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Least-squares problems

Given data points/measurements
(tiybi), i=1,....m
and a model function ¢ that relates ¢ and b:
b=o(t;z1,...,2p),

where z1,...,x, are model function parameters. If the model is
supposed to describe the data, the deviations/errors

Az‘ = bi — qﬁ(ti,:z:l,... ,J}n)

should be small. Thus, to fit the model to the measurements, one
must choose 1, ..., T, appropriately.
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Least-squares problems
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| east-squares problems

Measuring deviations

Least squares: Find x1,...,x, such that

1 m
3 Z A? — min
i=1

From a probabilistic perspective, this corresponds to an underlying
Gaussian error model.

Weighted least squares: Find x1,...,x, such that
Tom (AN )
- — ) -

where db; > 0 contain information about how much we trust the
ith data point.
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| east-squares problems

Measuring deviations

Alternatives to using squares:
L' error: Find z1,...,z, such that

m

Z |A;| — min

=1

Result can be very different, other statistical interpretation, more
stable with respect to outliers.

L°° error: Find x1,...,x, such that

max |A;| — min
1<i<m
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Linear least-squares

We assume (for now) that the model depends linearly on
Lly--.,Tp, €.8.0

otz xn) =a1(t)zr + ...+ an(t)zy,
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Linear least-squares

Choosing the least square error, this results in
min || Az — b]|?,
x
where © = (z1,...,2,)7, b= (by,.

.. ,bm)T, and Qi5 = aj(ti).
In the following, we study the overdetermined case, i.e., m > n.
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Linear least-squares

Different perspective:
Consider non-square matrices A € R™*" with m > n and
rank(A) = n. Then the system

Az =0b

does, in general, not have a solution (more equations than
unknowns). We thus instead solve a minimization problem

. 2
min | Az — b . Z-nst, Enellidhac, omn.

The minimum & of this optimization problem is characterized by
the normal equations:

AT Az = ATb.
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Linear least-squares: normal equations
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Linear least-squares: normal equations
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Linear least-squares: normal equations
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Linear least-squares problems—QR factorization

Solving the normal equations
AT Az = ATd
requires:
» computing AT A (which is O(mn?))

» condition number of AT A is square of condition numbeér of A:
CZGA (problematic for the Choleski factorization)
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Linear least-squares problems—QR factorization
Conditioning

Solving the normal equation is equivalent to computing Pb, the
orthogonal projection of b onto the subspace V' spanned by
columns of A.

Let « be the solution of the least square problem and denote the
residual by » = b — Az, and b ‘,,,\o-ﬁﬂ

o el .
sin(6) = s ot % ﬁs@*)
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Linear least-squares problems—QR factorization
Conditioning

The relative condition number s of x in the Euclidean norm is
bounded by

» With respect to puerturbations in b:

K]Q(A)
<
= cos(6)
With bations in A pY
» With respect to perturbations in A:
TN £ )
/ erjadn ) k< ko(A) + Ko(A)? tan(9)

Small residual problems cos(f) ~ 1, tan(f) = 0: behavior similar
to linear system.

Large residual problems cos(f) < 1, tan(f) > 1: behavior
essentially different from linear system.
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Linear least-squares problems—QR factorization

One would like to avoid the multiplication AT A and use a suitable
factorization of A that aids in solving the normal equation, the
QR-factorization: @~ 2
c‘ aig| |4 .
A= QR = QlaQQ] |: 01:| = QlRla

where Q € R™*™ is an orthonormal matrix (QQ” = I), and
R € R™*"™ consists of an upper triangular matrix and a block of
zeros.
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Linear least-squares problems—QR factorization

How can the QR factorization be used to solve the normaI’2
equation? Qj/\ — @f Q2. =R= [_oﬁ
min 42 — bl = nin Q" (e — b)= win | |, 1] |2
x x x b2
2

z

where Qb = [21] : /)V? " “ e “ \ L\

2

Thus, the least squares solution is = R~'b; and the residual is
[B2]].
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Linear least-squares problems—QR factorization

A-aX

How can we compute the QR factorization?

Givens rotations

Use sequence of rotations in 2D subspaces:

For m ~ n: ~ n?/2 square roots, and 4/3n3 multiplications
For m >> n: ~ nm square roots, and 2mn? multiplications

Householder reflections
Use sequence of reflections in 2D subspaces

For m ~ n: 2/3n3 multiplications
For m > n: 2mn? multiplications

17 /19



