
Advanced Topics in Numerical Analysis:
High Performance Computing

MATH-GA 2012.001 & CSCI-GA 2945.001

Georg (Stadler)
Courant Institute, NYU
stadler@cims.nyu.edu

Spring 2017, Thursday, 5:10–7:00PM, WWH #512

Feb. 17, 2017

1 / 19

stadler@cims.nyu.edu


Outline

Organization issues

Last class summary

Memory hierarchies (single CPU)

Tool/command of the week

2 / 19



Organization issues

I I’m looking for a room/time to makeup for the cancelled
classes. Will post options on Piazza–please vote!

I There will be a new homework posted by tomorrow.

3 / 19



Organization issues

I We got access and computing time on Stampede at the Texas
Advanced Computing Center (TACC).

I You’ll hear from Bill concerning registration. We’ll use
Stampede for homework problems and you can use it for final
projects (more how to use it, in the next classes).

I Currently, Stampede is #17 on the Top 500 list, but in the
process of being upgraded to Stampede 2 this summer.

I We share compute time on that resource, so please don’t be
wasteful.

4 / 19



Outline

Organization issues

Last class summary

Memory hierarchies (single CPU)

Tool/command of the week

5 / 19



Moore’s law today
I Frequency/clock speed stopped growing in ∼ 2004

I Number of cores per CPU
I Moore’s law still holds
I Energy use ∼bounded

0 

1 

10 

100 

1000 

10000 

100000 

1000000 

10000000 

1970 1975 1980 1985 1990 1995 2000 2005 2010 

Transistors (Thousands) 
Frequency (MHz) 
Power (W) 
Cores 

Source: CS Department, UC Berkeley.

6 / 19



Parallel computing ⊂ high-performance computing

I All major vendors produce multicore chips—need to think
differently about applications.

I How well can applications and algorithms exploit parallelism?

I Memory density (DRAM) grows at slower rate.
Loading/writing to memory is slow (O(100) clock cycles)

I Top500 list: leading machines have > 106 processor cores,
and often two different kinds of compute chips (CPUs and
some kind of accelerators).

7 / 19



Do we really need larger and faster?

Simulation has become the third pillar of Science:

theory experiment

simulation

HPC computing used in: weather prediction, climate modeling,
drug design, astrophysics, earthquake modeling, semiconductor
design, crash test simulations, financial modeling, . . .

8 / 19



Basic CS terms recalled

I compiler: translates human code into machine language
I CPU/processor: central processing unit caries out instructions

of a computer program, i.e., arithmetic/logical operations,
input/output

I core: individual processing unit in a CPU, “multicore” CPU;
will sometimes use “processors” in a sloppy way, and actually
mean “cores”

I clock rate/frequency: indicator of speed in which instructions
are performed

I floating point operation: multiplication add of two floating
point numbers, usually double precision (64 bit, about 16
digits)

I peak performance: fastest theoretical flop/s
I sustained performance: flop/s in actual computation
I memory hierarchy: large memories (RAM/disc/solid state) are

slow; fast memories (L1/L2/L3 cache) are small

9 / 19



Outline

Organization issues

Last class summary

Memory hierarchies (single CPU)

Tool/command of the week

10 / 19



Flop/s versus Mop/s
For many practical applications, memory access is the bottleneck,
not floating point operations.

Development of memory versus processor performance.

I Most applications run at < 10% of the theoretical peak
performance.

I Mostly a single core issue; on parallel computers, things
become even more difficult.

11 / 19



Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 19



Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency:

time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 19



Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 19



Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth:

rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 19



Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 19



Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 19



Memory hierarchies
On my Mac Book Pro: 32KB L1 Cache, 256KB L2 Cache, 3MB Cache, 8GB RAM

CPU: O(1ns), L2/L3: O(10ns), RAM: O(100ns), disc: O(10ms)

13 / 19



Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

14 / 19



Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit:

required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

14 / 19



Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

14 / 19



Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss:

required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

14 / 19



Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

14 / 19



Memory hierarchy
Simple model

1. Only consider two levels in hierarchy, fast (cache) and slow
(RAM) memory

2. All data is initially in slow memory
3. Simplifications:

I Ignore that memory access and arithmetic operations can
happen at the same time

I assume time for access to fast memory is 0

4. Computational intensity: flops per slow memory access

q =
f

m
, where f . . .#flops,m . . .#slow memop.

Actual compute time:

ftf +mtm = ftf (1 +
tm
tf

1

q
),

where tf is time per flop, and tm the time per slow memory access.
Computational intensity should be as large as possible.

15 / 19



Memory hierarchy
Example: Matrix-matrix multiply

Comparison between naive and blocked optimized matrix-matrix
multiplication for different matrix sizes.

Comparison between optimized and naive matrix-matrix multiplication on old hardware with peak of 330MFlops.

Source: J. Demel, Berkely

BLAS: Optimized Basic Linear Algebra Subprograms
16 / 19



Memory hierarchy

To summarize:

I Temporal and spatial locality is key for fast performance.

I Simple performance model: fast and slow memory; only
counts loads into fast memory; computational intensity should
be high.

I Since arithmetic is cheap compared to memory access, one can
consider making extra flops if it reduces the memory access.

I In distributed-memory parallel computations, the memory
hierarchy is extended to data stored on other processors, which
is only available through communication over the network.

https://github.com/NYU-HPC17/lecture2

17 / 19

https://github.com/NYU-HPC17/lecture2


Outline

Organization issues

Last class summary

Memory hierarchies (single CPU)

Tool/command of the week

18 / 19



The module command

Allows to switch the user environment (programs, compilers etc).
Available on all UNIX-based systems, i.e., on CIMS computers,
compute servers etc.

module list
module avail . . .
module load python/3.4
module unload texlive-2016
module whatis gcc-6.1.0

19 / 19


	Organization issues
	Last class summary
	Memory hierarchies (single CPU)
	Tool/command of the week

