$\$ 5$ Eigenvalues \& eigarrectos of symmetric matrias

$$
\begin{gathered}
A \in \mathbb{R}^{\text {ness }}, \quad x \in \mathbb{R}^{h}, \lambda \in \mathbb{C}, x \neq 0 \\
A x=\lambda^{\mathbb{L}} x \\
\substack{\text { eigquiguvalue }}
\end{gathered}
$$

We'le thy do find ways to compute x, λ. That's a monlinear problem since both $\lambda_{1} x$ ore unknown. If λ is known, the it's linear since x solves $(A-\lambda I) x=0$.
Recall: $A \in \mathbb{R}^{n \times h}$ symmetric, then:

- There lists n linearly independent eigenvector $x_{i} \in \mathbb{R}^{h}$ with eigenvalues $\lambda_{i} \in \mathbb{R}$.
- $\lambda \rightarrow \operatorname{det}(A-\lambda I)$ is a polynomial of degree n_{c} and the eigenvalues d_{i} are its roots (charaeferistic polynomial)
- Eigenvectors corresponding to distinct erguralues ar orthogonal, i.e. $\lambda_{i} \neq \lambda_{j} \rightarrow x_{i}^{\top} x_{j}=0$
- λ_{i} has multiplicity $m \geqslant 1$, then then exists a basis of athogonal eigervectas carresponoling to λ_{i}
- A and $B:=Q^{\top} A Q$ with Q orthogonal hove the same eiguvalues.
- There exists an athonarmal basis of \mathbb{R}^{n} consisting of eigenvector of A.
§5.4 Gerschgorin theorems.
They allow estimation of regions where the eigenvalues hie. This does not require A to be symmetric, they hold for any $A \in \mathbb{C}^{n \times n}$.

Def: Grechgoin discs $D_{i} i=1_{1} \ldots, n$ are defined as

$$
\begin{aligned}
D_{i} & =\left\{z \in \mathbb{C}| | z-a_{i i} \mid \leq R_{i}\right\} \text { with } \\
R_{i} & =\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}\right| \\
\text { Ex: } B & =\left[\begin{array}{ccc}
3 & 1 & -0.5 \\
1 & 2 & 0 \\
1 & 0.5 & -1
\end{array}\right] \begin{array}{l}
R_{1}=1.5 \quad \begin{array}{l}
R_{2}=1 \\
R_{3}
\end{array}=1.5
\end{array}
\end{aligned}
$$

Thederm(Gershgorin's lIst theorem)
All eigenvalues of
$A \in \mathbb{C}^{n \times n}$ lie in $D=\bigcup_{i=1}^{n} D_{i}$.

Prod: $\lambda \in \mathbb{C}, x \neq 0 \quad x \in \mathbb{C}^{n}$

$$
A x=\lambda x \rightarrow \sum_{j=1}^{n} a_{i j} x_{j}=\lambda x_{i} \quad i=1_{1}, \ldots, n
$$

Let k be such that $\left|x_{k}\right| \geqslant\left|x_{i}\right|$ for all i, ie. k is the index with the largest entry in absolute value.

$$
\begin{aligned}
{\left[\lambda-a_{k k}| | x_{k} \mid\right.} & =\left|\lambda x_{k}-a_{k k} x_{k}\right|=\left|\sum_{j=1}^{n} a_{k j} x_{j}-a_{k k} x_{k}\right| \\
& =\left|\sum_{\substack{j=1 \\
j \neq k}}^{n} a_{k j} x_{j}\right| \leq \sum_{\substack{j=1 \\
j \neq k}}^{n}\left|a_{k f}\right| \underbrace{\left|x_{j}\right|}_{\leq\left|x_{k}\right|} \\
& \leq \frac{R_{k}\left|x_{k}\right|}{\text { dividethoous }}
\end{aligned}
$$

$$
\left|x_{k}\right|+0 \quad\left|\lambda-a_{k k}\right| \leq R_{k} \rightarrow \lambda \in D_{k}
$$

Theorem (Gerchgoin's 2nd theselem). Let the D_{1}^{\prime} 's be divided into disjoint sets $D^{(p)}, D^{(Q)}$ with p and $q=n-p$ discs. Then the union of $D^{(P)}$ contains P erigavalues and the
union of $D^{(a)}$ contains q eigavalues. In particular, disjoint discs contain exactly one eigavalue.

Example:

$$
A=\left[\begin{array}{cccc}
4 & 0.2 & -0.1 & 0.1 \\
0.2 & -1 & -0.1 & 0.05 \\
-0.1 & -0.1 & 3 & 0.1 \\
0.1 & 0.05 & 0.1 & -3
\end{array}\right] \begin{aligned}
& R_{1}=0.4 \\
& R_{2}=0.35 \\
& R_{3}=0.3 \\
& R_{4}=0.25
\end{aligned}
$$

Power method for computing eigavectors
Simple idea: Stat with a vector $x_{0} \in \mathbb{R}^{h}$ and iterate

$$
x_{k+1}=A x_{k} \quad k=0,1,2, \ldots,
$$

If a simple λ is strictly larger in absolve value than the other eigenvalues, it will start to dominate in x_{k}, i.e. x_{k} will "Converge" to eifarecter of λ.

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geqslant\left|\lambda_{3}\right| \ldots \geqslant\left|\lambda_{n}\right| .
$$

