$\oint 9$ Polynomial approximation in the 2-nom
Will introduce an inner product on P_{n}; this allows' us to define angles between polynomials, and in particular, when polynomial are athigonal.
Inner product on a linear space Υ over \mathbb{R} is a map $\langle\cdot 1\rangle \rightarrow \mathbb{R}$ that satisfin fr all $f, g, h \in \mathcal{V}, \lambda \in \mathbb{R}$

- $\langle f+g, h\rangle=\langle f, h\rangle+\langle g, h\rangle$ We say that f, g are
- $\langle\lambda f, g\rangle=\lambda\langle f, g\rangle$
- $\langle f, g\rangle=\langle g, f\rangle$
- $\langle f(f\rangle\rangle 0$ if $f \neq 0$
athogonal if $\langle f, g\rangle=0$.
Inner product induce nairn:

$$
\|f\|:=\sqrt{\langle f(f\rangle}
$$

Examples: 1., $V=\mathbb{R}^{h}$ with $\langle x, y\rangle=x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}$ induced maim: Euclidean (a 2-nam)
Note that the 2-nom is indued by an inner product, but the U.H, and II.\| or not indued by on inner products.
2.) The space of continuous functions on $[a, b]$ is a linear apace with inner product

$$
\langle f, g\rangle=\int_{a}^{k} f(x) g(x) d x
$$

As ample for athogonal functions in thin inner product, comider $[-\pi, \pi], \quad P_{2 k}(x)=\cos (k x), \quad P_{2 k 1}(x)=\sin (k x)$ $k=0,1, \ldots$. These are athogonal since:

$$
\int_{-\pi}^{\pi} P_{l}(x) P_{k}(x) d k=\left\{\begin{array}{cc}
0 \text { il } l \neq k \\
\left.\left\langle P_{u}, P_{k}\right\rangle\right\rangle 0 & \text { if } l=k
\end{array}\right.
$$

3.) We can abs consider a weighted inner product between functions:

$$
\begin{array}{r}
\langle f, g\rangle=\int_{a}^{b} w(x) f(x) g(x) d x \text { with } \\
w:(a, b) \rightarrow \mathbb{R}, w \geqslant 0
\end{array}
$$

For $w(x)$ I) this reduas to Example 2. Other choices for w are : $\quad \omega(x)=\frac{1}{\sqrt{1-x^{2}}}$ on $[-1,1]$
the introduction of wrights is
 abs important on unbounded intavals, e.g. $\mathbb{R}_{\geqslant 0}$

Best approximation in 2 -nom
Given $f:[a, b] \rightarrow \mathbb{R}$, find $P_{n} \in P_{n}$ such that $\left\|f-p_{n}\right\|_{2}=\inf _{q_{n} \in P_{n}}\left\|f-q_{n}\right\|_{2}$, where $\|\cdot\|_{2}$ is induced by (weighted) inner product between functions on $[a, b]$. Find pu such that
$\int_{n}^{b} \in\left(f-p_{n}\right)^{2}(x) d x$ is

$$
\left\|f-p_{n}\right\|^{2}=\left\langle f-p_{n}, f-p_{n}\right\rangle
$$

How can we compuk the best 2-nam approximation?
Example: $\quad f:[0,1] \rightarrow \mathbb{R}, \quad p_{n}(x)=c_{0}+c_{1} x+\ldots+c_{n} x^{n}$

$$
\min _{p_{n} \in p_{n}}\left\|_{f} w-p_{n}\right\|_{2}^{2}=\left(\int_{0}^{1}\left(f(x)-p_{n}(x)\right)^{2}\right)^{2 \frac{v_{i}}{2}}
$$

$$
c_{i} \in \mathbb{R}
$$

$\Leftrightarrow \min _{c_{1} c_{1}, \ldots c_{n}} \int_{0}^{1}\left(f(x)-p_{n}(x)\right)^{2} d x$
$\left\{\begin{array}{l}\text { replace } p_{n}(x) \text { by } c_{0}+c_{1} x+\ldots+c_{n} x^{n} \text {, } \\ \text { minimize over coghnairb } E_{0} \ldots \ldots c_{n}\end{array}\right.$
Solve M.[$\left.\begin{array}{c}c_{0} \\ \vdots \\ c_{n}\end{array}\right]=\left[\begin{array}{c}b_{0} \\ \vdots \\ b_{n}\end{array}\right] \quad \begin{aligned} & \text { computed foo above } \\ & b_{r}=\left\langle t_{1} \times j\right\rangle\end{aligned}$
with $M \in \mathbb{R}^{(n+1) \times(n+1)}$ is the Hilbert matrix, which is paly conditioned - 80 it's prone to ara and we would like to avoid solving system with is.

Orthogonal polynomials
We ty to find a basin in P_{n} that is better than the ${ }_{n}$ monomial basin $\left\{1, x, x^{2}, \ldots\right\}$ when we write $p_{n}=\sum_{i=0}^{n} c_{i} \varphi_{1}(x)$
Def: Give e a wight function $\omega(x), w>0$, φ_{j} are athogonal on $(a, b)^{\prime}$ with respect to athogonal $\omega(x)$ if φ_{f} has degree f and

$$
\left\langle\varphi_{r}, \varphi_{k}\right\rangle=\int_{a}^{\omega(x)} \omega(x) \varphi_{s}(x) \varphi_{k}(x) d x=\left\{\begin{array}{cc}
0 & \text { if } \gamma \neq k \\
\neq 0 & d x
\end{array}\right.
$$

Example: $\left\{\varphi_{0,}, \varphi_{1}, \varphi_{2}\right\}$ on $\left[0_{1} 1\right]$ w.r. to $\omega(x) \equiv 1$

$$
\varphi_{0} \equiv 1
$$

$\varphi_{1}(x)=x-\cos _{0} \varphi_{0}(x)$ with $c_{0} \in \mathbb{R}$ such that

$$
\begin{gathered}
0=\left\langle\varphi_{0}, \varphi_{1}\right\rangle=\left\langle 1, x-c_{0} \mid\right\rangle=\int_{0}^{1} x \cdot 1 d x- \\
\Rightarrow \varphi_{0} \int_{0}^{1} 1 \cdot 1=\frac{1}{2}-c_{0} \\
\varphi_{2}(x)=x^{2}-d_{1} \varphi_{1}(x)-d_{2} \varphi_{0}(x) \\
0=\left\langle\varphi_{2}, \varphi_{0}\right\rangle=\frac{1}{3}-d_{0} \\
0
\end{gathered}
$$

