Theorem¹
$$A \in \mathbb{R}^{h \times h}$$
 sugular, $b \in \mathbb{R}^{h}$, $A \times b$, $A(x + g_{x}) - b + g_{b}$

$$\longrightarrow \frac{\|g_{x}\|}{\|x\|\|} \leq \mu(A) \frac{\|g_{b}\|}{\|b\|}$$

$$\frac{Prog!}{|b|| + |A_{x}||} \leq \|A\|\|\|x\|$$
, $\|g_{x}\|| \leq \|A^{\dagger}\|\|g_{b}\|$

$$\|b\|| + |A_{x}|| \leq \|A\|\|\|x\|$$
, $\|g_{x}\|| \leq \|A^{\dagger}\|\|g_{b}\|$

$$\|b\|| + |A_{x}|| \leq \|A\|\|\|x\|\|\|g_{b}\|$$

$$\|b\|\| = |A_{x}|| \leq \|A\|\|\|g_{x}\|\|g_{b}\|$$

$$\|b\|\| = |A_{x}|| \leq \|A\|\|\|g_{x}\|\|g_{b}\|$$

$$\|c\|\| = \|A\|\|g_{x}\|\|g_{b}\|$$

$$\|c\|\| = \|a\|\|g_{a}\|\|g_{a}\|$$

$$\|b\|\| = |A_{x}\|\|g_{a}\|\|g_{a}\|$$

$$\|b\|\| = |A_{x}\|\|g_{a}\|\|g_{a}\|$$

$$\|b\|\| = |A_{x}\|\|g_{a}\|\|g_{a}\|\|g_{a}\|$$

$$\|b\|\| = |A_{x}\|\|g_{a}\|\|g_{a}\|\|g_{a}\||g_{a$$

N 500, i.e. by the condition number.

Consider an overdetermined system

$$\begin{pmatrix} 3 & 1 \\ 1 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} A \in [\mathbb{R}], b \in [\mathbb{R}]^m$$

$$m \ge n$$

This system does, in general, not have a solution, but we can try to kind $x \in \mathbb{R}^2$ such that $A \times -b \approx 0$ This can be formulated as least squares problem

$$min ||Ax-b||_2$$
, $x \in \mathbb{R}^n$

which is equivalent with min $||Ax-b||_2^2 \in$ "least squares" xeller

Since for any vector
$$y \in \mathbb{R}^{m}$$
: $\|y\|_{2}^{2} = y^{T}y$, we can write
 $\|Ax-b\|_{2}^{2} = (Ax-b)^{T}(Ax-b) = x^{T}A^{T}Ax - (x^{T}A^{T}b + b^{T}Ax) + b^{T}b$

Minimum is characterized by $A^{T}A \times = A^{T}b$ normal equations $A^{T} = A^{T}$

One should avoid computation of ATA as this can
be expansive if min one large, and ATA can be
possily constitioned.
Too instance:
$$A = \begin{pmatrix} \mathcal{E} & 0 \\ \mathcal{O} & 1 \end{pmatrix}_{1}^{1}$$
 $\mathcal{B} = \mathcal{A}^{T}\mathcal{A}$
 $K_{\mathcal{E}}(\mathcal{A}) = ||\mathcal{A}||_{\mathcal{E}}^{1} ||\mathcal{A}^{T}||_{\mathcal{I}}^{1} = 1 \cdot \mathcal{E}^{T} = \frac{1}{\mathcal{E}}$
 $\mathcal{E}(\mathcal{B}) = ||\mathcal{A}^{T}\mathcal{A}||_{\mathcal{I}}^{1} ||\mathcal{A}^{T}||_{\mathcal{I}}^{1} = \frac{1}{\mathcal{E}^{2}}$
 \mathcal{E} is very small, $K_{\mathcal{E}}(\mathcal{A}) = \frac{1}{\mathcal{E}} \ll K_{\mathcal{I}}(\mathcal{A}^{T}\mathcal{A}) = \frac{1}{\mathcal{E}^{2}}$
Theorem: Let $\mathcal{A} \in \mathbb{R}^{m \times n}$, $m \ge n$. Then
 $\mathcal{A} = \widehat{\mathcal{O}} : \mathcal{R}$
where $\widehat{\mathcal{R}}$ is upput triangular matrix, $\widehat{\mathcal{R}} \in \mathbb{R}^{n \times n}$,
 $\widehat{\mathcal{O}} \in \mathbb{R}^{m \times n}$ with $\widehat{\mathcal{O}} : \widehat{\mathcal{O}} = \mathbb{I}_{n \times n}$.
If sack(\mathcal{A}) = n , then $\widehat{\mathcal{R}}$ is non-singular.
 $\widehat{\mathcal{A}} = \widehat{\mathcal{O}} : \mathbb{R}$
 $\widehat{\mathcal{O}} = \mathbb{R}$
 $\widehat{\mathcal{O}} : \mathbb{R}^{m \times n}$ with $\widehat{\mathcal{O}} : \widehat{\mathcal{O}} = \mathbb{I}_{n \times n}$.
If sack(\mathcal{A}) = n , then $\widehat{\mathcal{R}}$ is non-singular.
 $\widehat{\mathcal{A}} = \widehat{\mathcal{O}} : \mathbb{R}$
 $\widehat{\mathcal{O}} : \mathbb{R}^{m \times n}$ is defined as the squales solve
 $\widehat{\mathcal{O}} : \mathbb{R}^{n}$ is least squales solve
 $\widehat{\mathcal{O}} : \mathbb{R}^{n}$. The solution x can be
 $x \in \mathbb{R}^{n}$

Computed as solution of
$$\hat{R} = \hat{Q} \cdot \hat{D}$$
.
Prod: $||Ax-b||_{2}^{2} = (Ax-b)^{T}(Ax-b)$ badward mbd.
 $= (Ax-b)^{T} \hat{Q} \cdot \hat{Q} \cdot (Ax-b) R=0A A=0R=0\hat{R}$
 $= ||Q^{T}(Ax-b)||_{2}^{2} = ||Rx - D^{T}b||_{2}^{2}$
 $= ||Q^{T}(Ax-b)||_{2}^{2} = ||Rx - D^{T}b||_{2}^{2}$
 $= ||\hat{Q}(Ax-b)||_{2}^{2} = ||Rx - D^{T}b||_{2}^{2}$
 $+ ||b_{2}||_{2}^{2} \ge ||b_{2}||_{2}^{2} = ||Rx - D^{T}b||_{2}^{2}$
 $+ ||b_{2}||_{2}^{2} \ge ||b_{2}||_{2}^{2} (an be made)$
Smalled possible by making $||Rx - D^{T}b||_{2}^{2} = 0$, i.e.
 $\hat{R}x = \hat{O}^{T}b$.
Thus, by solving $\hat{R}x = \hat{D}b$, we find the solution
to the least squares particlen.