Thm 1.8 (Convergence of Newton's method)
I have continuously differed on
$$T_{g} = [g - f_{1}g + f_{-}], g > 0, f(g) = 0, f'(g) + 0.$$
 Suppose $\exists A > 0$ s.t.
 $\left[\frac{A''(x)I}{|f'(x)|} \leq A$ for all $x_{i}y \in T_{g}$
The: If $[g - x_{0}] \leq h$, $h = min(g_{1}A), then $x_{k_{i}}, h = 0, 1, 2, ...$
 $dulpined by Newton's method converges quadratically to g.$
Proof: Suppose $|g - x_{k}| \leq h$ Taylor expansion:
 $0 = f(g) = f(x_{k}) + (g - x_{k})f'(x_{k}) + (g - x_{k})^{2} f''(g_{k})$
 $divide by f'(x_{k})$
 $0 = (f(x_{k}) + g + x_{k}) + (g - x_{k})f''(g_{k}) + (g - x_{k})^{2} f''(g_{k})$
 $f'(x_{k}) + g + x_{k} + (g - x_{k})f''(g_{k}) + (g - x_{k})^{2} f''(g_{k})$
 $0 = (f(x_{k}) + g + x_{k}) + (g - x_{k})^{2} f''(g_{k}) + (g - x_{k})^{2} f'''(g_{k}) + (g - x_{k})^{2}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

 \square

Rampales: •) requires
$$C^2(\text{twice cond}' \text{deff}'abb)$$

•) requires $f'(\overline{g}) \neq 0$
•) only converges if started "close enough" to the solution $(|x_0 - \overline{g}| = h)$

Depending on the initialization:
- convergence to
$$\mathcal{G}$$
, with $X_k \neq \mathcal{G}$ for all k
- convergence to \mathcal{G} in finite number of steps, i.e.
 $X_k = \mathcal{G}$ for $k \ge k_o$

$$f(x_{\mu}) \simeq \frac{f(x_{\mu}) - f(x_{\mu-i})}{x_{\mu} - x_{\mu-i}}$$

This pusulb in: $X_{h+1} = X_h - f(X_h) \frac{X_h - X_{h-1}}{f(X_h) - f(X_{h-1})}$ with starting values X_{0}, X_1 $X_h = X_h - f(X_h) - f(X_{h-1})$

Then 110:
$$f \operatorname{cord}^{1} \operatorname{differential an } I = [g-h; g+h], hoo
f(g) = 0, f'(g) + 0
Then: If v_{0}, v_{1} are sufficiently along to g , the sequence
generated by the second multi-discoverage of that
linearly.
Profit (look)
This multi-d is drappe as it does not sequeire computing f'(u).
 $g 1.6$ Bierochian multi-ad
 $f(u)$ [heatine multi-ad that
 $f(u)$ [heatine multi-ad that
 $f(u)$ [heatine multi-ad that
 $f(u)$, $f(u)$ have different
 g (and ret
 $(a_{k+1}, b_{k+1}) = \begin{cases} (a_{k}, c_{k}) \text{ if } f(c_{k}) f(b_{k}) > 0 \\ (c_{k}, b_{k}) \text{ if } -(1 - < 0) \end{cases}$
Sequence C_{k} converges to g both tack $g = \log_{10} 2$
 $Since | C_{k} - g| \leq 2^{L-1} (b_{2} - a)$
 $= 300nly continuity on f nucled
 $e^{1} g = \frac{1}{2} e^{1} e^{1} b^{2} = \frac{1}{2} e^{1} e^{1} b^{2} = \frac{1}{2} e^{1} e^{1} b^{2} = \frac{1}{2} e^{1} e^{1}$$$$