Bilinear Inverse Problems: Theory, Algorithms, and Applications in Imaging Science and Signal Processing

Shuyang Ling
Department of Mathematics, UC Davis

May 31, 2017

Acknowledgements

Research in collaboration with:

- Prof.Xiaodong Li (UC Davis)
- Prof.Thomas Strohmer (UC Davis)
- Dr.Ke Wei (UC Davis)

This work is sponsored by NSF-DMS and DARPA.

Outline

(a) Part I: self-calibration and biconvex compressive sensing

- Application in array signal processing
- SparseLift: a convex approach towards biconvex compressive sensing
(b) Part II: blind deconvolution
- Applications in image deblurring and wireless communication
- Mathematical models and convex approach
- A nonconvex optimization approach towards blind deconvolution
- Extended to joint blind deconvolution and blind demixing

Part I

Part I: self-calibration and biconvex compressive sensing

Linear inverse problem

Inverse problem: to infer the values or parameters that characterize/describe the system from the obversations.

Many inverse problems involve solving a linear system:

Find \boldsymbol{x} when \boldsymbol{y} and \boldsymbol{A} are given

- \boldsymbol{A} is overdetermined \Longrightarrow linear least squares
- A is underdetermined: we need regularization, e.g., Tikhonov regularization and ℓ_{1} regularization (sparsity and

Albert Tarantola

```
Siz!l
```

compressive sensing)

Linear inverse problem

Inverse problem: to infer the values or parameters that characterize/describe the system from the obversations.

Many inverse problems involve solving a linear system:

$$
\boldsymbol{y}=\underbrace{\boldsymbol{A}}_{\text {perfectly known }} \underbrace{\boldsymbol{x}}_{\text {signal of interests }}+\boldsymbol{w}
$$

Albert Tarantola

compressive sensing)

Linear inverse problem

Inverse problem: to infer the values or parameters that characterize/describe the system from the obversations.

Many inverse problems involve solving a linear system:

$$
\boldsymbol{y}=\underbrace{\boldsymbol{A}}_{\text {perfectly known }} \underbrace{\boldsymbol{x}}_{\text {signal of interests }}+\boldsymbol{w} \text {. }
$$

Find \boldsymbol{x} when \boldsymbol{y} and \boldsymbol{A} are given:

- \boldsymbol{A} is overdetermined \Longrightarrow linear least squares
- \boldsymbol{A} is underdetermined: we need regularization, e.g., Tikhonov regularization and ℓ_{1} regularization (sparsity and

Albert Tarantola

siall

 compressive sensing)
Calibration

However, the sensing matrix \boldsymbol{A} may not be perfectly known.

```
Calibration issue:
- Calibration is to adjust one
    device with the standard one.
- Why? To reduce or eliminate
    bias and inaccuracy.
- Difficult or even impossible to
calibrate high-performance
hardware.
- Self-calibration: Equip sensors
with a smart algorithm which
takes care of calibration automatically.
```


Calibration

However, the sensing matrix \boldsymbol{A} may not be perfectly known.
Calibration issue:

- Calibration is to adjust one device with the standard one.
- Why? To reduce or eliminate bias and inaccuracy.
- Difficult or even impossible to calibrate high-performance hardware.
> - Self-calibration: Equip sensors with a smart algorithm which takes care of calibration automatically.

Calibration

However, the sensing matrix \boldsymbol{A} may not be perfectly known.
Calibration issue:

- Calibration is to adjust one device with the standard one.
- Why? To reduce or eliminate bias and inaccuracy.
- Difficult or even impossible to calibrate high-performance hardware.
- Self-calibration: Equip sensors with a smart algorithm which takes care of calibration
 automatically.

Calibration realized by machine?

Uncalibrated devices leads to imperfect sensing

We encounter imperfect sensing all the time: the sensing matrix $\boldsymbol{A}(\boldsymbol{h})$ depending on an unknown calibration parameter \boldsymbol{h},

$$
\boldsymbol{y}=\boldsymbol{A}(\boldsymbol{h}) \boldsymbol{x}+\boldsymbol{w}
$$

This is too general to solve for \boldsymbol{h} and \boldsymbol{x} jointly.

```
Examples:
- Phase retrieval problem: \(\boldsymbol{h}\) is the unknown phase of the Fourier transform of \(x\).
- Cryo-electron microscopy images: h can be the unknown orientation of a protein molecule and \(\boldsymbol{x}\) is the particle.
```


Calibration realized by machine?

Uncalibrated devices leads to imperfect sensing

We encounter imperfect sensing all the time: the sensing matrix $\boldsymbol{A}(\boldsymbol{h})$ depending on an unknown calibration parameter \boldsymbol{h},

$$
\boldsymbol{y}=\boldsymbol{A}(\boldsymbol{h}) \boldsymbol{x}+\boldsymbol{w}
$$

This is too general to solve for \boldsymbol{h} and \boldsymbol{x} jointly.
Examples:

- Phase retrieval problem: \boldsymbol{h} is the unknown phase of the Fourier transform of \boldsymbol{x}.
- Cryo-electron microscopy images: \boldsymbol{h} can be the unknown orientation of a protein molecule and \boldsymbol{x} is the particle.

A simplified but important model

Our focus:

One special case is to assume $\boldsymbol{A}(\boldsymbol{h})$ to be of the form

$$
A(h)=D(h) A
$$

where $\boldsymbol{D}(\boldsymbol{h})$ is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically nontrivial to analyze.

- Phase and gain calibration in array signal processing
- Blind deconvolution

A simplified but important model

Our focus:

One special case is to assume $\boldsymbol{A}(\boldsymbol{h})$ to be of the form

$$
A(h)=D(h) A
$$

where $\boldsymbol{D}(\boldsymbol{h})$ is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically nontrivial to analyze.

- Phase and gain calibration in array signal processing
- Blind deconvolution

Self-calibration in array signal processing

Calibration in the DOA (direction of arrival estimation)
One calibration issue comes from the unknown gains of the antennae caused by temperature or humidity.

Consider s signals impinging on an
array of L antennae.

where D is an unknown diagonal matrix and $d_{i i}$ is the unknown gain for i-th sensor. $\mathbf{A}(\theta)$: array manifold. $\bar{\theta}_{k}$: unknown direction of arrival. $\left\{x_{k}\right\}_{k=1}^{s}$ are the impinging signals.

Self-calibration in array signal processing

Calibration in the DOA (direction of arrival estimation)

One calibration issue comes from the unknown gains of the antennae caused by temperature or humidity.

Consider s signals impinging on an array of L antennae.

$$
\boldsymbol{y}=\sum_{k=1}^{s} \boldsymbol{D} \boldsymbol{A}\left(\bar{\theta}_{k}\right) x_{k}+\boldsymbol{w}
$$

where \boldsymbol{D} is an unknown diagonal matrix and $d_{i j}$ is the unknown gain for i-th sensor. $\boldsymbol{A}(\theta)$: array manifold. $\bar{\theta}_{k}$: unknown direction of arrival. $\left\{x_{k}\right\}_{k=1}^{s}$ are the impinging signals.

How is it related to compressive sensing?

Discretize the manifold function $\boldsymbol{A}(\theta)$ over $[-\pi \leq \theta<\pi]$ on N grid points.

$$
y=D A x+w
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\boldsymbol{A}\left(\theta_{1}\right) & \cdots & \boldsymbol{A}\left(\theta_{N}\right) \\
\mid & \cdots & \mid
\end{array}\right] \in \mathbb{C}^{L \times N}
$$

- To achieve high resolution, we usually have $L \leq N$.
- $\boldsymbol{x} \in \mathbb{C}^{N \times 1}$ is s-sparse. Its s nonzero entries correspond to the directions of signals. Moreover, we don't know the locations of nonzero entries.
- Subspace constraint: assume $\boldsymbol{D}=\operatorname{diag}(\boldsymbol{B h})$ where \boldsymbol{B} is a known $L \times K$ matrix and $K<L$.
- Number of constraints: L; number of unknowns: $K+s$.

Self-calibration and biconvex compressive sensing

Goal: Find $(\boldsymbol{h}, \boldsymbol{x})$ s.t. $\boldsymbol{y}=\operatorname{diag}(\boldsymbol{B h}) \boldsymbol{A} \boldsymbol{x}+\boldsymbol{w}$ and \boldsymbol{x} is sparse.

Biconvex compressive sensing

We are solving a biconvex (not convex) optimization problem to recover sparse signal \boldsymbol{x} and calibrating parameter \boldsymbol{h}.

$$
\min _{\boldsymbol{h}, \boldsymbol{x}}\|\operatorname{diag}(\boldsymbol{B} \boldsymbol{h}) \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|^{2}+\lambda\|\boldsymbol{x}\|_{1}
$$

$\boldsymbol{A} \in \mathbb{C}^{L \times N}$ and $\boldsymbol{B} \in \mathbb{C}^{L \times K}$ are known. $\boldsymbol{h} \in \mathbb{C}^{K \times 1}$ and $\boldsymbol{x} \in \mathbb{C}^{N \times 1}$ are unknown. \boldsymbol{x} is sparse.

Remark: If \boldsymbol{h} is known, \boldsymbol{x} can be recovered; if \boldsymbol{x} is known, we can find \boldsymbol{h} as well. Regarding identifiability issue, See [Lee, Bresler, etc. 15].

Biconvex compressive sensing

Goal: we want to find \boldsymbol{h} and a sparse \boldsymbol{x} from $\boldsymbol{y}, \boldsymbol{B}$ and \boldsymbol{A}.

Convex approach and lifting

Two-step convex approach
(a) Lifting: convert bilinear to linear constraints
(b) Solving a convex relaxation to recover $\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$.

Step 1: lifting
Let \boldsymbol{a}_{i} be the i-th column of \boldsymbol{A}^{*} and \boldsymbol{b}_{i} be the i-th column of \boldsymbol{B}^{*}

$$
y_{i}=\left(B h_{0}\right)_{i} x_{0}^{*} a_{i}+w_{i}=b_{i}^{*} h_{0} x_{0}^{*} a_{i}+w_{i} .
$$

Let $\quad X_{0}:=\boldsymbol{h}_{0} x_{0}^{*}$ and define the linear operator \mathcal{A}

$$
\mathcal{A}(Z):=\left\{b_{i}^{*} Z a_{i}\right\}_{i=1}^{\prime}=\left\{\left\langle Z, b_{i} a_{i}^{*}\right\rangle\right\}_{i=1}^{L}
$$

Then, there holds

In this way, $\mathcal{A}^{*}(z)=\sum_{i=1}^{L} z_{i} b_{i} a_{i}^{*}: \mathbb{C}^{L} \rightarrow \mathbb{C}^{K \times N}$

Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints
(b) Solving a convex relaxation to recover $\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$.

Step 1: lifting
Let $\boldsymbol{a}_{\boldsymbol{i}}$ be the \boldsymbol{i}-th column of \boldsymbol{A}^{*} and $\boldsymbol{b}_{\boldsymbol{i}}$ be the i-th column of \boldsymbol{B}^{*}.

$$
y_{i}=\left(\boldsymbol{B} \boldsymbol{h}_{0}\right)_{i} \boldsymbol{x}_{0}^{*} \boldsymbol{a}_{i}+w_{i}=\boldsymbol{b}_{i}^{*} \boldsymbol{h}_{0} x_{0}^{*} \boldsymbol{a}_{i}+w_{i}
$$

Let $\quad \boldsymbol{x}_{0}:=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$ and define the linear operator $\mathcal{A}: \mathbb{C}^{K \times N} \rightarrow \mathbb{C}^{L}$ as,

$$
\mathcal{A}(\boldsymbol{Z}):=\left\{\boldsymbol{b}_{i}^{*} \boldsymbol{Z} \boldsymbol{a}_{i}\right\}_{i=1}^{L}=\left\{\left\langle\boldsymbol{Z}, \boldsymbol{b}_{i} \boldsymbol{a}_{i}^{*}\right\rangle\right\}_{i=1}^{L} .
$$

Then, there holds

$$
\boldsymbol{y}=\mathcal{A}\left(\boldsymbol{X}_{0}\right)+\boldsymbol{w}
$$

In this way, $\mathcal{A}^{*}(z)=\sum_{i=1}^{L} z_{i} \boldsymbol{b}_{i} \boldsymbol{a}_{i}^{*}: \mathbb{C}^{L} \rightarrow \mathbb{C}^{K \times N}$.

Rank-1 matrix recovery

Lifting: recovery of a rank - 1 and row-sparse matrix

Find \boldsymbol{Z} s.t. $\operatorname{rank}(\boldsymbol{Z})=1$
$\mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)$
\boldsymbol{Z} has sparse rows

- An NP-hard problem to find such a rank-1 and sparse matrix.

Rank-1 matrix recovery

Lifting: recovery of a rank - 1 and row-sparse matrix

Find \boldsymbol{Z} s.t. $\operatorname{rank}(\boldsymbol{Z})=1$

$$
\mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)
$$

\boldsymbol{Z} has sparse rows

- $\left\|\boldsymbol{X}_{0}\right\|_{0}=K s$ where $\boldsymbol{X}_{0}=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}, \boldsymbol{h}_{0} \in \mathbb{C}^{K}$ and $\boldsymbol{x}_{0} \in \mathbb{C}^{N}$ with $\left\|x_{0}\right\|_{0}=s$.

$$
\boldsymbol{Z}=\left[\begin{array}{cccccccccc}
0 & 0 & h_{1} x_{i_{1}} & 0 & \cdots & 0 & h_{1} x_{i_{s}} & 0 & \cdots & 0 \\
0 & 0 & h_{2} x_{i_{1}} & 0 & \cdots & 0 & h_{2} x_{i_{s}} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & h_{K} x_{i_{1}} & 0 & \cdots & 0 & h_{K} x_{i_{s}} & 0 & \cdots & 0
\end{array}\right]_{K \times N}
$$

- An NP-hard problem to find such a rank-1 and sparse matrix.

SparseLift

$\|\boldsymbol{Z}\|_{*}:$ nuclear norm and $\|\boldsymbol{Z}\|_{1}: \ell_{1}$-norm of vectorized \boldsymbol{Z}.
A popular way: nuclear norm $+\ell_{1}$ - minimization

$$
\min \|\boldsymbol{Z}\|_{1}+\lambda\|\boldsymbol{Z}\|_{*} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right), \quad \lambda \geq 0
$$

> However, combination of multiple norms may not do any better [Oymak, Jalali, Fazel, Eldar and Hassibi 12]

Sparsalift

$$
\min \|\boldsymbol{Z}\|_{1} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)
$$

Idea: Lift the recovery problem of two unknown vectors to a matrix-valued problem and exploit sparsity through ℓ_{1}-minimization.

SparseLift

$\|\boldsymbol{Z}\|_{*}$: nuclear norm and $\|\boldsymbol{Z}\|_{1}: \ell_{1}$-norm of vectorized \boldsymbol{Z}.
A popular way: nuclear norm $+\ell_{1}$ - minimization

$$
\min \|\boldsymbol{Z}\|_{1}+\lambda\|\boldsymbol{Z}\|_{*} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right), \quad \lambda \geq 0
$$

However, combination of multiple norms may not do any better. [Oymak, Jalali, Fazel, Eldar and Hassibi 12].

SparseLift

$$
\min \|\boldsymbol{Z}\|_{1} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)
$$

Idea: Lift the recovery problem of two unknown vectors to a matrix-valued problem and exploit sparsity through ℓ_{1}-minimization.

Main theorem

Theorem: [Ling-Strohmer, 2015]

Recall the model:

$$
\boldsymbol{y}=\boldsymbol{D} \boldsymbol{A} \boldsymbol{x}, \quad \boldsymbol{D}=\operatorname{diag}(\boldsymbol{B} \boldsymbol{h})
$$

where
(a) \boldsymbol{B} is an $L \times K$ DFT tall matrix with $\boldsymbol{B}^{*} \boldsymbol{B}=\boldsymbol{I}_{K}$
(b) \boldsymbol{A} is an $L \times N$ real Gaussian random matrix or a random Fourier matrix.
Then SparseLift recovers \boldsymbol{X}_{0} exactly with high probability if

$$
L=\mathcal{O}(\underbrace{K}_{\text {dimension of } \boldsymbol{h}} \underbrace{s}_{\text {level of sparsity }} \log ^{2} L)
$$

where $K s=\left\|\boldsymbol{X}_{0}\right\|_{0}$.

Comments

- $\min \|\boldsymbol{X}\|_{*}$ fails if $L<N$.

$\min \\|\boldsymbol{X}\\|_{*}$	$L=\mathcal{O}(K+N)$
$\min \\|\boldsymbol{X}\\|_{1}$	$L=\mathcal{O}(\mathbf{K s} \log K N)$

- Solving ℓ_{1}-minimization is easier and cheaper than solving SDP.
- Compared with Compressive Sensing

Compressive Sensing	$L=\mathcal{O}(\mathbf{s} \log N)$
Our Case	$L=\mathcal{O}(K \mathbf{s} \log K N)$

- Believed to be optimal if one uses the 'Lifting' technique. It is unknown whether any algorithm would work for $L=\mathcal{O}(K+s)$.

Phase transition: SparseLift vs. $\|\cdot\|_{1}+\lambda\|\cdot\|_{*}$

$\min \|\cdot\|_{1}+\lambda\|\cdot\|_{*}$ does not do any better than $\min \|\cdot\|_{1}$.
White: Success, Black: Failure

The Frequency of Success: $L=128, N=256$

Figure: SparseLift

The Frequency of Success: $L=128, N=256$

Figure: $\min \|\cdot\|_{1}+0.1\|\cdot\|_{*}$
$L=128, N=256$. $\boldsymbol{A}:$ Gaussian and B : Non-random partial Fourier matrix. 10 experiments for each pair $(K, s), 1 \leq K, s \leq 15$.

Minimal L is nearly proportional to $K s$

$L: 10$ to $400 ; N=512 ; \boldsymbol{A}:$ Gaussian random matrices;
B : first K columns of a DFT matrix.

The Frequency of Success: $\mathrm{N}=512, \mathrm{k}=5$

Figure: Fix $K=5$

The Frequency of Success: $\mathrm{N}=512, \mathrm{~s}=5$

Figure: Fix $s=5$

Stability theory

Assume that \boldsymbol{y} is contaminated by noise, namely, $\boldsymbol{y}=\mathcal{A}\left(\boldsymbol{X}_{0}\right)+\boldsymbol{w}$ with $\|\boldsymbol{w}\| \leq \eta$, we solve the following program to recover \boldsymbol{X}_{0},

$$
\min \|\boldsymbol{Z}\|_{1} \quad \text { s.t. }\|\mathcal{A}(\boldsymbol{Z})-\boldsymbol{y}\| \leq \eta .
$$

Theorem
If \boldsymbol{A} is either a Gaussian random matrix or a random Fourier matrix,

$$
\left\|\hat{X}-X_{0}\right\|_{F} \leq\left(C_{0}+C_{1} \sqrt{K s}\right)_{\eta}
$$

with high probability. L satisfies the condition in the noiseless case. Both C_{0} and C_{1} are constants.

Stability theory

Assume that \boldsymbol{y} is contaminated by noise, namely, $\boldsymbol{y}=\mathcal{A}\left(\boldsymbol{X}_{0}\right)+\boldsymbol{w}$ with $\|\boldsymbol{w}\| \leq \eta$, we solve the following program to recover \boldsymbol{X}_{0},

$$
\min \|\boldsymbol{Z}\|_{1} \quad \text { s.t. }\|\mathcal{A}(\boldsymbol{Z})-\boldsymbol{y}\| \leq \eta
$$

Theorem

If \boldsymbol{A} is either a Gaussian random matrix or a random Fourier matrix,

$$
\left\|\hat{\boldsymbol{X}}-\boldsymbol{X}_{0}\right\|_{F} \leq\left(C_{0}+C_{1} \sqrt{K s}\right) \eta
$$

with high probability. L satisfies the condition in the noiseless case. Both C_{0} and C_{1} are constants.

Numerical example: relative error vs SNR

Figure: A: Gaussian matrix

Figure: A: random Fourier matrix

Remarks: $L=128, N=256, K=s=5$.

Part II

Part II: Blind deconvolution and nonconvex optimization

What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function \boldsymbol{y} which consists of the convolution of two unknown functions, the blurring function \boldsymbol{f} and the signal of interest \boldsymbol{g}, plus noise \boldsymbol{w}. How to reconstruct \boldsymbol{f} and \boldsymbol{g} from \boldsymbol{y} ?

$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}+\boldsymbol{w}
$$

It is obviously a highly ill-posed bilinear inverse problem...

- Much more difficult than ordinary deconvolution...but have important applications in various fields.
- Solvability? What conditions on \boldsymbol{f} and \boldsymbol{g} make this problem solvable?
- How? What algorithms shall we use to recover \boldsymbol{f} and \boldsymbol{g} ?

Why do we care about blind deconvolution?

Image deblurring

Let \boldsymbol{f} be the blurring kernel and \boldsymbol{g} be the original image, then $\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}$ is the blurred image.
Question: how to reconstruct \boldsymbol{f} and \boldsymbol{g} from \boldsymbol{y}

Why do we care about blind deconvolution?

Joint channel and signal estimation in wireless communication

 Suppose that a signal \boldsymbol{x}, encoded by \boldsymbol{A}, is transmitted through an unknown channel \boldsymbol{f}. How to reconstruct \boldsymbol{f} and \boldsymbol{x} from \boldsymbol{y} ?$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{A x}+\boldsymbol{w} .
$$

Subspace assumptions

We start from the original model

$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}+\boldsymbol{w}
$$

As mentioned before, it is an ill-posed problem. Phase retrieval is actually a special case if $\boldsymbol{g}(-x)=\overline{\boldsymbol{f}}(x)$. Hence, this problem is unsolvable without further assumptions...

Subspace assumption
Both \boldsymbol{f} and g belong to known subspaces: there exist known tall matrices
$\widetilde{B} \in \mathbb{C}^{L \times K}$ and $\widetilde{A} \in \mathbb{C}^{L \times N}$ such that

$$
\boldsymbol{f}=\widetilde{\boldsymbol{B}} \boldsymbol{h}_{0},
$$

$$
\boldsymbol{g}=\widetilde{\boldsymbol{A}} \boldsymbol{x}_{0}
$$

for some unknown vectors $\boldsymbol{h}_{0} \in \mathbb{C}^{K}$ and $\boldsymbol{x}_{0} \in \mathbb{C}^{N}$. Here \boldsymbol{x}_{0} is not necessarily sparse.

Subspace assumptions

We start from the original model

$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}+\boldsymbol{w}
$$

As mentioned before, it is an ill-posed problem. Phase retrieval is actually a special case if $\boldsymbol{g}(-x)=\overline{\boldsymbol{f}}(x)$. Hence, this problem is unsolvable without further assumptions...

Subspace assumption

Both \boldsymbol{f} and \boldsymbol{g} belong to known subspaces: there exist known tall matrices $\widetilde{\boldsymbol{B}} \in \mathbb{C}^{L \times K}$ and $\widetilde{\boldsymbol{A}} \in \mathbb{C}^{L \times N}$ such that

$$
\boldsymbol{f}=\widetilde{\boldsymbol{B}} \boldsymbol{h}_{0}, \quad \boldsymbol{g}=\tilde{\boldsymbol{A}} \boldsymbol{x}_{0}
$$

for some unknown vectors $\boldsymbol{h}_{0} \in \mathbb{C}^{K}$ and $\boldsymbol{x}_{0} \in \mathbb{C}^{N}$. Here \boldsymbol{x}_{0} is not necessarily sparse.

Examples for subspace assumption:

Subspace assumption

Both \boldsymbol{f} and \boldsymbol{g} belong to known subspaces: there exist known tall matrices $\widetilde{\boldsymbol{B}} \in \mathbb{C}^{L \times K}$ and $\widetilde{\boldsymbol{A}} \in \mathbb{C}^{L \times N}$ such that

$$
\boldsymbol{f}=\widetilde{\boldsymbol{B}} \boldsymbol{h}_{0}, \quad \boldsymbol{g}=\widetilde{\boldsymbol{A}} \boldsymbol{x}_{0}
$$

for some unknown vectors $\boldsymbol{h}_{0} \in \mathbb{C}^{K}$ and $\boldsymbol{x}_{0} \in \mathbb{C}^{N}$.

Useful examples:

- In image deblurring, $\widetilde{\boldsymbol{B}}$ can be the support of the blurring kernel; \boldsymbol{A} is a wavelet basis.
- In wireless communication, $\widetilde{\boldsymbol{B}}$ is related to the maximum delay spread and $\widetilde{\boldsymbol{A}}$ is an encoding matrix.

Model under subspace assumption

After taking Fourier transform, circular convolution becomes entrywise multiplication:

$$
\boldsymbol{y}=\left(\widetilde{\boldsymbol{B}} \boldsymbol{h}_{0}\right) *\left(\widetilde{\boldsymbol{A}} \boldsymbol{x}_{0}\right)+\boldsymbol{w} \Longrightarrow \hat{\boldsymbol{y}}=\operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{0}\right) \boldsymbol{A} \boldsymbol{x}_{0}+\hat{\boldsymbol{w}}
$$

where

$$
\hat{\boldsymbol{y}}=\boldsymbol{F} \boldsymbol{y} \in \mathbb{C}^{L}, \quad \boldsymbol{B}=\boldsymbol{F} \widetilde{\boldsymbol{B}}, \quad \boldsymbol{A}=\boldsymbol{F} \widetilde{\boldsymbol{A}}
$$

and F is the $L \times L$ DFT matrix.
Goal: recover $\boldsymbol{h}_{0}, \boldsymbol{x}_{0}$ from $\boldsymbol{B}, \boldsymbol{A}$, and $\hat{\boldsymbol{y}}$.

More on subspace assumption

Since we don't assume \boldsymbol{x} to be sparse, the degree of freedom for unknowns is $K+N$; number of constraints: L.

Mathematical model

$$
\boldsymbol{y}=\operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{0}\right) \boldsymbol{A} \boldsymbol{x}_{0}+\boldsymbol{w}
$$

$$
\text { where } \frac{w}{d_{0}} \sim \frac{1}{\sqrt{2}} \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{L}\right)+i \frac{1}{\sqrt{2}} \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{L}\right) \text { and } d_{0}=\left\|\boldsymbol{h}_{0}\right\|\left\|\boldsymbol{x}_{0}\right\| .
$$

One might want to solve the following nonlinear least squares problem,

$$
\min F(\boldsymbol{h}, \boldsymbol{x}):=\|\operatorname{diag}(\boldsymbol{B} \boldsymbol{h}) \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|^{2} .
$$

Difficulties:

(1) Nonconvexity: F is a nonconvex function; algorithms (such as gradient descent) are likely to get trapped at local minima
(2) No performance guarantees.

Mathematical model

$$
\boldsymbol{y}=\operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{0}\right) \boldsymbol{A} \boldsymbol{x}_{0}+\boldsymbol{w}
$$

where $\frac{\boldsymbol{w}}{d_{0}} \sim \frac{1}{\sqrt{2}} \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{L}\right)+i \frac{1}{\sqrt{2}} \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{L}\right)$ and $d_{0}=\left\|\boldsymbol{h}_{0}\right\|\left\|\boldsymbol{x}_{0}\right\|$.
One might want to solve the following nonlinear least squares problem,

$$
\min F(\boldsymbol{h}, \boldsymbol{x}):=\|\operatorname{diag}(\boldsymbol{B} \boldsymbol{h}) \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|^{2} .
$$

Difficulties:

(1) Nonconvexity: F is a nonconvex function; algorithms (such as gradient descent) are likely to get trapped at local minima.
(2) No performance guarantees.

Convex relaxation and state of the art

Nuclear norm minimization
Consider the convex envelop of $\operatorname{rank}(\boldsymbol{Z})$: nuclear norm $\|\boldsymbol{Z}\|_{*}=\sum \sigma_{i}(\boldsymbol{Z})$.

$$
\min \|\boldsymbol{Z}\|_{*} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)
$$

where $\boldsymbol{X}_{0}=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$.
Theorem [Ahmed-Recht-Romberg 11$]$
Assume $y=\operatorname{diag}\left(B h_{0}\right) A x_{0}, A: L \times N$ is a complex Gaussian random matrix,

the above convex relaxation recovers $\boldsymbol{X}=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$ exactly with high probability if

Convex relaxation and state of the art

Nuclear norm minimization

Consider the convex envelop of $\operatorname{rank}(\boldsymbol{Z})$: nuclear norm $\|\boldsymbol{Z}\|_{*}=\sum \sigma_{i}(\boldsymbol{Z})$.

$$
\min \|\boldsymbol{Z}\|_{*} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)
$$

where $\boldsymbol{X}_{0}=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$.
Theorem [Ahmed-Recht-Romberg 11]
Assume $\boldsymbol{y}=\operatorname{diag}\left(B \boldsymbol{h}_{0}\right) \boldsymbol{A} \boldsymbol{x}_{0}, \boldsymbol{A}: L \times N$ is a complex Gaussian random matrix,

$$
\boldsymbol{B}^{*} \boldsymbol{B}=\boldsymbol{I}_{K}, \quad\left\|\boldsymbol{b}_{i}\right\|^{2} \leq \frac{\mu_{\max }^{2} K}{L}, \quad L\left\|\boldsymbol{B} \boldsymbol{h}_{0}\right\|_{\infty}^{2} \leq \mu_{h}^{2}
$$

the above convex relaxation recovers $\boldsymbol{X}=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$ exactly with high probability if

$$
C_{0}\left(K+\mu_{h}^{2} N\right) \leq \frac{L}{\log ^{3} L}
$$

Pros and Cons of Convex Approach

Pros and Cons

- Pros: Simple, efficient and comes with theoretic guarantees
- Cons: Computationally too expensive to solve SDP

Our Goal: rapid, robust, reliable nonconvex approach

- Rapid: linear convergence
- Robust: stable to noise
- Reliable: provable and comes with theoretic guarantees; number of measurement close to information-theoretic limits.

A nonconvex optimization approach?

An increasing list of nonconvex approach to various problems:

- Phase retrieval: by Candès, Li, Soltanolkotabi, Chen, etc...
- Matrix completion: by Sun, Luo, Montanari, etc...
- Various problems: by Wainwright, Recht, Constantine, etc...

> Two-step philosophy for provable nonconvex optimization (a) Use spectral initialization to construct a starting point inside "the basin of attraction"
> (b) Simple gradient descent method

The key is to build up "the basin of attraction"

A nonconvex optimization approach?

An increasing list of nonconvex approach to various problems:

- Phase retrieval: by Candès, Li, Soltanolkotabi, Chen, etc...
- Matrix completion: by Sun, Luo, Montanari, etc...
- Various problems: by Wainwright, Recht, Constantine, etc...

Two-step philosophy for provable nonconvex optimization
(a) Use spectral initialization to construct a starting point inside "the basin of attraction";
(b) Simple gradient descent method.

The key is to build up "the basin of attraction".

Building "the basin of attraction"

The basin of the attraction relies on the following three observations.
Observation 1: Unboundedness of solution

- If the pair $\left(\boldsymbol{h}_{0}, \boldsymbol{x}_{0}\right)$ is a solution to $\boldsymbol{y}=\operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{0}\right) \boldsymbol{A} \boldsymbol{x}_{0}$, then so is the pair $\left(\alpha \boldsymbol{h}_{0}, \alpha^{-1} \boldsymbol{x}_{0}\right)$ for any $\alpha \neq 0$.
- Thus the blind deconvolution problem always has infinitely many solutions of this type. We can recover $\left(\boldsymbol{h}_{0}, \boldsymbol{x}_{0}\right)$ only up to a scalar.
- It is possible that $\|\boldsymbol{h}\| \gg\|\boldsymbol{x}\|$ (vice versa) while $\|\boldsymbol{h}\| \cdot\|\boldsymbol{x}\|=d_{0}$. Hence we define $\mathcal{N}_{d_{0}}$ to balance $\|\boldsymbol{h}\|$ and $\|\boldsymbol{x}\|$:

$$
\mathcal{N}_{d_{0}}:=\left\{(\boldsymbol{h}, \boldsymbol{x}):\|\boldsymbol{h}\| \leq 2 \sqrt{d_{0}},\|\boldsymbol{x}\| \leq 2 \sqrt{d_{0}}\right\}
$$

Building "the basin of attraction"

Observation 2: Incoherence

How much \boldsymbol{b}_{l} and \boldsymbol{h}_{0} are aligned matters:

$$
\mu_{h}^{2}:=\frac{L\left\|\boldsymbol{B} \boldsymbol{h}_{0}\right\|_{\infty}^{2}}{\left\|\boldsymbol{h}_{0}\right\|^{2}}=L \frac{\max _{i}\left|\boldsymbol{b}_{i}^{*} \boldsymbol{h}_{0}\right|^{2}}{\left\|\boldsymbol{h}_{0}\right\|^{2}}
$$

the smaller μ_{h}, the better.

Therefore, we introduce the \mathcal{N}_{μ} to control the incoherence:

$$
\mathcal{N}_{\mu}:=\left\{\boldsymbol{h}: \sqrt{L}\|\boldsymbol{B} \boldsymbol{h}\|_{\infty} \leq 4 \mu \sqrt{d_{0}}\right\} .
$$

"Incoherence" is not a new idea. In matrix completion, we also require the left and right singular vectors of the ground truth cannot be too "aligned" with those of measurement matrices $\left\{\boldsymbol{b}_{i} \boldsymbol{a}_{i}^{*}\right\}_{1 \leq i \leq L}$. The same philosophy applies here.

Building "the basin of attraction"

Observation 3: "Close" to the ground truth
We define $\mathcal{N}_{\varepsilon}$ to quantify closeness of $(\boldsymbol{h}, \boldsymbol{x})$ to true solution, i.e.,

$$
\mathcal{N}_{\varepsilon}:=\left\{(\boldsymbol{h}, \boldsymbol{x}):\left\|\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F} \leq \varepsilon d_{0}\right\} .
$$

We want to find an initial guess close to ($\boldsymbol{h}_{0}, \boldsymbol{x}_{0}$).

Building "the basin of attraction"

Based on the three observations above, we define the three neighborhoods (denoting $d_{0}=\left\|h_{0}\right\|\left\|x_{0}\right\|$):

$$
\begin{aligned}
\mathcal{N}_{d_{0}} & :=\left\{(\boldsymbol{h}, \boldsymbol{x}):\|\boldsymbol{h}\| \leq 2 \sqrt{d_{0}},\|\boldsymbol{x}\| \leq 2 \sqrt{d_{0}}\right\} \\
\mathcal{N}_{\mu} & :=\left\{\boldsymbol{h}: \sqrt{L}\|\boldsymbol{B} \boldsymbol{h}\|_{\infty} \leq 4 \mu \sqrt{d_{0}}\right\} \\
\mathcal{N}_{\varepsilon} & :=\left\{(\boldsymbol{h}, \boldsymbol{x}):\left\|\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F} \leq \varepsilon d_{0}\right\}
\end{aligned}
$$

where $\varepsilon<\frac{1}{15}$. We first obtain a good initial guess $\left(\boldsymbol{u}_{0}, \boldsymbol{v}_{0}\right) \in \mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$, which is followed by regularized gradient descent.

Objective function: a variant of projected gradient descent

The objective function \widetilde{F} consists of two parts: F and G :

$$
\min _{(\boldsymbol{h}, \boldsymbol{x})} \tilde{F}(\boldsymbol{h}, \boldsymbol{x}):=F(\boldsymbol{h}, \boldsymbol{x})+G(\boldsymbol{h}, \boldsymbol{x})
$$

where $F(\boldsymbol{h}, \boldsymbol{x})=\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}\right)-\boldsymbol{y}\right\|^{2}=\|\operatorname{diag}(\boldsymbol{B} \boldsymbol{h}) \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|^{2}$ and

Here $G_{0}(z)=\max \{z-1,0\}^{2}, \rho \approx d^{2}, d \approx d_{0}$ and $\mu \geq \mu_{h}$.

Objective function: a variant of projected gradient descent

The objective function \widetilde{F} consists of two parts: F and G :

$$
\min _{(\boldsymbol{h}, \boldsymbol{x})} \widetilde{F}(\boldsymbol{h}, \boldsymbol{x}):=F(\boldsymbol{h}, \boldsymbol{x})+G(\boldsymbol{h}, \boldsymbol{x})
$$

We refer F and G as

- F : least squares term, i.e., impose the measurement equations
- G : regularization term, i.e., regularization forces iterates $\left(\boldsymbol{u}_{t}, \boldsymbol{v}_{t}\right)$ inside $\mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Algorithm: Wirtinger Gradient Descent

Step 1: Initialization via spectral method and projection:

1: Compute $\mathcal{A}^{*}(\boldsymbol{y})$, (since $\left.\mathbb{E}\left(\mathcal{A}^{*}(\boldsymbol{y})\right)=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right)$;
2: Find the leading singular value, left and right singular vectors of $\mathcal{A}^{*}(\boldsymbol{y})$, denoted by $\left(d, \hat{\boldsymbol{h}}_{0}, \hat{\boldsymbol{x}}_{0}\right)$ respectively;
3: $\boldsymbol{u}^{(0)}:=\mathcal{P}_{\mathcal{N}_{\mu}}\left(\sqrt{d} \hat{\boldsymbol{h}}_{0}\right)$ and $\boldsymbol{v}^{(0)}:=\sqrt{d} \hat{\boldsymbol{x}}_{0}$;
4: Output: $\left(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)}\right)$.

Step 2: Gradient descent with constant stepsize η :

1: Initialization: obtain $\left(u^{(0)}, v^{(0)}\right)$ via Algorithm 1
2:
3:
4:
5: end for

Algorithm: Wirtinger Gradient Descent

Step 1: Initialization via spectral method and projection:

1: Compute $\mathcal{A}^{*}(\boldsymbol{y})$, (since $\left.\mathbb{E}\left(\mathcal{A}^{*}(\boldsymbol{y})\right)=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right)$;
2: Find the leading singular value, left and right singular vectors of $\mathcal{A}^{*}(\boldsymbol{y})$, denoted by $\left(d, \hat{\boldsymbol{h}}_{0}, \hat{\boldsymbol{x}}_{0}\right)$ respectively;
3: $\boldsymbol{u}^{(0)}:=\mathcal{P}_{\mathcal{N}_{\mu}}\left(\sqrt{d} \hat{\boldsymbol{h}}_{0}\right)$ and $\boldsymbol{v}^{(0)}:=\sqrt{d} \hat{\boldsymbol{x}}_{0}$;
4: Output: $\left(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)}\right)$.

Step 2: Gradient descent with constant stepsize η :
1: Initialization: obtain $\left(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)}\right)$ via Algorithm 1.
2: for $t=1,2, \ldots$, do
3: $\quad \boldsymbol{u}^{(t)}=\boldsymbol{u}^{(t-1)}-\eta \nabla \widetilde{F}_{\boldsymbol{h}}\left(\boldsymbol{u}^{(t-1)}, \boldsymbol{v}^{(t-1)}\right)$
4: $\quad \boldsymbol{v}^{(t)}=\boldsymbol{v}^{(t-1)}-\eta \nabla \widetilde{F}_{\boldsymbol{x}}\left(\boldsymbol{u}^{(t-1)}, \boldsymbol{v}^{(t-1)}\right)$
5: end for

Main theorem

Theorem: [Li-Ling-Strohmer-Wei, 2016]

Let \boldsymbol{B} be a tall partial DFT matrix and \boldsymbol{A} be a complex Gaussian random matrix. If the number of measurements satisfies

$$
L \geq C\left(\mu_{h}^{2}+\sigma^{2}\right)(K+N) \log ^{2}(L) / \varepsilon^{2}
$$

(i) then the initialization $\left(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)}\right) \in \frac{1}{\sqrt{3}} \mathcal{N}_{d_{0}} \bigcap \frac{1}{\sqrt{3}} \mathcal{N}_{\mu} \bigcap \mathcal{N}_{\frac{2}{5}} \varepsilon$;
(ii) the regularized gradient descent algorithm creates a sequence $\left(\boldsymbol{u}^{(t)}, \boldsymbol{v}^{(t)}\right)$ in $\mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$ satisfying

$$
\left\|\boldsymbol{u}^{(t)}\left(\boldsymbol{v}^{(t)}\right)^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F} \leq(1-\alpha)^{t} \varepsilon d_{0}+c_{0}\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|
$$

with high probability where $\alpha=\mathcal{O}\left(\frac{1}{\left(1+\sigma^{2}\right)(K+N) \log ^{2} L}\right)$

Remarks

(a) If $\boldsymbol{w}=\mathbf{0},\left(\boldsymbol{u}^{(t)}, \boldsymbol{v}^{(t)}\right)$ converges to $\left(\boldsymbol{h}_{0}, \boldsymbol{x}_{0}\right)$ linearly.

$$
\left\|\boldsymbol{u}^{(t)}\left(\boldsymbol{v}^{(t)}\right)^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F} \leq(1-\alpha)^{t} \varepsilon d_{0} \rightarrow 0, \text { as } t \rightarrow \infty
$$

(b) If $\boldsymbol{w} \neq \mathbf{0},\left(\boldsymbol{u}^{(t)}, \boldsymbol{v}^{(t)}\right)$ converges to a small neighborhood of $\left(\boldsymbol{h}_{0}, \boldsymbol{x}_{0}\right)$ linearly.

$$
\left\|\boldsymbol{u}^{(t)}\left(\boldsymbol{v}^{(t)}\right)^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F} \rightarrow c_{0}\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|, \text { as } t \rightarrow \infty
$$

where

$$
\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|=\mathcal{O}\left(\sigma d_{0} \sqrt{\frac{(K+N) \log L}{L}}\right) \rightarrow 0, \text { if } L \rightarrow \infty
$$

As L is becoming larger and larger, the effect of noise diminishes. (Recall linear least squares.)

Numerical experiments

Nonconvex approach v.s. convex approach:

$$
\min _{(\boldsymbol{h}, \boldsymbol{x})} \widetilde{F}(\boldsymbol{h}, \boldsymbol{x}) \quad \text { v.s. } \quad \min \|\boldsymbol{Z}\|_{*} \quad \text { s.t. }\|\mathcal{A}(\boldsymbol{Z})-\boldsymbol{y}\| \leq \eta .
$$

Nonconvex method requires fewer measurements to achieve exact recovery than convex method. Moreover, if \boldsymbol{A} is a partial Hadamard matrix, our algorithm still gives satisfactory performance.

$K=N=50, B$ is a low-frequency DFT matrix.

Stability

Our algorithm yields stable recovery if the observation is noisy.

Here $K=N=100$.

MRI image deblurring:

Here \boldsymbol{B} is a partial DFT matrix and \boldsymbol{A} is a partial wavelet matrix.
When the subspace $\boldsymbol{B},(K=65)$ or support of blurring kernel is known: $\boldsymbol{g} \approx \boldsymbol{A x}$: image of $512 \times 512 ; \boldsymbol{A}$: wavelet subspace corresponding to the $N=20000$ largest Haar wavelet coefficients of \boldsymbol{g}.

Extended to joint blind deconvolution and blind demixing

Suppose there are s users and each of them sends a message \boldsymbol{x}_{i}, which is encoded by \boldsymbol{C}_{i}, to a common receiver. Each encoded message $\boldsymbol{g}_{i}=\boldsymbol{C}_{i} \boldsymbol{x}_{i}$ is convolved with an unknown impulse response function \boldsymbol{f}_{i}.

Suppose that

- Each impulse response \boldsymbol{f}_{i} has maximum delay spread K (compact support):

$$
\boldsymbol{f}_{i}(n)=0, \quad \text { for } n>K
$$

- $\boldsymbol{g}_{i}:=\boldsymbol{C}_{i} \boldsymbol{x}_{i}$ is the signal $\boldsymbol{x}_{i} \in \mathbb{C}^{N}$ encoded by $\boldsymbol{C}_{i} \in \mathbb{C}^{L \times N}$ with $L>N$.

Mathematical model

Let \boldsymbol{B} be the first K columns of the DFT matrix and $\boldsymbol{A}_{\boldsymbol{i}}=\boldsymbol{F} \boldsymbol{C}_{i}$,

$$
\boldsymbol{y}=\sum_{i=1}^{s} \operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i}+\boldsymbol{w}
$$

Goal: We want to recover $\left\{\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)\right\}_{i=1}^{s}$ from $\left(\boldsymbol{y}, \boldsymbol{B},\left\{\boldsymbol{A}_{i}\right\}_{i=1}^{s}\right)$.
The degree of freedom for unknowns: $s(K+N)$; number of constraints: L.

Objective function: a variant of projected gradient descent

The objective function \widetilde{F} consists of two parts: F and G,

$$
\min _{(\boldsymbol{h}, \boldsymbol{x})} \widetilde{F}(\boldsymbol{h}, \boldsymbol{x}):=\underbrace{F(\boldsymbol{h}, \boldsymbol{x})}_{\text {least squares term }}+\underbrace{G(\boldsymbol{h}, \boldsymbol{x})}_{\text {regularization term }}
$$

where $F(\boldsymbol{h}, \boldsymbol{x}):=\left\|\sum_{i=1}^{s} \operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i}-\boldsymbol{y}\right\|^{2}$ and

$$
G(\boldsymbol{h}, \boldsymbol{x}):=\rho \sum_{i=1}^{s}[\underbrace{G_{0}\left(\frac{\left\|\boldsymbol{h}_{i}\right\|^{2}}{2 d_{i}}\right)+G_{0}\left(\frac{\left\|\boldsymbol{x}_{i}\right\|^{2}}{2 d_{i}}\right)}_{\mathcal{N}_{d_{0}}: \text { balance }\left\|\boldsymbol{h}_{i}\right\| \text { and }\left\|\boldsymbol{x}_{i}\right\|}+\underbrace{\sum_{l=1}^{L} G_{0}\left(\frac{L\left|\boldsymbol{b}_{l}^{*} \boldsymbol{h}_{i}\right|^{2}}{8 d_{i} \mu^{2}}\right)}_{\mathcal{N}_{\mu}: \text { impose incoherence }}]
$$

Algorithm:

- Spectral initialization
- Apply gradient descent to \widetilde{F}

Main results

Theorem [Ling-Strohmer 17]

Assume $\boldsymbol{w} \sim \mathcal{C N}\left(0, \sigma^{2} d_{0}^{2} / L\right)$ and \boldsymbol{A}_{i} as a complex Gaussian matrix. Starting with the initial value

$$
\left(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)}\right) \in \frac{1}{\sqrt{3}} \mathcal{N}_{d_{0}} \bigcap \frac{1}{\sqrt{3}} \mathcal{N}_{\mu} \bigcap \mathcal{N}_{\frac{2 \varepsilon}{5 \sqrt{5 \kappa}}},
$$

$\left(\boldsymbol{u}^{(t)}, \boldsymbol{v}^{(t)}\right)$ converges to the global minima linearly,

$$
\sqrt{\sum_{i=1}^{s}\left\|\boldsymbol{u}_{i}^{(t)}\left(\boldsymbol{v}_{i}^{(t)}\right)^{*}-\boldsymbol{h}_{i 0} \boldsymbol{x}_{i 0}^{*}\right\|_{F}^{2}} \leq \underbrace{(1-\alpha)^{t} \varepsilon d_{0}}_{\text {linear convergence }}+\underbrace{c_{0}\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|}_{\text {error term }}
$$

with probability at least $1-L^{-\gamma+1}$ and $\alpha=\mathcal{O}\left(\left(s(K+N) \log ^{2} L\right)^{-1}\right)$ if

$$
L \geq C_{\gamma}\left(\mu_{h}^{2}+\sigma^{2}\right) s^{2} \kappa^{4}(K+N) \log ^{2} L \log s / \varepsilon^{2}
$$

Numerics: Does L scale linearly with s?

Let each \boldsymbol{A}_{i} be a complex Gaussian matrix. The number of measurement scales linearly with the number of sources s if K and N are fixed. Approximately, $L \approx 1.5 s(K+N)$ yields exact recovery.

Figure: Black: failure; white: success

A communication example

A more practical and useful choice of encoding matrix $\boldsymbol{C}_{i}: \boldsymbol{C}_{\boldsymbol{i}}=\boldsymbol{D}_{i} \boldsymbol{H}$ (i.e., $\left.\boldsymbol{A}_{i}=\boldsymbol{F} \boldsymbol{D}_{i} \boldsymbol{H}\right)$ where \boldsymbol{D}_{i} is a diagonal random binary ± 1 matrix and \boldsymbol{H} is an $L \times N$ deterministic partial Hadamard matrix. With this setting, our approach can demix many users without performing channel estimation.

$L \approx 1.5 s(K+N)$ yields exact recovery.

Important ingredients of proof

The first three conditions hold over "the basin of attraction" $\mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Condition 1: Local Regularity Condition

Guarantee sufficient decrease in each iterate and linear convergence of \widetilde{F} :

$$
\|\nabla \widetilde{F}(\boldsymbol{h}, \boldsymbol{x})\|^{2} \geq \omega \widetilde{F}(\boldsymbol{h}, \boldsymbol{x})
$$

where $\omega>0$ and $(\boldsymbol{h}, \boldsymbol{x}) \in \mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Condition 2: Local Smoothness Condition

Governs rate of convergence. Let $\boldsymbol{z}=(\boldsymbol{h}, \boldsymbol{x})$. There exists a constant C_{L} (Lipschitz constant of gradient) such that

$$
\|\nabla \widetilde{F}(z+t \Delta z)-\nabla \widetilde{F}(z)\| \leq C_{L} t\|\Delta z\|, \quad \forall 0 \leq t \leq 1
$$

for all $\left\{(\boldsymbol{z}, \Delta \boldsymbol{z}): \boldsymbol{z}+t \Delta \boldsymbol{z} \in \mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}, \forall 0 \leq t \leq 1\right\}$.

Important ingredients of proof

Condition 3: Local Restricted Isometry Property

Transfer convergence of objective function to convergence of iterates.

$$
\frac{2}{3}\left\|\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} x_{0}^{*}\right\|_{F}^{2} \leq\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} x_{0}^{*}\right)\right\|^{2} \leq \frac{3}{2}\left\|\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} x_{0}^{*}\right\|_{F}^{2}
$$

holds uniformly for all $(\boldsymbol{h}, \boldsymbol{x}) \in \mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Condition 4: Robustness Condition

Provide stability against noise.

$$
\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\| \leq \frac{\varepsilon d_{0}}{10 \sqrt{2}}
$$

where $\mathcal{A}^{*}(\boldsymbol{w})=\sum_{l=1}^{L} w_{l} \boldsymbol{b}_{l} \boldsymbol{a}_{l}^{*}$ is a sum of L rank-1 random matrices. It concentrates around $\mathbf{0}$.

Outlook and Conclusion

Conclusion: The proposed algorithm is arguably the first nonconvex blind deconvolution/demixing algorithm with rigorous recovery guarantees. We also propose a convex approach (sub-optimal) to solve a self-calibration problem related to biconvex compressive sensing.

- Can we show if similar result holds for other types of A?
- What if \boldsymbol{x} or \boldsymbol{h} is sparse/both of them are sparse?
- See details:
(1) Self-calibration and biconvex compressive sensing. Inverse Problems 31 (11), 115002
(2) Blind deconvolution meets blind demixing: algorithms and performance bounds, To appear in IEEE Trans on Information Theory
Rapid, robust, and reliable blind deconvolution via nonconvex
optimization, arXiv:1606.04933.
- Regularized gradient descent: a nonconvex recipe for fast joint blind deconvolution and demixing arXiv:1703.08642.

Outlook and Conclusion

Conclusion: The proposed algorithm is arguably the first nonconvex blind deconvolution/demixing algorithm with rigorous recovery guarantees. We also propose a convex approach (sub-optimal) to solve a self-calibration problem related to biconvex compressive sensing.

- Can we show if similar result holds for other types of \boldsymbol{A} ?
- What if \boldsymbol{x} or \boldsymbol{h} is sparse/both of them are sparse?
- See details:
(1) Self-calibration and biconvex compressive sensing. Inverse Problems 31 (11), 115002
(2) Blind deconvolution meets blind demixing: algorithms and performance bounds, To appear in IEEE Trans on Information Theory
(3) Rapid, robust, and reliable blind deconvolution via nonconvex optimization, arXiv:1606.04933.
(1) Regularized gradient descent: a nonconvex recipe for fast joint blind deconvolution and demixing arXiv:1703.08642.

MRI imaging deblurring:

When the subspace \boldsymbol{B} or support of blurring kernel is unknown: we assume the support of blurring kernel is contained in a small box; $N=35000$.

Two-page proof

Condition $1+2 \Longrightarrow$ Linear convergence of \widetilde{F}

Proof.

Let $\boldsymbol{z}_{t+1}=\boldsymbol{z}_{t}-\eta \nabla \widetilde{F}\left(\boldsymbol{z}_{t}\right)$ with $\eta \leq \frac{1}{C_{L}}$. By using modified descent lemma,

$$
\begin{aligned}
\tilde{F}\left(z_{t}+\eta \nabla \tilde{F}\left(z_{t}\right)\right) & \leq \tilde{F}\left(z_{t}\right)-\left(2 \eta+C_{L} \eta^{2}\right)\left\|\nabla \tilde{F}\left(z_{t}\right)\right\|^{2} \\
& \leq \widetilde{F}\left(z_{t}\right)-\eta \omega \widetilde{F}\left(z_{t}\right)
\end{aligned}
$$

which gives $\widetilde{F}\left(z_{t+1}\right) \leq(1-\eta \omega)^{t} \widetilde{F}\left(z_{0}\right)$.

Two-page proof: continued

Condition $3 \Longrightarrow$ Linear convergence of $\left\|\boldsymbol{u}_{t} \boldsymbol{v}_{t}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F}$.

It follows from $\widetilde{F}\left(z_{t}\right) \geq F\left(z_{t}\right) \geq \frac{3}{4}\left\|\boldsymbol{u}_{t} \boldsymbol{v}_{t}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F}^{2}$. Hence, linear convergence of objective function also implies linear convergence of iterates.

Condition $4 \Longrightarrow$ Proof of stability theory

If L is sufficiently large, $\mathcal{A}^{*}(\boldsymbol{w})$ is small since $\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\| \rightarrow 0$. There holds

$$
\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right)-\boldsymbol{w}\right\|^{2} \approx\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right)\right\|^{2}+\sigma^{2} d_{0}^{2} .
$$

Hence, the objective function behaves "almost like" $\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right)\right\|^{2}$, the noiseless version of F if the sample size is sufficiently large.

