§2.1 Solving linear syokms
Were intansted in solving the linear sodom

$$
\begin{aligned}
& A x=b, A \in \mathbb{R}^{n \times n}, x_{1} b \in \mathbb{R}^{n}, M \in \mathbb{N} \\
& {\left[\begin{array}{ccc}
a_{11} & \cdots & a_{i n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]}
\end{aligned}
$$

Recall: $A^{-1} \in \mathbb{R}^{n \times n}, A A^{-1}=A^{-1} A=I=\left[\begin{array}{lll}1 & & \\ & \ddots & \\ & & 1\end{array}\right]$
inverse exists if $\operatorname{det}(A) \neq 0$
we call these matrices non-singulas a regular or
Carer's ruble:

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)} \text { matrix } i \text { th column replaced by } b
$$

requires ($n+1$) determinant, which is expensive (computationally) Computing the determinant requires $\sim n$! operations (ie. additions, summations) floating point operations, "flops"
§2.2: Gaussian elimination
Example $\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & 5 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}6 \\ 16 \\ -3\end{array}\right]$
Generak triangular system by adding multiples of rows to other rows (this doe not change the solution).

$$
\underset{\substack{\text { to 3 rave. }} \underset{\substack{\text { and } \\
\text { add lis now }}}{\text { add }(-2) \text { first now }}}{ }\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 6 & -3
\end{array}\right] x=\left[\begin{array}{l}
6 \\
4 \\
3
\end{array}\right]
$$

this is identical to multiplying the system with

$$
\begin{align*}
& L_{1}=\underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{I+\mu_{21} E^{2_{11}}} \text { and } L_{2}=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]}_{I+\mu_{31} E^{\beta_{11}}} \text { farm the left } \\
& \mu_{21}=-2_{1} \quad E^{2_{1}}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \xrightarrow[\text { add b } 3^{\text {rn }} \text { row }]{(-3) \times \text { second row }} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
6 \\
4 \\
-9
\end{array}\right]} \tag{*}\\
& L_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right] \\
& \text { uppertríang war matrix }
\end{align*}
$$ (\$) can be salved by "backwards substitution" $L_{1}, L_{2} L_{3}$ lowe triangular $\quad \rightarrow x=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Def: $L \in \mathbb{R}^{n \times n}$ blown triangular if $l_{i g}=0$ for all

$$
1 \leq i<j \leq h:\left[\begin{array}{cccc}
l_{11} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
l_{n 1} & \cdots & - & -l_{n n}
\end{array}\right]
$$

unit bow triangular if additionally

$$
l_{11}=\ldots=\ln a=1
$$

Analogue for upper triangular, unit upper triangular matrices

The: (properties of lower triangular matrices; identical results hold for upper triangular
(i) product of lowe triangular malians) makics are lower triangular
(ii) as above for unit bower triangular
(iii) lowe triangular matrices ar non-singular if $l_{I I} \neq 0, \ldots, l_{n n} \neq 0$.
(iv) invertible lower triang alar matrices have lower-triengula
(v) invars
(v) same as (iv) for unit lower thangulas.

Prod of Iv: (rest is easy): Induction over mahix size n

$$
\begin{aligned}
& \text { n=2: } L=\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right) \quad L^{-1}=\left(\begin{array}{ll}
d & e \\
f & 9
\end{array}\right) \\
& L L^{-1}=I \Longrightarrow a e=0, a \neq 0 \Longrightarrow e=0
\end{aligned}
$$

$n \mapsto n+1:$

Since $L L^{-1}=I \in \mathbb{R}^{(n+1) \times(n+1)}$

$$
\begin{aligned}
& L C^{\prime}=I \in \mathbb{R}^{\prime} \times L_{1}^{\prime}=I \in \mathbb{R}^{n \times n}, L_{1} c=0, r^{\top} L_{1}^{\prime}+\alpha r^{r}=0 \\
& \Longrightarrow L_{1}^{\prime}
\end{aligned}
$$

$\longrightarrow L_{1}^{\prime}=L_{1}^{-1}$ is bower Hiengular $r^{\top} c+\alpha \mu=1$
dine to induction assumption
$L_{1} c=0 \Longrightarrow c=0 \Longrightarrow L^{-1}$ is low triangular口.

