Orthogonal polynomials on $[0,1], \omega(x) \equiv 1$

$$
\begin{aligned}
\left\langle\varphi_{1} \psi\right\rangle & =\int_{0}^{1} \varphi(x) \psi(x) d x \\
\varphi_{0}(x) & =1 \\
\varphi_{1}(x) & =x-\frac{1}{2} \\
\varphi_{2}(x) & =x^{2}-x+\frac{1}{6} \\
\varphi_{3}(x) & =x^{3}-\frac{3}{2} x^{2}+\frac{3}{5} x-\frac{1}{20}
\end{aligned}
$$

To find an athogonal family of polynomials on $[a, b] w$. r. ho $\omega(x)=1$ we can use a linear transformation $x \longmapsto(b-a) x+a$, then the resulting polynomial or athogonal on $[a, b]$. Fa $[a, b]=[-1,1]$ these polynomials are called Legendre polynomials:

$$
\begin{aligned}
& \varphi_{0}=1 \\
& \varphi_{1}=x \\
& \varphi_{2}=\frac{3}{2} x^{2}-\frac{1}{2} \\
& \varphi_{3}=\frac{5}{2} x^{3}-\frac{3}{2} x
\end{aligned}
$$

There are scaled such that $\varphi_{1}(1)=1$; one could scale them ouch that
Thu: Giver $f:[a, b] \rightarrow \mathbb{R}$, there exists a unique polynomial $P_{n} \in P_{n}$ such that

$$
\left\|f-p_{n}\right\|_{2}=\min _{q \in P_{n}}\|f-q\|_{2}
$$

 normalise then $\psi_{\gamma}=\frac{\varphi_{\gamma}}{\left\|\varphi_{\gamma}\right\|} \quad \delta=0_{1, \ldots, n}$
Every $q \in P_{h}$ is of the form $q(x)=\beta_{0} \psi_{0}(x)+\ldots+\beta_{n} \psi_{n}(x)$ $\beta_{i} \in \mathbb{R}$

Goal: choox B_{i} such that q mimmizes $\|f-q\|_{2}$ over all $q \in P_{n}$
Tafbe $E\left(\beta_{0}, \ldots, \beta_{n}\right)=\|f-q\|_{2}^{2}=\langle f-q, f-q\rangle$

$$
\begin{aligned}
& =\left\langle f_{1},\right\rangle-2\left\langle\beta_{1}, \phi\right\rangle+\left\langle q_{1}, \phi\right\rangle \\
& =\|f\|_{2}^{2}-2 \sum_{i=0}^{n} \beta_{i}\left\langle f_{1} \psi_{i}\right\rangle+\sum_{j=0}^{n} \sum_{n=0}^{n} \beta_{j} \beta_{k}\left\langle\psi_{j,}, \psi_{h}\right\rangle \\
& =\sum_{j=0}^{n}\left\{\beta_{\gamma}-\left\langle f_{1}, \psi_{j}\right\rangle\right\}^{2}+\underbrace{\|f\|_{2}^{2}-\beta_{j=0}^{2}}_{j=0}\left|\left\langle f_{1} \psi_{j}\right\rangle\right|^{2}
\end{aligned}
$$

Minimum will be attained for

$$
B_{f}^{*}=\left\langle f, \psi_{\gamma}\right\rangle \quad j=0_{1} \ldots, n
$$

$\longrightarrow p_{n}(x)=\beta_{0}^{k} \psi_{p}(x)+\ldots+\beta_{n}^{*} \psi_{n}(x)$ is the unique minimizer.

Thu: $p_{h} \in P_{n}$ is the best fit polynomial for $f:[a, b] \rightarrow \mathbb{R}$ if and only it $f-p_{n}$ is athoganal to every $q_{h} \in P_{n}$, i.e. $\left\langle f-P_{n}, q\right\rangle=0 \quad \begin{aligned} & \text { for all } \\ & q \in P_{n}\end{aligned}$

Practical computation of $P n$ for given \&:
$\varphi_{0}, \ldots, \varphi_{n}$ athogonal, $\varphi_{z}=\frac{\varphi_{s}}{\left\|\varphi_{g}\right\|_{2}}, \quad \beta_{g}=\left\langle f_{1} \psi_{j}\right\rangle$

$$
\begin{aligned}
\rightarrow p_{n}(x) & =\beta_{0} \varphi_{0}(x)+\ldots+\beta_{n} \varphi_{n}(x) \\
& =\beta_{0} \frac{\varphi_{0}(x)}{\left\|\varphi_{0}(\alpha)\right\|}+\ldots+\beta_{n} \frac{\varphi_{n}(x)}{\left\|\varphi_{n}(x)\right\|} \\
& =\gamma_{0} \varphi_{0}(x)+\ldots+\gamma_{n} \varphi_{n}(x) \\
\gamma_{j} & =\frac{\left\langle f_{1} \varphi_{\gamma}\right\rangle}{\left\|\varphi_{1}\right\|}=\frac{\left\langle f_{1} \varphi_{\gamma}\right\rangle}{\left\langle\varphi_{\gamma} \varphi_{\gamma}\right\rangle} \quad \gamma=0_{1, \ldots, n}
\end{aligned}
$$

Example: Best fit polynomial in P_{2} of $f: x \rightarrow e^{x}$ over $[0,1]$ with $\omega(x) \geqq 1$.

$$
\begin{aligned}
& \begin{array}{l}
\varphi_{0}(x)=1 \\
\varphi_{1}(x)=x-\frac{1}{2} \\
\varphi_{2}(x)=x^{2}-x+\frac{1}{6}
\end{array} \quad \gamma_{0}=\frac{\left\langle f_{1} \varphi_{0}\right\rangle}{\left\langle\varphi_{0}, \varphi_{0}\right\rangle}=\frac{\int_{0}^{1} e^{x} \cdot 1 d x}{\int_{0}^{1} 1 \cdot 1 d x}=\frac{\left\langle f_{1} \varphi_{1}\right\rangle}{\left\langle\varphi_{1} \varphi_{1}\right\rangle}=\frac{\int_{0}^{1} e^{x}\left(x-\frac{1}{2}\right) d x}{\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x}=18-6 e \\
& \gamma_{2}(x)=(e-1)+(18-6 e)\left(x-\frac{1}{2}\right)+(210 e-570)\left(x^{2}-x+\frac{1}{6}\right)
\end{aligned}
$$

Sro Numerical integration / quedrahue
$f:[a, b] \rightarrow \mathbb{R}$ continuous \& duff 'able

$$
\int_{a}^{b} w(x) f(x) d x, w(x)>0
$$

Newton-Cotes allowed to compute integrals exactly for polynomials up to degree n_{i} we fixed nodes x_{0}, \ldots, x_{n} as being uniform. In Gauss quadrature, we allow tho points to choings and
hope to find move accurate rules

We assume to- x_{x}-determined $x_{0}, \ldots x_{n}$ and indexed of Lagrange intupalation let us ky Hermit interpolation

$$
p_{2 n+1}(x)=\sum_{k=0}^{n} H_{k}(x) f\left(x_{k}\right)+\sum_{k=0}^{n} K_{k}(x) f^{\prime}\left(x_{k}\right)
$$

Hume intupdation of of using

$$
\begin{aligned}
& H_{k}\left(x_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } k=1 & \text { Modes } x_{0}, \ldots, x_{n} \\
0 & \text { else } & H_{k}^{\prime}\left(x_{j}\right) \geq 0
\end{array}\right. \\
& K_{k}\left(x_{j}\right)=0, \quad K_{k}^{\prime}\left(x_{j}\right)= \begin{cases}1 & k=j \\
0 & e b e\end{cases} \\
& \int_{a}^{b} \omega(x) f(x) d x \approx \int_{a}^{b} \omega(x) p_{2 n+1}(x) d x= \\
& =\sum_{k=0}^{n^{a}} f\left(x_{k}\right) \underbrace{\int_{a}^{b} w(x) H_{k}(x) d x}_{W_{k}}+\sum_{k=0}^{n} f^{\prime}\left(x_{k}\right) \underbrace{\int_{a}^{b} w(x) k_{k}(x) d x}_{V_{k}} \\
& \text { We don't wait to involve } f^{\prime}\left(x_{k}\right) \text {, }
\end{aligned}
$$ So can we find quadrature points such that $V_{k}=0 \quad k=0_{1 \ldots, n^{n}}$?

Gous points integral polynomials up to degree $2 u+1$ exactly! (Compared to Newton-Coks, where It is $\left.n\left(a_{n+1}\right)\right)$

