Last doss: \& Lagrange interpolation

* Hermite interpolation (finish)
* Numerical integration (start)

$$
\begin{aligned}
& x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{R}(\text { distinct }) \\
& y_{0}, y_{1}, \ldots, y_{n} \in \mathbb{R} \\
& z_{0}, z_{1}, \ldots, z_{n} \in \mathbb{R}
\end{aligned}
$$

Find $p_{2 n+1} \in \mathcal{S}_{2 n+1}$ such that $\beta_{2 n+1}\left(x_{i}\right)=y_{i}$

$$
P_{\text {anti }}\left(l_{i}\right) d^{i} \quad i=0, \ldots, n
$$

$$
P_{\text {and }}(x)=\sum_{k=0}^{n} H_{k}(x) x_{k}+K_{k}(x) \partial_{k}
$$

is the Hermite interpolation polgnomeid

What properties of H_{k} and K_{k} do we expect?

$$
\left\{\begin{array}{l}
\text { What properties of } T_{k} \\
H_{k}\left(x_{i}\right)=\left\{\begin{array} { l l }
{ 1 } & { i = k } \\
{ 0 } & { i \neq k }
\end{array} \left\{\begin{array}{l}
k_{k}\left(x_{i}\right)=0 \\
H_{R}^{\prime}\left(x_{i}\right)=0
\end{array} \quad \begin{array}{ll}
1=k \\
k_{k}^{\prime}\left(x_{i}\right)= \begin{cases}1 & i \neq k \\
0 & \text { if }\end{cases}
\end{array}\right.\right. \text { : }
\end{array}\right.
$$

$$
\begin{aligned}
& H_{n}(x)=\left(L_{n}(x)\right)^{2}\left(1-2 L_{k}^{\prime}\left(x_{k}\right)\left(x-x_{n}\right)\right) \in \oint_{2 n+1} \\
& K_{k}(x)=\left(L_{n}(x)\right)^{2}\left(x-x_{n}\right) \in \oint_{2 n+1}
\end{aligned}
$$

satisfy the above constraints

Theorem: $n>0, f:[a, b] \rightarrow R, f^{(2 n+\alpha)}$ is continuous, then the v Hermite interpolent of f satisfies (manque)

$$
\begin{aligned}
& \text { aatisiles } \\
& f(x)-P_{\text {an+1 }}(x)=\frac{f^{(2 n+2)}(\zeta)}{(2 n+2)!}\left(\pi_{n+1}(x)\right)^{2} ; \\
& \pi_{n+1}(x)=\prod_{n=0}^{n}\left(x-x_{n}\right) \\
& \left|f(x)-P_{a n+1}(x)\right| \leq \frac{M_{2 n+2}}{(2 n+2)!}\left(\pi_{n+1}(x)\right)^{2}
\end{aligned}
$$

Proof: Re e Süli
Example: For $n=1$, construct a cubic polynomial P_{3} such that

$$
p_{3}(0)=0 \quad p_{3}(1)=1 \quad p_{3}^{y_{0}(0)=1} \quad p_{3}^{\prime}(1)=0
$$

$$
\begin{aligned}
& x_{0}=0 \quad x_{1}=1 \\
& P_{3}(x)=H_{0}(x) y_{0}+K_{0}(x) z_{0}+H_{1}(x) y_{1}+K_{1}(x) z_{1} \\
&=K_{0}(x)+H_{1}(x) \\
& L_{0}(x)=1-x \quad 1 \\
& K_{0}(x)=\left[L_{1}(x)=x \text { for } x_{0}=0 \quad x_{1}=1\right. \\
& H_{1}(x)=\left[L_{1}(x)\right]^{2}\left(1-2 L_{1}\left(x_{1}\right)\left(x-x_{1}\right)\right)=x^{2}(3-2 x) \\
& \Rightarrow \quad P_{3}(x)=-x^{3}+x^{2}+x
\end{aligned}
$$

Using the interpolant (e.g. Lagrange) to compute approximate derivatives to f.

How accurately does $p_{n}^{\prime}(x)$ approximate $f^{\prime}(x)$?
Numerical differentiation
Recall

$$
f(x)-P_{n}(x)=\frac{f^{(n+1)}(5(x))}{(n+1)!} \pi_{n+1}(x)
$$

We car try to differentiate the above, except... it's not clear that $\delta(x)$ is continuous, or ever differentiable.

I P_{n} is Lagrange interpolant of f on $[a, b]$, we have

$$
\left|f^{\prime}(x)-P_{n}^{\prime}(x)\right| \leq \frac{(b-a)^{n}}{n!} M_{n+1}
$$

(fer proof see Süli)
where $M_{n+1}=\max _{x \in[a, b]}\left|f^{(n+1)}(x)\right|$

$$
\text { If } \lim _{n \rightarrow \infty} \frac{(b-a)^{n}}{n!} \mu_{n+1}=0 \text {, their } \rho_{n}^{\prime} \rightarrow f^{\prime}
$$

uniformly on $[a, b]$

Numerical Integration
The definite integrals

$$
\int_{0}^{\text {definite integrals }} e^{x} d x \text { and } \int_{0}^{\pi} \cos (x) d x
$$

are any to essaluate analytically.
unfortunately, most integrals cannot be evaluated analytically with for example a table of integrals).

For example:

$$
\int_{0}^{1} e^{x^{2}} d x \text { and } \int_{0}^{\pi} \cos \left(x^{2}\right) d x
$$

Now, for general integrals

$$
\int_{a}^{b} f(x) d x
$$

since polynomials are easy to integrate, the idea is to replace of with a polynomial and integrate the polynomial exactly.
Neuton-Cotes Formulae
Replace $f(x)$ with its Lagrange interpolant of degree n.

interpolation points, $x_{i}=a+\frac{(b-a)}{n} i \quad i=0,1,2, \ldots, n$, are equidistant.
Recall $P_{n}(x)=\sum_{k=0}^{n} L_{k}(x) f\left(x_{k}\right) ; L_{k}(x)=\prod_{\substack{i=0 \\ i \neq k}}^{n} \frac{\left(x-x_{i}\right)}{\left(x_{k}-x_{i}\right)}$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \int_{a}^{b} \sum_{n=0}^{n} L_{n}(x) f\left(x_{n}\right) d x \\
& =\sum_{n=0}^{n} f\left(x_{n}\right) \underbrace{}_{\underbrace{}_{\begin{array}{c}
\text { can be easily } \\
\text { precomputed, exactly. } \\
\int_{\text {"weights", wi }}^{b} L_{n}(x) d x
\end{array}}}=\sum_{\sum_{n=0}^{n} \omega_{n} f\left(x_{n}\right)}
\end{aligned}
$$

With above choices) we obtain a Newton-cotes formula of order n.
Wee: quadrature weights $\}$ quadrature senile x_{n} : quadrature points

For $n=1$: Trapezoid rule

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \int_{a}^{b} P_{1}(x) d x \\
& x_{i}=a+\frac{(b-a)}{n} i \quad \Rightarrow \quad x_{0}=a, x_{1}=b \\
& P_{1}(x)=L_{0}(x) f(a)+L_{1}(x) f(b) \\
& =\frac{x-b}{a-b} f(a)+\frac{x-a}{b-a} f(b) \\
& =\frac{1}{b-a}\{(b-x) f(a)+(x-a) f(b)\} \\
& \int_{a}^{b} P_{1}(x) d x=\frac{1}{b-a}\left\{f(a) \int_{a}^{b-a} b-x d x+f(b) \int_{a}^{b} x-a d x\right\} \\
& =\frac{b-a}{2}[f(a)+f(b)] \text { area of the } \\
& f(a) \\
& \begin{array}{l}
\text { area of } \\
\text { Itrapezaid }
\end{array} \\
& f(a) \\
& \int_{a}^{b} f(x) d x
\end{aligned}
$$

$$
\begin{array}{lll}
x_{0}=a & x_{1}=b & \left(\omega_{0}, x_{0}\right) \\
\omega_{0}=\frac{b-a}{2} & \omega_{1}=\frac{b-a}{2} & \left(\omega_{0}, x_{1}\right)
\end{array}
$$

For $n=2$: Simpson's Rule

$$
\begin{aligned}
& x_{i}=a+\frac{(b-a)}{n} i \Rightarrow x_{0}=a, x_{1}=\frac{b-a}{2}, x_{2}=b \\
& \int_{a}^{b} f(x) d x=\int_{a}^{b} f\left(x_{0}\right) L_{0}+f\left(x_{1}\right) L_{1}+f\left(x_{2}\right) L_{2} d x \\
& b \\
& W_{0}=\int_{a}^{b} L_{0}(x) d x=\int_{a}^{\left(x-x_{1}\right)\left(x-x_{2}\right)}\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)
\end{aligned}
$$

evaluate the integral with the change of variates

$$
\begin{aligned}
& x=\frac{b-a}{2} t+\frac{b+a}{2} \\
& =\int_{-1} \frac{t(t-1)}{2} \frac{b-a}{2} d t=\frac{b-a}{b}=\omega_{0}=\omega_{2}
\end{aligned}
$$

Remark: you could use the change of variables, on, more oiruply, expand the product

$$
\underbrace{\frac{1}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}}_{\text {cmotant }}\left\{x^{2}-\left(x_{1}+x_{2}\right) x+x_{1} x_{2}\right\}
$$

and integrate r each term separately
You car also compute $\omega_{1}=\frac{4}{6}(b-a)$

$$
\begin{aligned}
& \text { You can also compute } w_{1}=\frac{4}{b}(b-a) \\
\Rightarrow & \int_{a}^{b} f(x) d x=\int_{a}^{b} p_{2}(x) d x=\frac{b-a}{b}\left[f(a)+4 f\left(\frac{a+b}{\sigma}\right)+f(b)\right]
\end{aligned}
$$

Since the weights are independent of f, they can be precomputed in advanced. ERROR ESTIMATES
We seek to study the enos

$$
E_{n}(f)=\int_{a}^{b} f(x) d x-\sum_{k=0}^{x} \omega_{k} f\left(x_{n}\right)
$$

Mil,, what is the size of the error that is being commited by integrating the lagrange inter polbert?

$$
\left|E_{n}(f)\right|=\left|\int_{a}^{b} f d x-\sum_{k=0}^{n} \omega_{R} f\left(x_{n}\right)\right|
$$

$$
=\left|\int_{a}^{b} f d x-\int_{a}^{b} \ln (x) d x\right|
$$

$$
=\left|\int_{a}^{b} f-p_{n} d x\right|
$$

$$
\leqslant \int_{a}^{a} \frac{\mu_{n+1}}{(n+1)!}\left|\pi_{n+1}(x)\right| d x \quad\left|f(x)-p_{n}(x)\right| \leq \frac{m_{n+1}}{(n+1)!}\left|\operatorname{mer}_{\substack{ \\\mu_{n+b}}}^{\substack{(n+1)}}(\xi)\right|
$$

Now, we can use this estimate to determine an upper bound on the amor committed when using
the trapezoid mule $(n=1)$

$$
\begin{aligned}
\left|E_{1}(f)\right| & \leq \frac{\mu_{2}}{2} \int_{a}^{b}\left|\pi_{2}(x)\right| d x \\
& =\frac{\mu_{2}}{2} \int_{a}^{b}|(x-a)(x-b)| d x \\
& =\frac{\mu_{2}}{2} \int_{a}^{b}(x-a)(b-x) d x \\
& =\frac{(b-a)^{3}}{12} \mu_{2}
\end{aligned}
$$

For Simpson's rule $(n=2)$

$$
\begin{aligned}
\left|E_{2}(f)\right| & \leq \frac{\mu_{3}}{b} \int_{a}^{b}\left|(x-a)\left(x-\frac{(a+b)}{2}\right)(x-b)\right| d x \\
& =\frac{(b-a)^{a}}{196}
\end{aligned}
$$

NOTE: $E_{1}(f)=0$ when $f \in S_{1}$ This isture too $\xi_{\text {can }}$ can be $E_{2}(f)=0$ when $f \in S_{2}, f \in S_{3}$ whorl
n odd, Necton-Cotes is exalt for polynomials
of order n
n is even, Newton-cotes is exact for polynoneids of order nt..

Next class: composite quadrature metes.

