§1: Tentative solution of equations
Only fer equations have a "closed form" soludien, e.g., polynomials of du ≤ 4. Most equations dun't, eeg.

$$
f(x)=x^{5}-4 x-2=0
$$

We will study the existence of solutions do

$$
f(x)=0
$$

and techniques to compute solution \mathscr{g}.
\$3.2 Simple/Fixedpoint ITERATION
Considu $\quad \&:[a, b] \rightarrow \mathbb{R}, a<b$
The: \& continuous, $f(a) \leqslant 0, f(b) \geqslant 0$ (ar via- vela)

$$
\begin{equation*}
\Longrightarrow \exists \xi \in[a, b]: \quad f(\vartheta)=0 \tag{vessel}
\end{equation*}
$$

Proof: Assume $f(a)<0$,

$$
\begin{align*}
& \stackrel{f(b)>0}{\underset{\substack{\text { Interned } \\
\text { value their }}}{>}} \quad f \in(a, b): \\
& f(g)=0
\end{align*}
$$

Alternative fixed point famulation: Find x with

$$
g(x)=x \quad[\text { equivalent do } \quad \underbrace{f(x)+x}_{g(x)}=x]
$$

Thy (Brouwer's fixed point, holds in move genial settings) $g:[a, b] \rightarrow \mathbb{R}$ continuous, $g(x) \in[a, b] \forall x \in[a, b]$ $\Rightarrow \exists g$ in $[a, b]: g=g(g)$.

Proof:

$$
f(x)=x-g(x) \Longrightarrow f(a) \leq 0, f(b) \geqslant 0
$$

$\underset{\text { The }}{\text { prev. }} \exists g: f(g)=0 \Longrightarrow g(g)=\xi$

Example:: $f(x)=e^{x}-2 x-1, \quad x \in[1,2]$
Solve $f(x)=0$, has a root since $f(1)<0$ $f(2)>0, f$ cont.
As fixed point equation

$$
\begin{aligned}
& \text { s fixed point eq nation } \\
& g(x)=e^{x}-x-1 \quad[f(x)=0 \Longleftrightarrow g(x)=x] \\
& g(x)=\ln (2 x+1) \quad[\ln (2 x+1)=x \leftrightarrow 0 \\
& g(x)=\frac{e^{x}-1}{2}
\end{aligned} \begin{aligned}
& 2 x+1=e^{x} \\
&g(x)=0]
\end{aligned}
$$

SIMPLE/FIXEDPOINT ITERATION
$g:[a, b] \rightarrow \mathbb{R}, g(x) \in[a, b] \quad \forall x, g$ continues
Given $x_{0} \in[a, b]$, recursion

$$
\begin{equation*}
x_{k+1}=g\left(x_{k}\right) \quad \prod_{\text {index }}^{k=0,1,2, \ldots} \tag{*}
\end{equation*}
$$

Upon convergence to $\%$

$$
\lim _{k \rightarrow \infty} x_{k+1}=q=g\left(\lim _{k \rightarrow \infty} x_{k}\right)=g(\xi)
$$

When does (*) converge?
Def: (contraction) $g:[a, b] \rightarrow \mathbb{R}$ is a conk action if

$$
|g(x)-g(y)| \leq L|x-y| \text { for all } x, y \in[a, 1]
$$

$\uparrow_{\text {Lipchitz con dition }}$
with $L<1$.

The: $g:[a, b] \rightarrow \mathbb{R}_{,} g(x) \in[a, b]$ for all $x \in[a, b]$ continuous, contraction.
$\Rightarrow \exists!$ fixed point g with $g(\%)=\xi$ and the sequence (*) converges to $\&$ for any starting paint $x 0$.
Proof: Existence
Uniquines: ξ, η two fixed points

$$
\begin{aligned}
& |\xi-\eta|=|g(g)-g(\eta)| \leq L|g-\eta|, L<1 \\
& \Longrightarrow g=\eta
\end{aligned}
$$

Convagena: $x_{0} \in[a, b]$

$$
\begin{aligned}
& \frac{\text { Convegenai }}{} \quad\left|x_{k}-g\right|=\left|g\left(x_{k-1}\right)-g(\xi)\right| \leq L\left|x_{k-1}-g\right| k \geqslant 1 \\
& \Rightarrow \\
& \Rightarrow\left|x_{k}-g\right| \leq L^{k}\left|x_{0}-g\right| \quad k \geqslant 1 \\
& \Rightarrow
\end{aligned} \begin{aligned}
& \left|x_{k}-g\right| \rightarrow 0 \text { as } L^{k} \rightarrow 0 \text { for } k \rightarrow \infty \\
& \quad(\text { as } L<1)
\end{aligned}
$$

