Elimination proass

$$
A=\underbrace{L_{1}^{-1} \cdot \ldots L_{N}^{-1} U}_{L \text { unit lowe shangular }} \cup \text { upper friangular }
$$

"LU - de composition of $A^{\prime \prime}$

How can $L_{1} U$ be uned do solve $A x=b$?

$$
A x=L \underbrace{U x}_{y}=b
$$

(1) Solve $L y=b$ with bow trioungula matrix L (forwaid substimiter)
(2) Solve Ux=y with uppa triangular mathix U (baclewand suboritution)
In MAILAB notatio: $y=L 1 b, x=U \backslash y$

$$
\Rightarrow \Delta \sqrt{x=U(L \backslash b)}
$$

$$
\begin{aligned}
& \underbrace{L_{N} \cdots L_{2} L_{1} A=U}_{N=\frac{n(n-1)}{2}} \Sigma_{\text {uppen triangular matrix }}
\end{aligned}
$$

$A \backslash b$ in MATLAB \rightarrow it computes $L_{C} U$, and then does $x=U \backslash(L) b)$
Direct computation:

$$
\begin{aligned}
& u_{1 j}=a_{i j} \quad z=1,2,3, \ldots n \\
& l_{11}=1, l_{i 1}=\frac{a_{i 1}}{u_{11}} \quad i=2_{1} \ldots, n \\
& u_{2 j}=a_{2 \jmath}-l_{2 \jmath} u_{12} \quad j=2_{1} \ldots n \\
& l_{12}=\frac{1}{u_{22}}\left(a_{12}-l_{21} u_{1 \jmath}\right) \quad \gamma=1,2, \ldots
\end{aligned}
$$

Next quation: Fa what $A \in \mathbb{R}^{\text {wash }}$ does an LU de composition kist?

Def: $A \in \mathbb{R}^{\text {neh }}$, the leading principle submatrices $A^{(k)}$ coincide with A on the "upper left"

Thin: $A \in \mathbb{R}^{\text {neh }}$, every leading principle submathix $A^{(n)}$ is non-singular $k=1_{1 \ldots, n-1}$. Then $A=L U$ kist s with a lower unit triangular matrix L and an upas arian. U.

Proof: Induction over matrix size k :
$k=2$

$$
\begin{aligned}
& =\quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad a \neq 0 \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
e & 1
\end{array}\right)\left(\begin{array}{ll}
u & v \\
0 & \eta
\end{array}\right) \\
& u \neq a, v \approx b, l u=c, l v+\eta=d \\
& \Rightarrow \\
& l=\frac{c}{n}, \quad u=a \neq 0
\end{aligned}
$$

$k \mapsto k+1$
Aroume $A \in \mathbb{R}^{(k+1) \times(k+1)}$ for which all principle leading submatrices of order k a base are invertible, and thus they have an LU-decomposition.

$$
A=\left[\begin{array}{c|c}
A^{(n)} & 1 \\
b \\
l \\
\hline-c^{\top}- & d
\end{array}\right]
$$

$A^{(k)}$ is mon-singular, $A^{(k)}=L^{(k)} U^{(k)}$. $b, c \in \mathbb{R}^{k}$, colleen.

$$
A=\left[\begin{array}{c|c}
L^{(k)} & 0 \\
\vdots \\
\hline m^{\top} & 1
\end{array}\right]\left[\begin{array}{c|c}
U^{(k)} & v \\
\hline 0 \cdots & \eta
\end{array}\right]
$$ vectors

$\xrightarrow[\text { multiplicate }]{\text { block }} A^{(k)}=L^{(h)} U^{(k)},, L^{(k)} v=b, \quad \underbrace{\top} U^{(k)}=c^{\top}$

$$
\begin{array}{cc}
v^{k^{2} \times\left(L^{(k)}\right)^{-1} b} b & m^{0} v+y=d \quad U^{(k)^{\top}} m=c \\
A^{(k)}=L^{(k)} U^{(k)}, & \operatorname{det}\left(A^{(k)}\right)=\underbrace{\operatorname{det}\left(L^{(k)}\right)}_{=1} \operatorname{det}\left(U^{k}\right)
\end{array}
$$

$\Longrightarrow U^{(h)}$ is invertible, and l so is $\left(U^{(k)}\right)^{\top}$

$$
\Longrightarrow m^{v}=\left(\left(U^{(h)}\right)^{\top}\right)^{-1} c
$$

§2.4: Pivoting
What do we do if $u_{1 i}=O$ (a vely mall)
Example:

$$
\left.\left.\begin{array}{l}
\text { b: }\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 2 \\
0 & 2 & 2
\end{array}\right] \text { no LU de composition sass, } \\
\text { but exchanging } \\
1^{\text {st }} 82^{\text {nd }} \text { row }
\end{array}\right] \begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 2 \\
0 & 2 & 2
\end{array}\right] \text { now LU-decomposition exist! }
$$

Pivoting exchanges rows to ensue we don't find a zero (a something vars small) in diagonal.
Def: (Permutation makices): $P \in \mathbb{R}^{\text {neh }}$ which only contains zoos and owes and each column and row confouins exacky one non-zus.
Examples: $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \cdots
$$

Properties: - product of perm. makices an again pam. makices matrices

- dat is $\pm!$
- product of "interchange" matrices (matrices that interchange two rows)
- inverse are again pun. matrices.

