Example: $x=\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right) \in \mathbb{R}^{4} \rightarrow$ hansform to mulhph of e_{1}

$$
\begin{aligned}
& v=x+\operatorname{sgn}(1) \sqrt{10} e_{1}=\left(\begin{array}{c}
1+\sqrt{10} \\
2 \\
1 \\
2
\end{array}\right) \\
& H=\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & 1 \\
& & \\
& & 1
\end{array}\right)-\frac{2}{\|v\|^{2}}\left(\begin{array}{c}
1+\sqrt{10} \\
2 \\
1 \\
2
\end{array}\right)\left(\begin{array}{llll}
1+\sqrt{10} & 2 & 1 & 2
\end{array}\right)
\end{aligned}
$$

We com tho use Householder in a subspace given by e_{2}, e_{3}, e_{4}, ie. we want to find H such that

$$
\begin{aligned}
& H\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
1 \\
+14 \\
0 \\
0
\end{array}\right)=11\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) 11=3 \\
& v_{1}=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)+\operatorname{sigh}(2) \cdot 3\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
5 \\
1 \\
2
\end{array}\right) \\
& v=\left(\begin{array}{l}
0 \\
5 \\
1 \\
2
\end{array}\right) \quad H=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)-\frac{2}{30}\left(\begin{array}{l}
0 \\
5 \\
1 \\
2
\end{array}\right)\left(\begin{array}{lll}
0 & 5 & 1
\end{array}\right) \\
&=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\
0 & -\frac{1}{3} & \frac{14}{15} & -\frac{2}{15} \\
0 & -\frac{2}{3} & -\frac{2}{15} & \frac{11}{15}
\end{array}\right)
\end{aligned}
$$

Theorem: Given $A \in \mathbb{R}^{h \times h}, A^{\top}=A, n \geqslant 3$, Then the exists $Q_{n} \in \mathbb{R}^{n \times n}$, a product of $n-2$ House holder matrices

$$
Q_{n}=H_{(n, n-1)} \cdot H_{(n, n-2)} \cdot \ldots H_{(n, 2)}
$$

such that $Q_{n}^{\top} A Q_{n}=T_{n}$ is tridiagonal.
Proof:

$$
A=\left[\begin{array}{cc}
\alpha & -b^{\top} \\
h & C \\
b & C
\end{array}\right] \frac{H_{(n, n-1)}}{\text { from beef }}\left[\begin{array}{ll}
\alpha & -b^{\top}- \\
0 & C^{1} \\
1 & C^{\prime}
\end{array}\right] \longrightarrow
$$

$$
\begin{aligned}
& H A=\left(\begin{array}{cc}
\alpha & -b^{t}- \\
\vdots & * \\
\vdots & *
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow \underbrace{H_{(n, 2)} \cdots H_{(m+1)} H_{(n-1)} A}_{Q_{n}^{+}} \underbrace{H_{(n-1)} H_{(n n-2)} \cdots H_{(n, 2)}}_{Q_{n}}
\end{aligned}
$$

How many flops. ${ }^{2}$. $\frac{1}{3} n^{3}$ hops for tridiagrabalization

