ilo Gaurs quadrature
Newton-Cotes:

$$
\begin{aligned}
& n=1 \rightarrow \text { Hapezoidal rule }
\end{aligned}
$$

$m=2 \rightarrow$ Simpon's rule
We can integrate polynomials of degree n exactly.
Main idea about Gaurs quadrature Allow nodes xor..., th to change, giving us additional flexibility.

$$
\text { More geneal: } \quad \int_{a}^{b} w(x) f(x) d x v^{2} \sum_{j=0}^{n} w(x)>0 \text { for al }
$$

Lat's by a Hamite intupd action of 8 :

$$
\begin{aligned}
& \quad p_{2 n+1}(x)=\sum_{k=0}^{n} H_{k}(x) f\left(x_{n}\right)+\sum_{k=0}^{n} h_{n}(x) f^{\prime}\left(x_{k}\right) \\
& \begin{aligned}
\int_{a}^{b} w(x) f(x) d x & \approx \int_{a}^{b} w(x) p_{2 n+1}(x) d x= \\
& \left.=\sum_{k=0}^{n} f\left(x_{k}\right) \int_{a}^{b} w(x) H_{k}(x) d x\right)+\sum_{k=0}^{n} f^{\prime}\left(x_{n}\right) \int_{2}^{b} w(k) k_{k}(x) d k
\end{aligned}
\end{aligned}
$$

We do not want to involve $f^{\prime}\left(x_{n}\right)$ in the computation, so can we find quadrature nodes $x_{0} \ldots \ldots x_{m}$ mech that $V_{k}=0 \quad k=0_{1 . \ldots n}$?

$$
K_{k}(x)=L_{k}(x)^{2}\left(x-x_{k}\right), \quad L_{k}(x)=\prod_{\substack{j=0 \\ j \neq k}}^{x_{k}-x_{j}} .
$$

$$
\begin{aligned}
& V_{h}=\int_{a}^{b} w(x) L_{h}(x)^{2}\left(x-x_{n}\right) d x=\int_{a}^{b} w(x) \frac{\frac{\left(x-x_{0}\right)-\ldots\left(x-x_{n}\right)}{\prod_{n}\left(x_{n}-x_{s}\right)}}{\substack{=0 \\
0 \neq k}} L_{n}^{b}(x) d x
\end{aligned}
$$

Thus: Far $V_{n}=0$ for all k, we ned that π_{n+1} is athogonal to each $L_{n}(x)$, and thus do all $p \in P_{n}$.
We know how do do this - we can construct an alhogonal basis $\left\{\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n+1}\right\}$, and we can show that the rook of these athogonal polynomials are all in (a, b) and they ore single \longrightarrow thus W_{n+1} should b e the $(n+1)$-st athogonal polynomial and x_{0}, \ldots, x_{n} mut be the rood of that polynomial.
Simplify ω_{n} 's:

$$
\begin{aligned}
\begin{aligned}
\omega_{k} & =\int_{a}^{b} w(x) H_{k}(x) d x \\
& =\underbrace{\int_{a}^{b} w(x) L_{n}(x)^{2} d x}_{=V_{k}}-2 L_{n}^{\prime}\left(x_{n}\right)
\end{aligned} \underbrace{\int_{a}^{b} w(x)^{2}\left(1-2 L_{k}^{\prime}\left(x_{k}\right)\right.} L_{n}\left(x-x_{n}\right)^{\prime} L^{2}\left(x-x_{k}\right) d x
\end{aligned}
$$

$$
\int_{a}^{b} w(x) f(x) d x \approx \sum_{k=0}^{n} W_{k} f\left(x_{k}\right)
$$

$x_{0}, \ldots, x_{n} \ldots$ rook of $(n+1)$ st athogonal polynomial

Construction of Gauss quadrature rub :
(1) Define quadrature points x_{0}, \ldots, ins as the $(n+1)$ rood of the polynomial of degree $n+1$ of a system of athogonal polyn. w.r. to (a, b) and weight $w(x)$.

Gaun quad:

$$
\begin{aligned}
& w=1, \quad n=0 \\
& w \equiv 1, n=1 \\
& w \equiv 1, n=2
\end{aligned}
$$

(2) Calculak weight $\omega_{h}=\int_{a}^{b} w(x) L_{n}(x)^{2} d x$
(3) Use Gaurs quadrakue ${ }^{\text {a }}$ for $f:[a, b] \rightarrow \mathbb{R}$

$$
\int_{a}^{b} \omega(x) f(x) d x \simeq \sum_{k=0}^{\mu} W_{k}^{k^{\operatorname{son}(2)} f\left(x_{k}\right)^{f u m}(1)}
$$

How accurak is this? Hermik intupolation errer has the estimate

$$
\left|f(x)-p_{2 n+1}(x)\right| \leqslant \frac{M_{2 n+2}}{(2 n+2)!}\left|\pi_{n 1}(x)\right|^{2}
$$

\longrightarrow Humak insapdation is

$$
M_{2 n+2}=\max _{x \in[a, b]}\left|f^{(2 n+2)}(x)\right|
$$

exact for $p \in P_{2 n+1}$
\rightarrow Gaun quadratue is also exact for polynomiab of degree $\leq 2 n+1$.
Example: $n=1, \omega=1$, intarall $(0,1)$
(i) athog. poly: $\left\{1, x-\frac{1}{2}, \frac{x^{2}-x+\frac{1}{6}}{\varphi_{2}(x)}\right\}$ poob of φ_{L} :

$$
x_{1,2}=\frac{1}{2} \pm \sqrt{\frac{1}{12}}
$$

(ii) weight:

$$
\begin{aligned}
& \text { weigh } h_{1}: \\
& \omega_{0}=\int_{0}^{0} L_{0}(x)^{2} d x=\int_{0}^{1}\left(\frac{x-x_{1}}{x_{0}-x_{1}}\right)^{2} d x=\frac{1}{2} \\
& W_{1}=\frac{1}{2}
\end{aligned}
$$

(iii) Use formula: $f:[a, b] \rightarrow \mathbb{R}$

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{2} f\left(\frac{1}{2}-\sqrt{\frac{1}{12}}\right)+\frac{1}{2} f\left(\frac{1}{2}+\sqrt{\frac{1}{12}}\right)
$$

each whenever f is a polynomial of degree $\leq 2 h+1=3$
i.e: $\int_{0}^{1} \frac{x^{3}-3 x^{2}-17 x}{f} d x=\frac{1}{2} f\left(\frac{1}{2}-\sqrt[r]{12}\right)+\frac{1}{2} f\left(\frac{1}{2}+\sqrt{\frac{1}{12}}\right)$
in Comparison, with Newton-Cotes, two evaluations of f is the trapezoidal rule which is only exact for polynomish of degree $\leq n=1$.

