
MATH-UA.0252 (Georg Stadler, NYU Courant)

Fall 2018: Numerical Analysis
Assignment 5 (due November 20, 2018)

2 extra credit points will be given for cleanly plotted and labeled figures (see also rules
on the first assignment). Use a legend and different line styles to label multiple graphs in one
plot (no colors needed). Do not export figures using raster graphics (.jpg, .png) but use vector
graphics (.eps, .pdf, .dxf) that do not mess up lines. Label axes and use titles. Use help

plot, help legend, help xlabel to better understand MATLAB’s (or Python’s) plotting
capabilities.

1. [Space of polynomials Pn, 1+2+2pts] Let Pn be the space of functions defined on
[−1, 1] that can be described by polynomials of degree less of equal to n with coefficients
in R. Pn is a linear space in the sense of linear algebra, in particular, for p, q ∈ Pn and
a ∈ R, also p+ q and ap are in Pn. Since the monomials {1, x, x2, . . . , xn} are a basis for
Pn, the dimension of that space is n+ 1.

(a) Show that for pairwise distinct points x0, x1, . . . , xn ∈ [−1, 1], the Lagrange polyno-
mials Lk(x) are in Pn, and that they are linearly independent, that is, for a linear
combination of the zero polynomial with Lagrange polynomials with coefficients αk,
i.e.,

n∑
k=0

αkLk(x) = 0 (the zero polynomial)

necessarily follows that α0 = α1 = . . . = αn = 0. Note that this implies that the
(n+ 1) Lagrange polynomials also form a basis of Pn.

(b) Since both the monomials and the Lagrange polynomials are a basis of Pn, each p ∈ Pn

can be written as linear combination of monomials as well as Lagrange polynomials,
i.e.,

p(x) =
n∑

k=0

αkLk(x) =
n∑

k=0

βkx
k, (1)

with appropriate coefficients αk, βk ∈ R. As you know from basic matrix theory, there
exists a basis transformation matrix that converts the coefficients α = (α0, . . . , αn)

T

to the coefficients β = (β0, . . . , βn)
T . Show that this basis transformation matrix is

given by the so-called Vandermonde matrix V ∈ Rn+1×n+1 given by

V =


1 x0 x20 · · · xn−10 xn0
1 x1 x21 · · · xn−11 xn1
...

...
...

. . .
...

...
1 xn x2n · · · xn−1n xnn

 ,

i.e., the relation between α and β in (1) is given by α = V β. An easy way to see
this is to choose appropriate x in (1).
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(c) Note that since V transforms one basis into another basis, it must be an invertible
matrix. Let us compute the condition number of V numerically.1 Compute the 2-
based condition number κ2(V ) for n = 5, 10, 20, 30 with uniformly spaced nodes
xi = −1 + (2i)/n, i = 0, . . . , n. Based on the condition numbers, can this basis
transformation be performed accurately?

2. [Polynomial interpolation versus least squares fitting, 3+1pts] Recall how Q7 in
HW3 required you to fit a function to six given data points. This led to a least squares
optimization problem. We are given the same points as in HW3:

i 0 1 2 3 4 5

X 0.0 0.5 1.0 1.5 2.0 2.5
Y 0.0 0.20 0.27 0.30 0.32 0.33

(a) Write down the least squares problem associated to finding the cubic best fit polyno-
mial

Y = ax3 + bX2 + cX + d .

using (i) all six points, (ii) only the data for i = 0, 1, 2, 3, 4, and (iii) i = 0, 1, 2, 3. In
each case solve the system and plot both the data points and the polynomial. Why
is case (iii) not a least squares problem?

(b) What is the degree of the polynomial you would have to use so that the solution
interpolates (i.e., goes through) all six data points?

3. [Polynomial interpolation and error estimation, 2+2+2+2pt] Let us interpolate the
function f : [0, 1] → R defined by f(x) = exp(3x) using the nodes xi = i/2, i = 0, 1, 2
by a quadratic polynomial p2 ∈ P 2.

(a) Use the monomial basis 1, x, x2 and compute (numerically) the coefficients cj ∈ R
such that p2(x) =

∑2
j=0 cjx

j. Plot p2 and f in the same graph.

(b) Give an alternative form for p2 using Lagrange interpolation polynomials L0(x), L1(x)
and L2(x). Plot the three Lagrange basis polynomials in the same graph.

(c) Compare the exact interpolation error Ef (x) := f(x) − p2(x) at x = 3/4 with the
estimate

|Ef (x)| ≤
Mn+1

(n+ 1)!
|πn+1(x)|,

where Mn+1 = maxz∈[0,1] |f (n+1)(z)|, f (n+1) is the (n + 1)st derivative of f , and
πn+1(x) = (x− x0)(x− x1)(x− x2).

(d) Find a (Hermite) polynomial p3 ∈ P 3 that interpolates f and f ′ in x0, x1. Give the
polynomial p3 in the Hermite basis, plot f and p3 in the same graph, and plot the
four Hermite basis functions in another graph.

1MATLAB provides the function vander, which can be used to assemble V (actually, the transpose of V ).
Alternatively, one can use a simple loop to construct V .
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4. [Polynomial interpolation, 2+3pt] Consider linear interpolation of f(x) = x3 at x0 = 0
and x1 = 1.

a) For given x, find the value of ξ = ξ(x) for which

f(x)− p1(x) =
f ′′(ξ)

2
(x− x0)(x− x1).

b) Repeat for f(x) = (2x− 1)4.

5. [Errors in polynomial interpolation, 3pt extra credit] Interpolate the function

f(x) =

{
1 if x ≥ 0

0 if x < 0,

on the domain [−1, 1] using Lagrange polynomials with Chebyshev points.2 You can use
the following MATLAB function lagrange interpolant to compute the values of the
Lagrange interpolants pn.

f u n c t i o n y0 = l a g r a n g e i n t e r p o l a n t ( x , y , x0 )
% x i s the v e c t o r o f a b s c i s s a s .
% y i s the matching v e c t o r o f o r d i n a t e s .
% x0 r e p r e s e n t s t he t a r g e t to be i n t e r p o l a t e d
% y0 r e p r e s e n t s t he s o l u t i o n from th e Lagrange i n t e r p o l a t i o n
y0 = 0 ;
n = l e n g t h ( x ) ;
f o r j = 1 : n

t = 1 ;
f o r i = 1 : n

i f i ˜= j
t = t ∗ ( x0−x ( i ) ) / ( x ( j )−x ( i ) ) ;

end
end
y0 = y0 + t ∗y ( j ) ;

end

Describe qualitatively what you see for n = 2, 4, 8, 16, 32, 64, 128, 256 interpolation points.
Provide a table of the maximum errors3

||pn − f ||∞ = max
x∈[−1,1]

|pn(x)− f(x)|,

2Recall that the Chebyshev points on the interval [a, b] are

xi =
1

2
(a+ b) +

1

2
(b− a) cos

(
i+ 1

2

n+ 1
π

)
for i = 0, . . . , n.

3You can approximate the maximum error by evaluating the error pn − f at a large number of uniformly
distributed points, e.g., at ∼ 10n points, and determining the difference using the maximum absolute value, i.e.

||pn − f ||∞ = max
x∈[−1,1]

|pn(x)− f(x)| ≈ max
j=0,...,10n

|pn(ξj)− f(ξj)|,

where ξj = −1 + 2
10nj for j = 0, . . . , 10n.
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and the L2-errors4

||pn − f ||2 =

√∫ 1

−1
(pn(x)− f(x))2dx

for each n = 2, 4, 8, 16, 32, 64, 128, 256. Do you expect convergence in the maximum
norm? How about in the L2 norm?

4You can approximate the L2-error by evaluating the error pn − f at a large number of uniformly distributed
points, e.g., at ∼ 10n points, and computing

||pn − f ||2 =

√∫ 1

−1
(pn(x)− f(x))2dx ≈

√√√√ 2

10n

10n∑
j=0

(pn(ξj)− f(ξj))2,

where ξj = −1 + 2
10nj for j = 0, . . . , 10n.
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