers (dense/sparse LU, Choleski)
require the matrix

- to fit into memory,

- to be explicitly available (sometimes only a function that
applies the matrix to a vector is available) and to fit in
memory,

+ but compute exact (besides rounding error) solution

Iterative solvers

- find an "-approximation of the solution,

+ able to solve very large problems,

+ often only require a function that computes Ax for given x

± might be faster or slower than a factorization-based method
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Kinds of linear systems and solvers

MATLAB demo

I What are the di↵erent storage formats (sparse/dense)? Is it
always better to use one of them?

I How long does it take to solve sparse/dense systems?

I What is fill in and how to avoid it?
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Kinds of linear systems and solvers

MATLAB demo

Sparse/sense storage:
A=rand(2,2);

B=sparse(A);

whos

Fill-in:
A=bucky + 4*speye(60);

r = symrcm(A);

spy(A); spy(A(r,r)); spy(chol(A)); spy(chol(A(r,r)));

Which sparse solver?
spparms(’spumoni’,1);

A=gallery(’poisson’,8);

b=randn(64,1);

A\b;
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