

The: Considu fixed point iteration (*) for g, g contraction on $[a, b]$, fixed point g. The, for $\varepsilon>0$ we have $\left|x_{k}-\xi\right| \leq \varepsilon$ for all $k \geqslant k_{0}(\varepsilon)$ for a $k_{0}(\varepsilon)$ satisfying

$$
k_{0}(\varepsilon) \leq\left[\frac{\ln \left|x_{1}-x_{0}\right|-\ln (\varepsilon(1-L))}{\ln (1 / L)}\right]+1
$$

$[x]$ is longed integer $\leq x$.
Proof: (Susteh)

$$
\begin{aligned}
&\left|x_{0}-\xi\right|=\left|x_{0}-x_{1}+x_{1}-\xi\right| \leq\left|x_{0}-x_{1}\right|+\left|x_{1}-\xi\right| \\
& \leq\left|x_{0}-x_{1}\right|+L\left|x_{0}-\xi\right| \\
& \Rightarrow\left|x_{0}-\xi\right| \leq \frac{1}{1-L}\left|x_{0}-x_{1}\right| \\
& \Rightarrow\left|x_{k}-\xi\right| \leq L^{k}\left|x_{0}-g\right| \leq \underbrace{\frac{L^{k}}{1-L}\left|x_{0}-x_{1}\right|}_{\leqslant}
\end{aligned}
$$

make $\leq \varepsilon$, then $\left|x_{u}-\varnothing\right| \leq E$ by choosing k large enough (take logarithm)

Computing Liposhite constant L:

$$
\begin{aligned}
& g:[a, b] \rightarrow \mathbb{R}, \quad g(x) \in[a, b] \text { \& all } x \in[a, b] \\
& |g(x)-g(y)| \leq L \underbrace{|x-y|}
\end{aligned}
$$

Mean value theserm (anuming g is differatiable):

$$
\begin{aligned}
& \frac{g(x)-g(y)}{x-y}=g^{\prime}(\eta) \quad \\
\Rightarrow & \frac{|g(x)-g(y)|}{|x-y|}=\left|g^{\prime}(\eta)\right| \quad- \\
L:= & \max _{\eta \in[a, b]}\left|g^{\prime}(\eta)\right|
\end{aligned}
$$

$\sum_{\text {mathod to }}$ compute L on $[a, b]$.
Examph: Consider $f(x)=0$ on $[1,2]$ with $f(x)=e^{x}-2 x-1$
Equivalal fixud pont equation

$$
g(x)=\ln (2 x+1)
$$

g is digy'able $g^{\prime}(x)=\frac{2}{2 x+1}, g^{\prime \prime}(x)=-\frac{4}{(2 x+1)^{2}}<0$

$$
g^{\prime}(1) \geqslant g^{\prime}(\eta) \geqslant g^{\prime}(2) \quad \text { for } \eta \in[1,2]
$$

on $[1,2]$
$\Longrightarrow \frac{2}{3} \geqslant g^{\prime}(\eta) \geqslant \frac{2}{5}$
(becaus $g^{\prime} \downarrow$)
$\Longrightarrow\left|g^{\prime}(\eta)\right| \leq \frac{2}{3}$ for all $\eta \in[1,2]$

$$
\Longrightarrow|g(x)-g(y)| \leq L|x-y| \quad \text { f.all } x, y \in[1,2], L:=\frac{2}{3}
$$

\Longrightarrow convergence from any $x_{0} \in[1,2]$ to unique fixed point

There is abs a local version of the convergence result:
Thu: Assumptions as before and g is continuously differentiable, g fixed point with $\left|g^{\prime}(\xi)\right|<1$. Then the fixed pond iteration converges to $\%$ provided x_{0} is suffriciatly close to ξ.
Proof: (smutch) if $\left|g^{\prime}(\xi)\right|<1 \Longrightarrow$ there exists $h>0$ such that $\left|g^{\prime}(x)\right|<1$ for all $x \in[g-h, \xi+h]$; g is a contraction in this interval and if x_{0} is chosen in it, the algorithm converges following the previous theorem.

