Theovem: $A \in \mathbb{R}^{n \times h}$ rugular, $b \in \mathbb{R}^{h}, A x=b, A(x+8 x)=b+\delta b$

$$
\Longrightarrow \frac{\|\delta x\|}{\|x\|} \leqslant k(A) \frac{\|\delta b\|}{\|b\|}
$$

Prof: $\quad b=A x, \quad \delta x=A^{-1}(b+\delta b)-x=A^{-1} \delta b$

$$
\|b\|=\|A x\| \leqslant\|A\|\|x\|, \quad\|\delta x\| \leq\left\|A^{-1}\right\|\|\delta b\|
$$

$\xrightarrow{\text { mulliply }}$

$$
\begin{aligned}
& \xrightarrow{\text { Uiply }}\|b\|\|\delta x\|
\end{aligned}
$$

Exampla:

$$
A=\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right) \in \mathbb{R}^{3 \times 3}, \text { invarible, }
$$

We solve $A x=b$ with $b=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and b ar measuremub with polential erred of 10^{-4}, i.e.

$$
b+\delta b=\left(\begin{array}{l}
1 \\
\varepsilon \\
0
\end{array}\right),|\varepsilon| \leqslant 10^{-4}
$$

Then x satisfis $\|x\|_{2} \sim 48, x=\left(\begin{array}{c}9 \\ -36 \\ 20\end{array}\right) \quad \underbrace{0}_{\text {erreer of } 0.01 \%}$

$$
\frac{\|\delta x\|_{2}}{48} \leq 524 \cdot \frac{10^{-4}}{1}
$$

$\rightarrow\|8 x\|_{2} \gtrless 2.5 \rightarrow$ ervar in x of $\approx 5 \%$
\rightarrow relative errer potentially increases by a factor of ~ 500, i.e. by the conditien number.

Si. Least squares problems
Consider an overdetermined sydem

$$
\left(\begin{array}{ll}
3 & 1 \\
1 & 1 \\
4 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right), A \in \mathbb{R}^{m \times n}, \quad b \in \mathbb{R}^{m}, \begin{array}{ll}
& m \geqslant n
\end{array}
$$

This system does, in general, not have a solution, but we can try to find $x \in \mathbb{R}^{2}$ such that $A x-b \approx 0$ This can be formulated as last squares problem

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}
$$

which is equivalut with

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2} \leftarrow \text { "last squares" }
$$

Since for any recto $y \in \mathbb{R}^{m}:\|y\|_{2}^{2}=y^{\top} y$, we can write

$$
\|A x-b\|_{2}^{2}=(A x-b)^{\top}(A x-b)=\underbrace{x^{\top} A^{\top} A x-\frac{2 b^{\top} A^{\top} b}{\left(x^{\top} A^{\top} b+b^{\top} A x\right)}+b^{\top} b}_{\text {quadratic form in } x .}) .
$$

Minimum is characterized by
$A^{\top} A x=A^{\top} b \quad$ natal equations
A^{\top}

$$
A=A^{\top}
$$

One should aroid computation of $A^{\top} A$ as this can be expensive if m, n are la ge, and $A^{\top} A$ combe poorly conditioned.
For instance: $A=\left(\begin{array}{ll}\varepsilon & 0 \\ 0 & 1\end{array}\right), \quad B=A^{\top} A$

$$
\begin{aligned}
& K_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=1 \cdot \varepsilon^{-1}=\frac{1}{\varepsilon} \\
& K_{2}(B)=\left\|A^{\top} A\right\|_{2}\left\|\left(A^{\top} A\right)^{-1}\right\|_{2}=\frac{1}{\varepsilon^{2}}
\end{aligned}
$$

ε is very anal, $K_{2}(A)=\frac{1}{\varepsilon} \ll K_{2}\left(A^{\top} A\right)=\frac{1}{\varepsilon^{2}}$
Theorem: Let $A \in \mathbb{R}^{m \times n}, m \geqslant n$. Then

$$
A=\hat{Q} \hat{R}
$$

where \widehat{R} is upper triong ola matrix, $\hat{R} \in \mathbb{R}^{\text {whee }}$, $\hat{Q} \in \mathbb{R}^{m \times n}$ with $\hat{Q}^{\top} \hat{Q}=I_{n \times n}$.
If $\operatorname{ramk}(A)=n$, then \hat{R} is non-singular.

Theorem: $Q R$-factorization for least squares solve $\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}$. The solution x con b
computed as solutian of $\hat{R} x=\hat{Q}^{\top} b$.
Proof: $\|A x-b\|_{2}^{2}=(A x-b)^{\top}(A x-b) \quad \begin{aligned} & \text { requines ove } \\ & \text { badward mbat }\end{aligned}$

$$
\begin{aligned}
& =(A x-b)^{\top} \underbrace{Q Q^{\top}}_{I}(A x-b) \quad R=Q^{\top} A \quad A=Q R=\hat{Q} \hat{R} \\
& =\left\|Q^{\top}(A x-b)\right\|_{2}^{2}=\left\|R_{x}-Q^{\top} b\right\|_{2}^{2} \\
& =\left\|\binom{R^{2}}{0}-\binom{\hat{Q}^{\top} b}{b_{2}}\right\|_{2}^{2}=\left\|\hat{R} x-\hat{Q}^{\top} b\right\|_{2}^{2}+ \\
& +\left\|b_{2}\right\|_{2}^{2} \geqslant\left\|b_{2}\right\|_{2}^{2}, \quad\left[b_{2} i=\hat{Q}^{\top} b\right.
\end{aligned}
$$

\longrightarrow The quarbly $\|A x-b\|_{2}^{2}$ can be made Smallest porible by making $\left\|\hat{R} x-\hat{Q}^{T} b\right\|_{2}^{2}=0$, i.e.

$$
\hat{R} x=\hat{Q}^{\top} b .
$$

Thes, by sodving $\hat{R} x=\hat{Q}^{\top} b$, we find the solutien to the hast squares problem.

