

$$\begin{array}{l} \hline Computing \ Lipsduidz \ constant \ Lipsduidz \ Laborarrow \$$

There is also a local version of the convergence result:
There is also a local version of the convergence result:
Then: Assumptions as before and g is antinuously
differentiable, g fixed point with
$$[g'(g)] = 1$$
.
Then the fixed point idention converges to g provided
 x_0 is sufficiently close to g.

Prod: (Slutch) If
$$[g'(g)] < 1 \implies there exists h>0$$

such that $[g'(x)] < 1$ for all $x \in [g-h, g+h];$
g is a contraction in this interval and if
 x_0 is chosen in it, the algorithm converges
following the previous theorem.