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Organization

Today

I Organization, final projects planning

I Multigrid

I Partitioning and load balance
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Organization

Final projects:

I There will be short final homework, posted tonight.

I Project presentation May 10/11.

I I will ask you early next week for a status report.

I Each group is expected to present 10 minutes (5-7 slides), and
summarize their work in a final report.

I Final report must acknowledge sources of code and outside
help. It also must include a short statement of who did what
in the team. Don’t plagarize!
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Organization

Final projects:
I Please focus presentation/project description on HPC aspects:

I What parallelization and why?
I Flop rate, main computational kernel, memory access,. . .
I Scalability (weak/strong). Please run your code not only on

your Laptop but on a “real” computing device (Stampede,
HPC, crunchy).

I What’s limits solving your problem faster, solving larger
problems? Communication? Memory access? Amdahl’s law?

I Your personal experience/What have you learned?
I Please put your code in a repository; I would like to post a link

to your code and your final reports.
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Partitioning and Load Balancing

Thanks to Marsha Berger for letting me use many of her slides. Thanks

to the Schloegel, Karypis and Kumar survey paper and Zoltan website for

many of today’s slides and pictures
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Partitioning

I Decompose computation into tasks to equi-distribute the data
and work, minimize processor idle time.

applies to grid points, elements, matrix rows, particles, . . .

I Map to processors to keep interprocessor communication low.

communication to computation ratio comes from both the
partitioning and the algorithm.
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Partitioning

Data decomposition + Owner computes rule:

I Data distributed among the processors

I Data distribution defines work assignment

I Owner performs all computations on its data.

I Data dependencies for data items owned by different
processors incur communication
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Partitioning

I Static - all information available before computation starts

use off-line algorithms to prepare before execution time; run as
pre-processor, can be serial, can be slow and expensive, starts.

I Dynamic - information not known until runtime, work changes
during computation (e.g. adaptive methods), or locality of
objects change (e.g. particles move)

use on-line algorithms to make decisions mid-execution; must
run side-by-side with application, should be parallel, fast,
scalable. Incremental algorithm preferred (small changes in
input result in small changes in partitions)

will look at some geometric methods, graph-based methods, spectral
methods, multilevel methods, diffusion-based balancing,...
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Recursive Coordinate Bisection

Divide work into two equal parts using cutting plane orthogonal to
coordinate axis For good aspect ratios cut in longest dimension.

1st cut 

2nd 

2nd 

3rd 

3rd 3rd 

3rd 

Geometric Partitioning 

Applications of Geometric Methods 

Parallel Volume Rendering 

Crash Simulations 
and Contact Detection 

Adaptive Mesh Refinement 
Particle Simulations 

Can generalize to k-way partitions. Finding optimal partitions is
NP hard. (There are optimality results for a class of graphs as a
graph partitioning problem.)
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Recursive Coordinate Bisection

+ Conceptually simple, easy to implement, fast.

+ Regular subdomains, easy to describe

– Need coordinates of mesh points/particles.

– No control of communication costs.

– Can generate disconnected subdomains
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Recursive Coordinate Bisection

Implicitly incremental - small changes in data result in small
movement of cuts
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Recursive Inertial Bisection

For domains not oriented along coordinate axes can do better if
account for the angle of orientation of the mesh.

Use bisection line orthogonal to principal inertial axis (treat mesh
elements as point masses). Project centers-of-mass onto this axis;
bisect this ordered list. Typically gives smaller subdomain
boundary.
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Space-filling Curves

Linearly order a multidimensional mesh (nested hierarchically,
preserves locality)

Peano-Hilbert ordering

Morton ordering
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Space-filling Curves

Easily extends to adaptively refined meshes
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Space-filling Curves

1 25 50 75 100

Partition work into equal chunks.
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Space-filling Curves

+ Generalizes to uneven work loads - incorporate weights.
+ Dynamic on-the-fly partitioning for any number of nodes.
+ Good for cache performance

16 / 54



Space-filling Curves

– Red region has more communication - not compact
– Need coordinates
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Space-filling Curves

Generalizes to other non-finite difference problems, e.g. particle
methods, patch-based adaptive mesh refinement, smooth particle
hydro.,
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Space-filling Curves

Implicitly incremental - small changes in data results in small
movement of cuts in linear ordering
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Graph Model of Computation

I for computation on mesh nodes, graph of the mesh is the
graph of the computation; if there is an edge between nodes
there is an edge between the vertices in the graph.

I for computation on the mesh elements the element is a vertex;
put an edge between vertices if the mesh elements share an
edge. This is the dual of the node graph.

Partition vertices into disjoint subdomains so each has same
number. Estimate total communication by counting number of
edges that connect vertices in different subdomains (the edge-cut
metric).
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Greedy Bisection Algorithm (also LND)

Put connected components together for min communication.

I Start with single vertex
(peripheral vertex, lowest
degree, endpoints of graph
diameter)

I Incrementally grow partition
by adding adjacent vertices
(bfs)

I Stop when half the vertices
counted (n/p for p
partitions)

+ At least one component connected

– Not best quality partitioning; need multiple trials.
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Breadth First Search

I All edges between nodes in same level or adjacent levels.

I Partitioning the graph into nodes <= level L and >= L+1
breaks only tree and interlevel edges; no ”extra” edges.
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Breadth First Search

BFS of two dimensional grid starting at center node.
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Graph Partitioning for Sparse Matrix Vector Mult.

Compute y = Ax, A sparse symmetric matrix,
Vertices vi represent xi, yi.
Edge (i,j) for each nonzero Aij

Black lines represent communication.
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Graph Partitioning for Sparse Matrix Factorization

Nested dissection for fill-reducing orderings for sparse matrix
factorizations.
Recursively repeat:

I Compute vertex separator, bisect graph,

edge separator = smallest subset of edges such that removing them
divided graph into 2 disconnected subgraphs)

vertex separator = can extend edge separator by connecting each
edge to one vertex, or compute directly.

I Split a graph into roughly equal halves using the vertex separator

At each level of recursion number the vertices of the partitions, number
the separator vertices last. Unknowns ordered from n to 1.

Smaller separators ⇒ less fill and less factorization work
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Spectral Bisection

Gold standard for graph partitioning (Pothen, Simon, Liou, 1990)

Let

xi =

{
−1 i ∈ A
1 i ∈ B

∑
(i,j)∈E

(xi − xj)2 = 4 ·# cut edges

Goal: find x to minimize quadratic objective function (edge cuts) for
integer-valued x = ±1. Uses Laplacian L of graph G:

lij =


d(i) i = j

−1 i 6= j, (i, j) ∈ E
0 otherwise
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Spectral Bisection

1

2

3

5

4

L =


2 −1 −1 0 0
−1 2 0 0 −1
−1 0 3 −1 −1

0 0 −1 1 0
0 −1 −1 0 2

 = D−A

I A = adjacency matrix; D diagonal matrix

I L is symmetric, so has real eigenvalues and orthogonal evecs.

I Since row sum is 0, Le = 0, where e = (111 . . . 1)t

I Think of second eigenvector as first ”vibrational” mode
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Spectral Bisection

Note that

xtLx = xtDx− xtAx =

n∑
i=1

dix
2
i − 2

∑
(i,j)∈E

xixj =
∑

(i,j)∈E

(xi − xj)2

Using previous example, xtAx = (x1 x2 x3 x4 x5)


x2 + x3
x1 + x5

x1 + x4 + x5
x3 + x4

x2 + x3 + x5


So finding x to minimize cut edges looks like minimizing xtLx over
vectors x = ±1 and

∑n
i=1 xi = 0 (balance condition).
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Spectral Bisection

I Integer programming problem difficult.

I Replace xi = ±1 with
∑n

i=1 x
2
i = n

min∑
xi=0∑
x2
i=n

xtLx = xt2Lx2

= λ2 x
t
2 · x2

= λ2 n

I λ2 is the smallest positive eval of L, with evec x2, (assuming G is
connected, λ1 = 0, x1 = e)

I x2 satisfies
∑
xi = 0 since orthogonal to x1, etx1 = 0

I x2 called Fiedler vector (properties studied by Fiedler in 70’s).
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Spectral Bisection

I Assign vertices according to the sign of the x2. Almost always
gives connected subdomains, with significantly fewer edge
cuts than RCB. (Thrm. (Fiedler) If G is connected, then one of A,B is.

If @i, x2i = 0 then other set is connected too).

I Recursively repeat (or use higher order evecs)

v2 =


.256
.437
−.138
−.811
.256


1

2

3

5

4
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Spectral Bisection

+ High quality partitions

– How find second eval and evec? (Lanczos, or CG, .... how do
this in parallel, when you don’t yet have the partition?)
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Kernighan-Lin Algorithm

I Heuristic for graph partitioning (even 2 way partitioning with unit
weights is NP complete)

I Needs initial partition to start, iteratively improve it by making
small local changes to improve partition quality (vertex swaps that
decrease edge-cut cost)

1

2

3

4

6

5

7

8

1

2

3

4

6

5

7

8

cut cost 4 cut cost 2
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Kernighan-Lin Algorithm

More precisely, the problem is:

I Given: an undirected graph G(V,E) with 2n vertices, edges
(a, b) ∈ E with weights w(a, b)

I Find: sets A and B, so that V = A ∪B, A ∩B = 0, and
|A| = |B| = n that minimizes the cost

∑
(a,b)∈AxB w(a, b)

I Approach: Take initial partition and iteratively improve it.
Exchange two vertices and see if cost of cut size is reduced.
Select best pair of vertices, lock them, continue. When all
vertices locked one iteration is done.

Original algorithm O(n3). Complicated improvement by
Fiduccia-Mattheyses is O(|E|).
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Kernighan-Lin Algorithm

I Let C = cost(A,B)

I E(a) = external cost of a in A
=

∑
b∈B w(a, b)

I I(a) = internal cost of a in A
=

∑
a′∈A,a′ 6=aw(a, a′)

I D(a) = cost of a in A = E(a) - I(a)
D(6) = 1 D(1) = 1

D(3) = 0 newD(3) =

-2
Consider swapping X={a} and Y={b}.
(newA = A - X ∪ Y newB = B - Y ∪ X)

newC = C - (D(a) + D(b) - 2*w(a,b)) = C - gain(a,b)

newD(a’) = D(a’) + 2 w(a’,a) - 2 w(a’,b) for a′ ∈ A, a′ 6= a
newD(b’) = D(b’) + 2 w(b’,b) - 2 w(b’,a) for b′ ∈ B, b′ 6= b
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Kernighan-Lin Algorithm

Compute C = cost(A,B) for initial A,B

Repeat

Compute costs D for all verts

Unmark all nodes

While there are unmarked nodes

Find unmarked pair (a,b) maximizing gain(a,b)

Mark a and b (do not swap)

Update D for all unmarked verts (as if a,b swapped)

End

Pick sets of pairs maximizing gain

if (Gain>0) then actually swap

Update A’ = A - {a1,a2,...am} + {b1,b2,...bm}

B’ = B - {b1,b2,...bm} + {a1,a2,...,am}

C’ = C - Gain

Until Gain<0
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Kernighan-Lin Algorithm

KL can sometimes climb out of local minima...
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Kernighan-Lin Algorithm

gets better solution; but need good partitions to start
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Graph Coarsening

I Adjacent vertices are combined to form a multinode at next level,
with weight equal to the sum of the original weights. Edges are the
union of edges of the original vertices, also weighted. Coarser graph
still represents original graph.

2 2
2

2
1 1

I Graph collapse uses maximal matching = set of edges, no two of
which are incident on the same vertex. The matched vertices are
collapsed into the multinode. Unmatched vertices copied to next
level.

I Heuristics that combine 2 vertices sharing edge with heaviest
weight, or randomly chosen unmatched vertex, ...
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Graph Coarsening

Fewer remaining visible edges on coarsest grid ⇒ easier to partition
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Multilevel Graph Partitioning

I Coarsen graph

I Partition the coarse graph

I Refine graph, using local refinement algorithm (e.g.K-L)

I vertices in larger graph assigned to same set as coarser graph’s
vertex.

I since vertex weight conserved, balance preserved
I similarly for edge weights

Moving one node with K-L on coarse graph equivalent to moving large number
of vertices in original graph but much faster.
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Re-Partitioning

when workload changes dynamically, need to re-partition as well as
minimizing redistribution cost. Options include:

I partition from scratch (use incremental partitioner, or try to
map on to processors well) called scratch-remap

I give away excess, called cut-and-paste repartitioning

I diffusive repartitioning

Should you minimize sum of vertices changing subdomains (total
volume of communication = TotalV), or max volume per processor
(called maxV).
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Re-Partitioning

(b) from scratch (c) cut-and-paste, (d) diffusive
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Diffusion-based Partitioning

I Iterative method used for re-partitioning - migrate tasks from
overutilized processors to underutilized ones.

I Variations on which nodes to move, how many to move at one
time.

I Based on Cybenko model

wt+1
i = wt

i +
∑
j

αij(w
t
j − wt

i)

if wj − wi > 0 processor j gives work to i, else other way
around.

I At steady state the temperature is constant (computational
load is equal)

Slow to converge, use multilevel version, or recursive bisection
verion. Solve optimization problem to minimize norm of data
movement (1- or 2-norm).
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Multiphase/Multiconstraint Graph Partitioning
I Many simulations have multiple phases - e.g. first compute fluid step,

next compute the structural deformation, move geometry,...

I Each step has different CPU and memory requirements. Would like to

load balance each phase.

I single partition that balances all phases?
I multiple partition with redistribution between phases?
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Issues with Edge Cut Approximation

I 7 edges cut

I 9 items
communicated

I vertex 1 in A
connected to two
vertices in B but it
only needs to be sent
once.

Edge cuts 6= Communication volume
Communication volume 6= Communication cost
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Hypergraphs

Hypergraph H = (V,E) where E is a
hyperedge = subset of V, i.e. connects more than two vertices

e1 = {v1, v2, v3}
e2 = {v2, v3}
e3 = {v3, v5, v6}
e4 = {v4}

k-way partitioning: find P = {Vo, ..., Vk−1} to minimize

cut(H,P) = Σ
|E|−1
i=0 (λi(H,P )− 1)

λi(H,P ) = number of partitions spanned by hyperedge i
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Other Issues

I Heterogeneous machines

I Aspect ratio of subdomains (needed for convergence rate of
iterative solvers)

48 / 54



Software Packages

Also, graph partitioning archive at Univ. of Greenwich by Walshaw.
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Slide 91

Test Data

SLAC *LCLS 

Radio Frequency Gun

6.0M x 6.0M

23.4M nonzeros 

Xyce 680K ASIC Stripped

Circuit Simulation

680K x 680K

2.3M nonzeros

Cage15 DNA

Electrophoresis

5.1M x 5.1M

99M nonzeros

SLAC Linear Accelerator

2.9M x 2.9M

11.4M nonzeros 

from Zoltan tutorial slides, by Erik Boman and Karen Devine

50 / 54



Slide 92

Communication Volume:

Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts 

= number of 

processors.

RCB

Graph

Hypergraph

HSFC

from Zoltan tutorial slides, by Erik Boman and Karen Devine
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Slide 93

Partitioning Time:

Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.

Varying number

of processors.

RCB

Graph

Hypergraph

HSFC

from Zoltan tutorial slides, by Erik Boman and Karen Devine
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Slide 95

Repartitioning Results:

Lower is Better
Xyce 680K circuitSLAC 6.0M LCLS

Repartitioning

Time (secs)

Data

Redistribution

Volume

Application

Communication

Volume

from Zoltan tutorial slides, by Erik Boman and Karen Devine
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