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Least-squares problems

Given data points/measurements

(ti, bi), i = 1, . . . ,m

and a model function � that relates t and b:

b = �(t;x1, . . . , xn),

where x1, . . . , xn are model function parameters. If the model is
supposed to describe the data, the deviations/errors

�i = bi � �(ti, x1, . . . , xn)

should be small. Thus, to fit the model to the measurements, one
must choose x1, . . . , xn appropriately.
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Least-squares problems
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Least-squares problems

Measuring deviations

Least squares: Find x1, . . . , xn such that

1

2

mX

i=1

�

2
i ! min

From a probabilistic perspective, this corresponds to an underlying
Gaussian error model.

Weighted least squares: Find x1, . . . , xn such that

1

2

mX

i=1

✓
�i

�bi

◆2

! min,

where �bi > 0 contain information about how much we trust the
ith data point.
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Least-squares problems

Measuring deviations

Alternatives to using squares:

L1 error: Find x1, . . . , xn such that

mX

i=1

|�i| ! min

Result can be very di↵erent, other statistical interpretation, more
stable with respect to outliers.

L1 error: Find x1, . . . , xn such that

max

1im
|�i| ! min
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Linear least-squares

We assume (for now) that the model depends linearly on
x1, . . . , xn, e.g.:

�(t;x1, . . . xn) = a1(t)x1 + . . .+ an(t)xn
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Linear least-squares

Choosing the least square error, this results in

min

x

kAx� bk2,

where x = (x1, . . . , xn)
T , b = (b1, . . . , bm)

T , and aij = aj(ti).

In the following, we study the overdetermined case, i.e., m � n.
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Linear least-squares

Di↵erent perspective:
Consider non-square matrices A 2 Rm⇥n with m � n and
rank(A) = n. Then the system

Ax = b

does, in general, not have a solution (more equations than
unknowns). We thus instead solve a minimization problem

min

x

kAx� bk2.

The minimum ¯

x of this optimization problem is characterized by
the normal equations:

ATA¯

x = AT
b.
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Linear least-squares: normal equations
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Linear least-squares: normal equations
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Linear least-squares: normal equations
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Linear least-squares problems–QR factorization

Solving the normal equations

ATA¯

x = AT
b

requires:

I computing ATA (which is O(mn2
))

I condition number of ATA is square of condition number of A;
(problematic for the Choleski factorization)
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Linear least-squares problems–QR factorization

Conditioning

Solving the normal equation is equivalent to computing Pb, the
orthogonal projection of b onto the subspace V spanned by
columns of A.

Let x be the solution of the least square problem and denote the
residual by r = b�Ax, and

sin(✓) =
krk2
kbk2

.
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Linear least-squares problems–QR factorization

Conditioning

The relative condition number  of x in the Euclidean norm is
bounded by

I With respect to puerturbations in b:

  2(A)

cos(✓)

I With respect to perturbations in A:

  2(A) + 2(A)

2
tan(✓)

Small residual problems cos(✓) ⇡ 1, tan(✓) ⇡ 0: behavior similar
to linear system.
Large residual problems cos(✓) ⌧ 1, tan(✓) > 1: behavior
essentially di↵erent from linear system.
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Linear least-squares problems–QR factorization

One would like to avoid the multiplication ATA and use a suitable
factorization of A that aids in solving the normal equation, the
QR-factorization:

A = QR =

⇥
Q1, Q2

⇤ R1

0

�
= Q1R1,

where Q 2 Rm⇥m is an orthonormal matrix (QQT
= I), and

R 2 Rm⇥n consists of an upper triangular matrix and a block of
zeros.
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Linear least-squares problems–QR factorization

How can the QR factorization be used to solve the normal
equation?

min

x

kAx� bk2 = min

x

kQT
(Ax� b)k2 min

x

k

b1 �R1x

b2

�
k2,

where QT
b =


b1

b2

�
.

Thus, the least squares solution is x = R�1
b1 and the residual is

kb2k.
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Linear least-squares problems–QR factorization

How can we compute the QR factorization?

Givens rotations
Use sequence of rotations in 2D subspaces:
For m ⇡ n: ⇠ n2/2 square roots, and 4/3n3 multiplications
For m � n: ⇠ nm square roots, and 2mn2 multiplications

Householder reflections
Use sequence of reflections in 2D subspaces

For m ⇡ n: 2/3n3 multiplications
For m � n: 2mn2 multiplications
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