Def: Garchgoan discs Di i=1,..., n are defined as
Di =
$$\{z \in C \mid |z-a_{ii}| \in R_i\}$$
 with
 $R_i = \sum_{\substack{j=1\\j\neq i}}^{\infty} |a_{ij}|$
 $\frac{1}{3+i}$
 $E_i: B = \begin{bmatrix} 3 & 1 & -0.5\\ 1 & 2 & 0\\ 1 & 0.5 & -1 \end{bmatrix}$ $R_i = 1.5$ $D_i = \{z \in C \mid |z-3| \leq 1.5\}$
 $R_i = 1.5$
Theorem (Gashgoan's list of theorem)
All eigenvalues of
 $A \in C^{NM}$ lie in $D = \bigcup D_i$.
 $Prod: \lambda \in C_i \times \neq 0 \times 6 C^n$
 $A \times = \lambda \times \longrightarrow \sum_{\substack{j=1\\j\neq i}}^{n} a_{ij} \times_j = \lambda \times_i$ $i = 1,..., n$
Let k be such that $|x_k| \geq |x_i|$ for all i_i i.e. k is
the index with the largest early in absolute value.
 $|\lambda - a_{ki}| |x_k| = |\lambda \times_k - a_{kk}| \leq \sum_{\substack{j=1\\j\neq i}}^{n} |a_{kj} \times_j| \leq \sum_{\substack{j=1\\j\neq i}}^{n} |a_{kj} \times_j| \leq \sum_{\substack{j=1\\j\neq i}}^{n} |a_{kj} \times_j| \leq \sum_{\substack{j=1\\j\neq k}}^{n} |a_{kj} + \sum_{\substack{j=1\\j\neq k}}^{n} |x_k||$
 $divide king (\lambda - a_{kk}| \in R_k \rightarrow \lambda \in D_k)$
Theorem (Garchgoan's 2nd theorem). Let the D's be divided into
disjoint Seb $D^{(e)} D^{(e)}$ contains p exignvalues and the

union of D^(a) contains q eigenvalues. In particular,
disgoint discs contain exactly one eigenvalue.
The engineering of the eigenvalues
Example:

$$A = \begin{bmatrix} 4 & 0.2 & -0.1 & 0.1 \\ 0.2 & -1 & -0.1 & 0.05 \\ 0.1 & -0.1 & 3 & 0.1 \\ 0.1 & 0.05 & 0.1 & -3 \end{bmatrix} \stackrel{R_{2}=0.35}{R_{3}=0.3} \stackrel{R_{4}=0.25}{R_{4}=0.25}$$

Since A is symmetric and the discs are disgoint, we know
that hy a ES.25, -275]
 $A_{3} \in (2.7, 3.2]$
Power method for computing eigenvectors
Simple idea ' Start with a vector xoell' and ideak
 $x_{k+1} = A x_{k} \quad k=0, 1, 2, ...$
If a simple A is shiely larger in absoluk value than
the other eigenvalues, it will shart to dominate in X_{k} , i.e.
 X_{k} will "converge" to eigenvected of A.
 $|\lambda_{1}| > |\lambda_{k}| \ge |\lambda_{2}| \dots \ge |\lambda_{k}|$