Will abodine an innu product on
$$\operatorname{Pr}_{i}$$
 this allows in b differe
angles below polynomials, and in particular, when polynomials are
allogonal.
Innu product on a line space Vore K is a map
 $\langle ., \rangle \longrightarrow \mathbb{R}$ that satisfin final fight $\in V$, $\lambda \in \mathbb{R}$
 $\langle . \langle . \rangle = \langle . \rangle + \langle$

How can we compute the tool 2-noun approximation ?
Example:
$$f: [0, T] \rightarrow \mathbb{R}$$
, $p_{1}(x) = c_{1} + c_{1} + c_{1}x^{h}$
 $w(x) = 1$
min $\|f - p_{1}\|_{L}^{2} = \left(\int_{0}^{1} (f(x) - p_{1}(x))^{2}\right)^{h}$
 $f = min \int_{0}^{1} (f(x) - p_{1}(x))^{2} dx$
 $c_{1}c_{1} - c_{1}$
 $g = (f_{1})^{2} dx$
 $c_{1}c_{1} - c_{2}$
 $g = (f_{2})^{2} dx$
 $c_{1}c_{1} - c_{2}$
 $g = (f_{2})^{2} dx$
 $c_{1}c_{1} - c_{2}$
 $g = (f_{2})^{2} dx$
 $f = minimiz over coefficies connections
 $f = minimiz over coefficies connections
 $f = (f_{2})^{2} dx$
 $h_{1} = (f_{2})^{2} dx$
 $h_{2} = (f_{2})^{2} dx$
 $h_{2} = (f_{2})^{2} dx$
 $h_{3} = (f_{3})^{2} dx$
 $h_{3}$$$

