Plane rotations, Givens rotations (§5.3)
Besides reflections, rotations are athogonal transformations

$$
D\left(A A^{\top}=A^{\top} A=I\right)
$$

In 2D, rotations around the origin look bilk:

$$
R(\varphi)=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)=\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right), \quad c^{2}+s^{2}=1
$$

Properties: $R(\varphi)^{\top}=R(\varphi)^{-1}=R(-\varphi)$

$$
R(\varphi) R(-\varphi)=I
$$

Plane rotation in \mathbb{R}^{h}

$$
R_{x}^{u l}=\left(\begin{array}{l}
x_{1} \\
\vdots \\
x_{k-1} \\
c x_{n}+s x_{l} \\
x_{u+1} \\
\vdots \\
-s x_{u}+c x_{l} \& l \\
\vdots \\
x_{n}
\end{array}\right)-l
$$

$$
r=\|x\|=\sqrt{x_{k}^{2}+x_{l}^{2}}
$$

$$
c=\cos (\varphi)=\frac{x_{k}}{r}
$$

$$
s=\sin \varphi=\frac{x_{e}}{r}
$$

$$
\rightarrow R_{x}^{4 \ell}=\left(\begin{array}{c}
\vdots \\
r \\
\vdots \\
\vdots
\end{array}\right)
$$

$$
\xrightarrow[\substack{\text { pom bf } \\
\text { fright }}]{\operatorname{rod}(4,3)}\left(\begin{array}{llll}
k & \alpha & \alpha & 0 \\
k \\
k & & k \\
\alpha & & \vdots \\
0 & k & \ldots & \alpha
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
k & k & 0 & 0 \\
\alpha & 0 \\
0 & & \\
0 & \alpha \\
0 &
\end{array}\right)
$$

Both, Hansholder \& Givens can be used to compute QR factorization d $A \in \mathbb{R}^{m \times n}(m \geqslant n)$:

$$
\begin{aligned}
& \longrightarrow Q_{n} \cdot \because Q_{i} \cdot Q_{1} A=R \longrightarrow A^{\prime}=\underbrace{Q_{1}^{\top} \cdot Q_{2}^{\top} \cdots Q_{n}^{\top} R}_{\hat{Q}}=\hat{Q} \hat{R}
\end{aligned}
$$

$A=\left[\begin{array}{ll}1 & 1 \\ 2 & 0 \\ 1 & 1 \\ 2 & 0\end{array}\right]$ compute $Q R$ factorisation with Givers:

$$
\begin{aligned}
& R_{1}=\left[\begin{array}{lll}
1 & & \\
& c & s \\
& -s & c
\end{array}\right] \begin{array}{l}
r=\sqrt{5} \\
s=\frac{2}{\sqrt{5}} \\
c=\frac{1}{\sqrt{5}}
\end{array}: \quad R_{1} A=\left(\begin{array}{cc}
1 & 1 \\
2 & 0 \\
\sqrt{5} & \frac{1}{\sqrt{5}} \\
0 & -\frac{2}{\sqrt{5}}
\end{array}\right) \\
& R_{2}=\left[\begin{array}{llll}
1 & & \\
c & c & s \\
-s & c & \\
& & & 1
\end{array}\right], \begin{array}{lll}
r=3, & s=\frac{\sqrt{5}}{3} \\
& c=\frac{2}{3}
\end{array} \quad R_{2} \cdot\left[\begin{array}{cc}
1 & 1 \\
2 & 0 \\
\sqrt{5} & \frac{1}{\sqrt{5}} \\
0 & -\frac{2}{\sqrt{5}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
3 & * \\
0 & 4 \\
0 & 4
\end{array}\right]
\end{aligned}
$$

The $Q R$ algorithm for eigenvalues of tridriagonal matrices (§5.7)

$A \in \mathbb{R}^{\text {nan }}$ Symmetric, tri-diagonal
The $Q R$ alfonthin computes matrices $A^{(k)}$ $k=91,2 \ldots$ starting from $A^{(0)}=A$:
for $k=0,1,2, \ldots$

- computes $Q R$ decomposition of $A^{(k)}, A^{(k)}=Q R$
- $A^{(b H)}:=R Q$
end

This alyartm converges to a diagonal matrix containing the aguvalues of A.
First: Eigenvalue of $A^{(-)}, A^{(1)}, \ldots$ are the same :

$$
\begin{array}{rlrl}
A^{(k-1)} & =R^{(k)} Q \\
& =Q^{\top} A^{(h)} Q &
\end{array}
$$

Since multiplication with an athogonal matrix from left \& right does not change the eigenvalues, $A^{(h)}, A^{(h t)}$) have the same eifecvalus.

