Thm 1.8 (Convergence of Newton's methool)
\& twice continnously diff'able on $I_{f}=[g-8, g+\delta]$, $\delta>0, f(8)=0, f^{\prime \prime}(8) \neq 0$. Suppore $\exists A>0$ s.t.

$$
\frac{\left|f^{\prime \prime}(x)\right|}{\left|f^{\prime}(y)\right|} \leq A \quad \text { for all } x, y \in I_{8}
$$

Then: if $\left|g-x_{0}\right| \leq h, h=\min \left(\delta_{1} \frac{1}{A}\right)$, then $x_{k}, k=0,1,2, \ldots$ defined by Newton's method converges quadiatically to 8 .
Proof: Suppose $\left|\xi-x_{h}\right| \leq h$ Taylor exponsion:

$$
0=f(\xi)=f\left(x_{k}\right)+\left(\xi-x_{k}\right) f^{\prime}\left(x_{k}\right)+\frac{\left(\xi-x_{k}\right)^{2}}{2} f^{\prime \prime}\left(\eta_{k}\right)
$$

divide by $f^{\prime}\left(x_{n}\right)$

$$
\eta_{k} \in\left(g_{1}, x_{k}\right)
$$

$$
\begin{aligned}
& 0=\frac{\frac{f^{\left(x_{k}\right)}}{f^{\prime}\left(x_{k}\right)}}{=-\xi-x_{k}+\frac{\left(\xi-x_{k}\right)^{2}}{2\left(f^{\prime}\left(x_{k}\right)\right.} f^{\prime \prime}\left(\eta_{k}\right)} \underset{|\cdot| \leq A}{\left\lvert\,\left(-x_{k} \left\lvert\, \leq \frac{1}{A}\right.\right.\right.} \\
& \Longrightarrow\left|\xi-x_{k+1}\right|=\frac{\left(\xi-x_{k}\right)^{2}}{2\left|f^{\prime}\left(x_{u}\right)\right|}\left|f^{\prime \prime}\left(\eta_{k}\right)\right| \stackrel{\left|\xi-x_{k}\right|}{2} \ldots . \\
& \leq 2^{-k-1}\left|\xi-x_{0}\right| \\
& \Longrightarrow x_{k} \longrightarrow \xi \text { as } k \rightarrow \infty \\
& \eta_{k} \rightarrow \xi \text { as } h \rightarrow \infty
\end{aligned}
$$

and $\frac{\left|g-x_{k+1}\right|}{\left|g-x_{k}\right|^{2}} \xrightarrow{k \rightarrow \infty} \frac{\left|f^{\prime \prime}(\xi)\right|}{2\left|f^{\prime}(\xi)\right|}=\eta$ \Rightarrow quadr. convengera

Remarks: -) requires C^{2} (twice cont' diff'able)
-) requires $f^{\prime}(g) \neq 0$
-) only converges if started "close enough" to the solution $\left(\left|x_{0}-y\right| \leq h\right)$
Depending on the initialization:

- convergence to ξ, with $x_{k} \neq \xi$ for all k
- converges to g in finite number of skeps, ie.

$$
x_{k}=\xi \text { for } k \geqslant k_{0}
$$

- diverge to $\pm \infty$
- no convergence (cycling)
\& 1.5 The secant method
Newton's method requires computation of f^{\prime}, which could be expensive a not available. In these cases, one could replace

$$
f^{\prime}\left(x_{k}\right) \approx \frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

This results in:1

$$
\left.x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} k=1,\right\}, 3, \ldots
$$

with stating values x_{0}, x_{1}

Thy 1.10: \& cont' diftactiabe on $I=[g-h, g+h], h>0$

$$
f(\xi)=0, f^{\prime}(\xi) \neq 0
$$

Then: If x_{0}, x_{1} ore sufficiently close to \bar{y}, the sequence generated by the second method converges at lead linearly.
Proof: (book)
This mushed is cheaper as it does not require computing $f^{\prime}\left(x_{n}\right)$. \&1.6 Bisection methool

2.) Compute $c_{k}=\frac{a_{k}+b_{k}}{2}$ and set

$$
\left(a_{k+1}, b_{k+1}\right)^{2}=\left\{\begin{array}{l}
\left(a_{k}, c_{k}\right) \text { if } f\left(c_{k}\right) f\left(b_{k}\right)>0 \\
\left(c_{k}, b_{k}\right) \text { if }-11-<0
\end{array}\right.
$$

Sequence c_{k} converge to with rate $g=\log _{10} 2$
Since $\left|c_{k}-g\right| \leqslant 2^{-k-1}\left|b_{0}-a_{0}\right|$
$\rightarrow 0$ Only continuity or I needed
-) robust method, if the interval contains move then one root, the result depends on $\left[a_{0} b\right]$]

