D4: g. [ak]
$$\rightarrow k$$
, g conditions, $g(g) - g$
g is stable if fixed point iteration converges to
g is unchalder if no fixed point iteration sequence
stacked clar to g converges to the
fixed point, unless $x_0 = g$
A fixed point can be vertice stable mor unshille
Under the annumption that g is differentiable, the previous
theorem fells up:
 $|g'(g)| < 1 \longrightarrow$ stable fixed point
 $|g'(g)| > 1 \longrightarrow$ unshille fixed point
 $|g'(g)| > 1 \longrightarrow$ unshille fixed point
 $g(x) = x \longrightarrow \overline{g}_{1/2} = [\pm 1] - c \qquad c \le 1$
 $\overline{g}_{1/2} = 1 - 1] - c \qquad g \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 1] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|g'(g_1)| = [1 - 2] - c \qquad c \le 1$
 $|$

Speed d converges
$$x_{k} \rightarrow \overline{g}$$

(Xe) us, converges (at least) lineably if
lim $\frac{|x_{k+1} - \overline{g}|}{|x_{k} - \overline{g}|} = \mu \in \mathbb{R}$ (a more general definition
 $k \rightarrow \infty$ $\frac{|x_{k+1} - \overline{g}|}{|x_{k} - \overline{g}|} = \mu \in \mathbb{R}$ (a more general definition
 $\mu \in \infty$ $\frac{|x_{k} - \overline{g}|}{|x_{k} - \overline{g}|} = \mu \in \mathbb{R}$ (boxers around den
 $\mu = 0 \rightarrow \text{Suppliment convergence}$, asymptotic
if $\mu = 0 \rightarrow \text{Suppliment convergence}$, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, asymptotic
 $\mu \in (0, 1) \rightarrow \text{lineat convergence}, \mu \in (0,$$$$$$$$$$$$$$$$$$$$$$$

$$f(x_{0}) + (x_{-}x_{0})f(x_{0})$$

$$= \sum_{x_{1}} x_{0} - \frac{f(x_{0})}{f(x_{0})}$$

$$= \sum_{x_{1}} x_{0} - \frac{f(x_{0})$$

 \sim