MATH-GA 2012.001 and CSCI-GA 2945.001, Georg Stadler (NYU Courant)

Spring 2017: Advanced Topics in Numerical Analysis:
High Performance Computing
Assignment 2 (due March 23, 2017)

Handing in your homework: Please create a Git repository on Github, Bitbucket or Gitlab. If
you choose your repository to be private, please give me and Bill read access to the repo (our
user names are georgst and yuanxunbao). The repository should contain the C-files, as well
as a Makefile. My OpenMP-capable compiler is simply called gcc!. To hand in your homework,
you can either email Bill and me the location of your repo which contains a short .txt or ETEX
file that answers the questions/reports timings from this assignment, or you hand in a sheet with
the answers/timings that also specifies the location of your repo. To check if your code runs, we
will type the following commands?:

git clone YOURPATH/YOURREPO.git
cd YOURREPO

make

./omp_solved2

./omp_solved6
./ jacobi2D-omp
./gs2D-omp

The git repository https://github.com/NYU-HPC17/homework2.git contains the buggy
examples needed for this homework.®> For an overview over OpenMP, you can use the material
and examples from class and the official documentation for the OpenMP Standard 4.5.

1. Finding OpenMP bugs. The above repository contains five OpenMP problems that
contain bugs. Try to find these bugs and fix them. Add a short comment to the code
describing what was wrong and how you fixed the problem. Add the solutions to your
repository using the naming convention omp_solved{2,...}.c, and provide a Makefile to
compile the fixed example problems.

2. OpenMP version of 2D Jacobi/Gauss-Seidel smoothing. Implement first a serial and
then an OpenMP version of the two-dimensional Jacobi and Gauss-Seidel smoothers. This
is similar to the problem on the first homework assignment, but for the unit square domain
2 =(0,1) x (0,1). For a given function f : 2 — R, we aim to find u : Q@ — R such that

— Au = —(Ugy + uyy) = fin Q, (1)

1If you want to change the name of your compiler on your machine, you can create an alias for it in your
.bashrc or .cshrc (or whatever shell you use). On my Mac, for instance, | use: alias gcc=’gcc-mp-6’

2Since we will partially automize this, make sure this will work for the code you hand in.

3And yes, these examples can also be found on the web—but for your own sake, please try to understand
what's going on and try to find the bugs.

*http://www.openmp.org/specifications/


https://github.com/NYU-HPC17/homework2.git
http://www.openmp.org/specifications/
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Figure 1: Sketch of discretization points for unit square for N = 7. Left: Dark points are unknowns, grey
points at the boundary are zero. Right: red-black coloring of unknowns. Black and red points can be updated
independently in a Gauss-Seidel step.

and u(z,y) = 0 for all boundary points (z,y) € 002 = {(z,y) :x =0o0ory =0o0rz =
1 or y =1}. We go through analogous arguments as in homework 1, where we used finite
differences to discretize the one-dimensional version of (1). In two dimensions, we choose
the uniformly spaced points {(z;,y;) = (ih,jh) 14,5 =0,1,..., N, N+1} C [0,1] %[0, 1],
with b = 1/(N + 1), and approximate u(z;,y;) = w;; and f(z;,y;) = fi;, for i,j =
0,...,N +1; see Figure 1 (left). Using Taylor expansions as in the one-dimensional case
results in

—u(x;—h,y;)—u(z;, y;—h)+4u(z;, y;) —u(x;,+h, y;) —u(z;, y;+h)
2

where h.o.t. stands for a remainder term that is of higher order in h, i.e., becomes small as

h is decreased. Hence, we approximate the Laplace operator at a point (z;,y;) as follows:

—Au(x;,y;) = +h.o.t.,

Uiy — Uigo1 Ui — Ui — Ui
h? '

This results in a linear system, that can again be written as Au = f, where

—Auij =

-
u = (U1,1, U1,2,-..,U1,N,U21,U22,..., UNN-1, UN,N) )

.
f=f1, i fins for, foo, s InN—1, )

Note that the points at the boundaries are not included, as we know that their values must
be zero. Similarly to the one-dimensional case, the resulting Jacobi update for solving this
linear system is

1
k1 20 | .k k k k
Uiy =4 (h Jig i+ tuig g+ ui,j+1) ,

and the Gauss-Seidel update is given by

1
k+1 _ 25 k+1 k+1 k k
Uy = 1 (h fig+ Uiyt U g T U T uz’,j—i—l) ;



where it depens on the order of the unknowns which entries on the right hand side are
based on the kth and which on the (k + 1)st iteration. The above update formula is for
lexicographic ordering of the points, i.e., we sweep from left to right first and go row by
row from the bottom to the top. Usually, as in the one-dimensional case, one use a single
vector u of unknows, which are overwritten and the latest available values are used.

As can be seen, the update at the (i, j)th point in the Gauss-Seidel smoother depends on
previously updated points. This dependence makes it difficult to parallelize the Gauss-Seidel
algorithm. As a remedy, we consider a variant of Gauss-Seidel, which uses red-black coloring
of the unknowns. This amounts to “coloring” unknowns as shown in Figure 1 (right), and
into splitting each Gauss-Seidel iteration into two sweeps: first, one updates all black and
then all the red points (using the already updated red points). The point updates in the red
and black sweeps are independent from each other and can be parallelized using OpenMP.®
To detail the equations, this become the following update, where colors of the unknowns
correspond to the colors of points in the figure, i.e., first we update all red points, i.e.,
(i,7) corresponds to indices for red points,

1
Dkl 2p k k k k
Ui = 1 (h fig+ Ui g5+ U jq T U+ ui,jJrl) )

and then we update all black points, i.e., (7, ) are indices corresponding to black points:

k+1__1

2 k41 k41 ) k41 k41
i = (R fi;+u +u +ui T ”i,j+1) .

u i-15 T Uij-1

At the end, every point is on level (n + 1) and we repeat.

e Write OpenMP implementations of the Jacobi and the Gauss-Seidel method with red-
black coloring, and call them jacobi2D-omp.c and gs2D-omp.c. Make sure your
OpenMP codes also compile without OpenMP compilers using preprocessor commands
(#ifdef _OPENMP) as shown in class.

e Choose the right hand side f(x,y) = 1, and report timings for different values of N
and different numbers of threads, specifying the machine you run on. These timings
should be for a fixed number of iterations as, similar to the 1D case, the convergence
is slow, and slows down even further as N becomes larger.

5Depending on the discretization and the dimension of the problem, one might require more than two colors
to ensure that updates become independent from each other and allow for parallelism. Efficient coloring for
unstructured meshes with as little colors as possible is a difficult research question.



