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Part I

Part I: self-calibration and biconvex compressive sensing

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 4 / 54



Linear inverse problem

Inverse problem: to infer the values or parameters that
characterize/describe the system from the obversations.

Many inverse problems involve solving a linear
system:

y = A︸︷︷︸
perfectly known

x︸︷︷︸
signal of interests

+w .

Find x when y and A are given:

A is overdetermined =⇒ linear least squares

A is underdetermined: we need
regularization, e.g., Tikhonov regularization
and `1 regularization (sparsity and
compressive sensing)
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Calibration

However, the sensing matrix A may not be perfectly known.

Calibration issue:

Calibration is to adjust one
device with the standard one.

Why? To reduce or eliminate
bias and inaccuracy.

Difficult or even impossible to
calibrate high-performance
hardware.

Self-calibration: Equip sensors
with a smart algorithm which
takes care of calibration
automatically.
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Calibration realized by machine?

Uncalibrated devices leads to imperfect sensing

We encounter imperfect sensing all the time: the sensing matrix A(h)
depending on an unknown calibration parameter h,

y = A(h)x + w .

This is too general to solve for h and x jointly.

Examples:

Phase retrieval problem: h is the unknown phase of the Fourier
transform of x .
Cryo-electron microscopy images: h can be the unknown orientation
of a protein molecule and x is the particle.
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A simplified but important model

Our focus:

One special case is to assume A(h) to be of the form

A(h) = D(h)A

where D(h) is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically
nontrivial to analyze.

Phase and gain calibration in array signal processing

Blind deconvolution
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Self-calibration in array signal processing

Calibration in the DOA (direction of arrival estimation)

One calibration issue comes from the unknown gains of the antennae
caused by temperature or humidity.

𝜃"

𝜃# 𝜃$

𝜃% 𝜃&

𝜃'
Antenna	elements

Consider s signals impinging on an
array of L antennae.

y =
s∑

k=1

DA(θ̄k)xk + w

where D is an unknown diagonal
matrix and dii is the unknown gain
for i-th sensor. A(θ): array mani-
fold. θ̄k : unknown direction of ar-
rival. {xk}sk=1 are the impinging
signals.
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How is it related to compressive sensing?

Discretize the manifold function A(θ) over [−π ≤ θ < π] on N grid points.

y = DAx + w

where

A =

 | · · · |
A(θ1) · · · A(θN)
| · · · |

 ∈ CL×N

To achieve high resolution, we usually have L ≤ N.

x ∈ CN×1 is s-sparse. Its s nonzero entries correspond to the
directions of signals. Moreover, we don’t know the locations of
nonzero entries.

Subspace constraint: assume D = diag(Bh) where B is a known
L× K matrix and K < L.

Number of constraints: L; number of unknowns: K + s.

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 10 / 54



Self-calibration and biconvex compressive sensing

Goal: Find (h, x) s.t. y = diag(Bh)Ax + w and x is sparse.

Biconvex compressive sensing

We are solving a biconvex (not convex) optimization problem to recover
sparse signal x and calibrating parameter h.

min
h,x
‖ diag(Bh)Ax − y‖2 + λ‖x‖1

A ∈ CL×N and B ∈ CL×K are known. h ∈ CK×1 and x ∈ CN×1 are
unknown. x is sparse.

Remark: If h is known, x can be recovered; if x is known, we can find h as
well. Regarding identifiability issue, See [Lee, Bresler, etc. 15].
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Biconvex compressive sensing

Goal: we want to find h and a sparse x from y , B and A.

= +

𝒚: 𝐿×1 𝑩: 𝐿×𝐾 𝒉:𝐾×1 𝐴: 𝐿×𝑁 𝑥:𝑁×1,
	𝑠-sparse

𝒘: 𝐿×1

⊙
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Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints

(b) Solving a convex relaxation to recover h0x∗0.

Step 1: lifting

Let ai be the i-th column of A∗ and bi be the i-th column of B∗.

yi = (Bh0)ix∗0ai + wi = b∗i h0x∗0ai + wi .

Let X 0 := h0x∗0 and define the linear operator A : CK×N → CL as,

A(Z ) := {b∗i Zai}Li=1 = {〈Z ,bia∗i 〉}Li=1.

Then, there holds
y = A(X 0) + w .

In this way, A∗(z) =
∑L

i=1 zibia∗i : CL → CK×N .
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Rank-1 matrix recovery

Lifting: recovery of a rank - 1 and row-sparse matrix

Find Z s.t. rank(Z ) = 1

A(Z ) = A(X 0)

Z has sparse rows

‖X 0‖0 = Ks where X 0 = h0x∗0, h0 ∈ CK and x0 ∈ CN with
‖x0‖0 = s.

Z =


0 0 h1xi1 0 · · · 0 h1xis 0 · · · 0
0 0 h2xi1 0 · · · 0 h2xis 0 · · · 0
...

...
...

...
. . .

...
...

...
. . .

...
0 0 hKxi1 0 · · · 0 hKxis 0 · · · 0


K×N

An NP-hard problem to find such a rank-1 and sparse matrix.
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SparseLift

‖Z‖∗: nuclear norm and ‖Z‖1: `1-norm of vectorized Z .

A popular way: nuclear norm + `1- minimization

min ‖Z‖1 + λ‖Z‖∗ s.t. A(Z ) = A(X 0), λ ≥ 0.

However, combination of multiple norms may not do any better.
[Oymak, Jalali, Fazel, Eldar and Hassibi 12].

SparseLift

min ‖Z‖1 s.t. A(Z ) = A(X 0).

Idea: Lift the recovery problem of two unknown vectors to a matrix-valued
problem and exploit sparsity through `1-minimization.
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Main theorem

Theorem: [Ling-Strohmer, 2015]

Recall the model:
y = DAx , D = diag(Bh),

where

(a) B is an L× K DFT tall matrix with B∗B = IK
(b) A is an L× N real Gaussian random matrix or a random Fourier

matrix.

Then SparseLift recovers X 0 exactly with high probability if

L = O( K︸︷︷︸
dimension of h

s︸︷︷︸
level of sparsity

log2 L)

where Ks = ‖X 0‖0.

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 16 / 54



Comments

min ‖X‖∗ fails if L < N.

min ‖X‖∗ L = O(K + N)
min ‖X‖1 L = O(Ks logKN)

Solving `1-minimization is easier and cheaper than solving SDP.

Compared with Compressive Sensing

Compressive Sensing L = O(s logN)
Our Case L = O(Ks logKN)

Believed to be optimal if one uses the ‘Lifting’ technique. It is
unknown whether any algorithm would work for L = O(K + s).
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Phase transition: SparseLift vs. ‖ · ‖1 + λ‖ · ‖∗
min ‖ · ‖1 + λ‖ · ‖∗ does not do any better than min ‖ · ‖1.
White: Success, Black: Failure
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Figure: SparseLift
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Figure: min ‖ · ‖1 + 0.1‖ · ‖∗

L = 128,N = 256. A: Gaussian and B: Non-random partial Fourier
matrix. 10 experiments for each pair (K , s), 1 ≤ K , s ≤ 15.
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Minimal L is nearly proportional to Ks

L : 10 to 400; N = 512; A: Gaussian random matrices;
B: first K columns of a DFT matrix.
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Figure: Fix K = 5
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Stability theory

Assume that y is contaminated by noise, namely, y = A(X 0) + w with
‖w‖ ≤ η, we solve the following program to recover X 0,

min ‖Z‖1 s.t. ‖A(Z )− y‖ ≤ η.

Theorem

If A is either a Gaussian random matrix or a random Fourier matrix,

‖X̂ − X 0‖F ≤ (C0 + C1

√
Ks)η

with high probability. L satisfies the condition in the noiseless case. Both
C0 and C1 are constants.
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Numerical example: relative error vs SNR
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Figure: A: Gaussian matrix
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Figure: A: random Fourier matrix

Remarks: L = 128,N = 256,K = s = 5.
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Part II

Part II: Blind deconvolution and nonconvex optimization
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What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function y which consists of the convolution of two
unknown functions, the blurring function f and the signal of interest g ,
plus noise w . How to reconstruct f and g from y?

y = f ∗ g + w .

It is obviously a highly ill-posed bilinear inverse problem...

Much more difficult than ordinary deconvolution...but have important
applications in various fields.

Solvability? What conditions on f and g make this problem solvable?

How? What algorithms shall we use to recover f and g?
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Why do we care about blind deconvolution?

Image deblurring

Let f be the blurring kernel and g be the original image, then y = f ∗ g is
the blurred image.
Question: how to reconstruct f and g from y

=  

y 
blurred  
image

f
blurring  
kernel

g
original  
image

 
= +

+

w
noise
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Why do we care about blind deconvolution?

Joint channel and signal estimation in wireless communication

Suppose that a signal x , encoded by A, is transmitted through an
unknown channel f . How to reconstruct f and x from y?

y = f ∗ Ax + w .

=

f:unknown  
channel

A:Encoding  
matrix

x:unknown  
signal

y:received  
signal

  +

w:noise

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 25 / 54



Subspace assumptions

We start from the original model

y = f ∗ g + w .

As mentioned before, it is an ill-posed problem. Phase retrieval is actually
a special case if g(−x) = f̄ (x). Hence, this problem is unsolvable without
further assumptions...

Subspace assumption

Both f and g belong to known subspaces: there exist known tall matrices
B̃ ∈ CL×K and Ã ∈ CL×N such that

f = B̃h0, g = Ãx0,

for some unknown vectors h0 ∈ CK and x0 ∈ CN . Here x0 is not
necessarily sparse.
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Examples for subspace assumption:

Subspace assumption

Both f and g belong to known subspaces: there exist known tall matrices
B̃ ∈ CL×K and Ã ∈ CL×N such that

f = B̃h0, g = Ãx0,

for some unknown vectors h0 ∈ CK and x0 ∈ CN .

Useful examples:

In image deblurring, B̃ can be the support of the blurring kernel;
Ã is a wavelet basis.

In wireless communication, B̃ is related to the maximum delay spread
and Ã is an encoding matrix.
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Model under subspace assumption

After taking Fourier transform, circular convolution becomes entrywise
multiplication:

y = (B̃h0) ∗ (Ãx0) + w =⇒ ŷ = diag(Bh0)Ax0 + ŵ ,

where
ŷ = Fy ∈ CL, B = FB̃, A = FÃ

and F is the L× L DFT matrix.

Goal: recover h0, x0 from B, A, and ŷ .
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More on subspace assumption

+
= +

𝒚: 𝐿×1 𝑩: 𝐿×𝐾 𝒉:𝐾×1 𝐴: 𝐿×𝑁 𝑥:𝑁×1 𝒘: 𝐿×1

⊙

Since we don’t assume x to be sparse, the degree of freedom for unknowns
is K + N; number of constraints: L.
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Mathematical model

y = diag(Bh0)Ax0 + w ,

where w
d0
∼ 1√

2
N (0, σ2I L) + i 1√

2
N (0, σ2I L) and d0 = ‖h0‖‖x0‖.

One might want to solve the following nonlinear least squares problem,

min F (h, x) := ‖ diag(Bh)Ax − y‖2.

Difficulties:

1 Nonconvexity: F is a nonconvex function; algorithms (such as
gradient descent) are likely to get trapped at local minima.

2 No performance guarantees.
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Convex relaxation and state of the art

Nuclear norm minimization

Consider the convex envelop of rank(Z ): nuclear norm ‖Z‖∗ =
∑
σi (Z ).

min ‖Z‖∗ s.t. A(Z ) = A(X 0)

where X 0 = h0x∗0.

Theorem [Ahmed-Recht-Romberg 11]

Assume y = diag(Bh0)Ax0, A : L× N is a complex Gaussian random
matrix,

B∗B = IK , ‖bi‖2 ≤
µ2maxK

L
, L‖Bh0‖2∞ ≤ µ2h,

the above convex relaxation recovers X = h0x∗0 exactly with high
probability if

C0(K + µ2hN) ≤ L

log3 L
.
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Pros and Cons of Convex Approach

Pros and Cons

Pros: Simple, efficient and comes with theoretic guarantees

Cons: Computationally too expensive to solve SDP

Our Goal: rapid, robust, reliable nonconvex approach

Rapid: linear convergence

Robust: stable to noise

Reliable: provable and comes with theoretic guarantees; number of
measurement close to information-theoretic limits.
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A nonconvex optimization approach?

An increasing list of nonconvex approach to various problems:

Phase retrieval: by Candès, Li, Soltanolkotabi, Chen, etc...

Matrix completion: by Sun, Luo, Montanari, etc...

Various problems: by Wainwright, Recht, Constantine, etc...

Two-step philosophy for provable nonconvex optimization

(a) Use spectral initialization to construct a starting point inside “the
basin of attraction”;

(b) Simple gradient descent method.

The key is to build up “the basin of attraction”.
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Building “the basin of attraction”

The basin of the attraction relies on the following three observations.

Observation 1: Unboundedness of solution

If the pair (h0, x0) is a solution to y = diag(Bh0)Ax0, then so is the
pair (αh0, α

−1x0) for any α 6= 0.

Thus the blind deconvolution problem always has infinitely many
solutions of this type. We can recover (h0, x0) only up to a scalar.

It is possible that ‖h‖ � ‖x‖ (vice versa) while ‖h‖ · ‖x‖ = d0.
Hence we define Nd0 to balance ‖h‖ and ‖x‖:

Nd0 := {(h, x) : ‖h‖ ≤ 2
√

d0, ‖x‖ ≤ 2
√

d0}.
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Building “the basin of attraction”

Observation 2: Incoherence

How much bl and h0 are aligned matters:

µ2h :=
L‖Bh0‖2∞
‖h0‖2

= L
maxi |b∗i h0|2

‖h0‖2
, the smaller µh, the better.

Therefore, we introduce the Nµ to control the incoherence:

Nµ := {h :
√
L‖Bh‖∞ ≤ 4µ

√
d0}.

“Incoherence” is not a new idea. In matrix completion, we also require the
left and right singular vectors of the ground truth cannot be too “aligned”
with those of measurement matrices {bia∗i }1≤i≤L. The same philosophy
applies here.
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Building “the basin of attraction”

Observation 3: “Close” to the ground truth

We define Nε to quantify closeness of (h, x) to true solution, i.e.,

Nε := {(h, x) : ‖hx∗ − h0x∗0‖F ≤ εd0}.

We want to find an initial guess close to (h0, x0).
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Building “the basin of attraction”

Based on the three observations above, we define the
three neighborhoods (denoting d0 = ‖h0‖‖x0‖):

Nd0 := {(h, x) : ‖h‖ ≤ 2
√

d0, ‖x‖ ≤ 2
√
d0}

Nµ := {h :
√
L‖Bh‖∞ ≤ 4µ

√
d0}

Nε := {(h, x) : ‖hx∗ − h0x∗0‖F ≤ εd0}.

where ε < 1
15 . We first obtain a good initial guess

(u0, v0) ∈ Nd0 ∩Nµ ∩Nε, which is followed by regularized gradient
descent.
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Objective function: a variant of projected gradient descent

The objective function F̃ consists of two parts: F and G :

min
(h,x)

F̃ (h, x) := F (h, x) + G (h, x),

where F (h, x) = ‖A(hx∗)− y‖2 = ‖ diag(Bh)Ax − y‖2 and

G (h, x) := ρ
[
G0

(
‖h‖2

2d

)
+ G0

(
‖x‖2

2d

)
︸ ︷︷ ︸

Nd0

+
L∑

l=1

G0

(
L|b∗l h|2

8dµ2

)
︸ ︷︷ ︸

Nµ

]
.

Here G0(z) = max{z − 1, 0}2, ρ ≈ d2, d ≈ d0 and µ ≥ µh.
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Objective function: a variant of projected gradient descent

The objective function F̃ consists of two parts: F and G :

min
(h,x)

F̃ (h, x) := F (h, x) + G (h, x)

We refer F and G as

F : least squares term, i.e., impose the measurement equations

G : regularization term, i.e., regularization forces iterates (ut , v t)
inside Nd0 ∩Nµ ∩Nε.
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Algorithm: Wirtinger Gradient Descent

Step 1: Initialization via spectral method and projection:

1: Compute A∗(y), (since E(A∗(y)) = h0x∗0);
2: Find the leading singular value, left and right singular vec-

tors of A∗(y), denoted by (d , ĥ0, x̂0) respectively;
3: u(0) := PNµ(

√
d ĥ0) and v (0) :=

√
d x̂0;

4: Output: (u(0), v (0)).

Step 2: Gradient descent with constant stepsize η:

1: Initialization: obtain (u(0), v (0)) via Algorithm 1.
2: for t = 1, 2, . . . , do
3: u(t) = u(t−1) − η∇F̃h(u(t−1), v (t−1))
4: v (t) = v (t−1) − η∇F̃x(u(t−1), v (t−1))
5: end for
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Main theorem

Theorem: [Li-Ling-Strohmer-Wei, 2016]

Let B be a tall partial DFT matrix and A be a complex Gaussian random
matrix. If the number of measurements satisfies

L ≥ C (µ2h + σ2)(K + N) log2(L)/ε2,

(i) then the initialization (u(0), v (0)) ∈ 1√
3
Nd0

⋂ 1√
3
Nµ
⋂
N 2

5
ε;

(ii) the regularized gradient descent algorithm creates a sequence
(u(t), v (t)) in Nd0 ∩Nµ ∩Nε satisfying

‖u(t)(v (t))∗ − h0x∗0‖F ≤ (1− α)tεd0 + c0‖A∗(w)‖

with high probability where α = O( 1
(1+σ2)(K+N) log2 L

)
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Remarks

(a) If w = 0, (u(t), v (t)) converges to (h0, x0) linearly.

‖u(t)(v (t))∗ − h0x∗0‖F ≤ (1− α)tεd0 → 0, as t →∞

(b) If w 6= 0, (u(t), v (t)) converges to a small neighborhood of (h0, x0)
linearly.

‖u(t)(v (t))∗ − h0x∗0‖F → c0‖A∗(w)‖, as t →∞

where

‖A∗(w)‖ = O

(
σd0

√
(K + N) log L

L

)
→ 0, if L→∞.

As L is becoming larger and larger, the effect of noise diminishes.
(Recall linear least squares.)
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Numerical experiments

Nonconvex approach v.s. convex approach:

min
(h,x)

F̃ (h, x) v.s. min ‖Z‖∗ s.t.‖A(Z )− y‖ ≤ η.

Nonconvex method requires fewer measurements to achieve exact recovery
than convex method. Moreover, if A is a partial Hadamard matrix, our
algorithm still gives satisfactory performance.
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K = N = 50, B is a low-frequency DFT matrix.
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Stability

Our algorithm yields stable recovery if the observation is noisy.
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MRI image deblurring:

Here B is a partial DFT matrix and A is a partial wavelet matrix.

When the subspace B, (K = 65) or support of blurring kernel is known:
g ≈ Ax : image of 512× 512; A : wavelet subspace corresponding to the
N = 20000 largest Haar wavelet coefficients of g .
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Extended to joint blind deconvolution and blind demixing

Suppose there are s users and each of them sends a message x i , which is
encoded by C i , to a common receiver. Each encoded message g i = C ix i

is convolved with an unknown impulse response function f i .

User	
1

User	
𝑖

User	
𝑠

𝑔$ = 𝐶$𝑥$: signal

⋮

⋮
𝑦 = ∑ 𝑓3 ∗ 𝑔3 + 𝑤7

38$
𝑓3: channel

𝑓$: channel

𝑓7: channel

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓$, 𝑥$)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓3, 𝑥3)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓7, 𝑥7)
Decoder

𝑓3 ∗ 𝑔3

𝑓$ ∗ 𝑔$

𝑓7 ∗ 𝑔7

𝑔3 = 𝐶3𝑥3: signal

𝑔7 = 𝐶7𝑥7: signal
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Suppose that

Each impulse response f i has maximum delay spread K (compact
support):

f i (n) = 0, for n > K .

g i := C ix i is the signal x i ∈ CN encoded by C i ∈ CL×N with L > N.

Mathematical model

Let B be the first K columns of the DFT matrix and Ai = FC i ,

y =
s∑

i=1

diag(Bhi )Aix i + w .

Goal: We want to recover {(hi , x i )}si=1 from (y ,B, {Ai}si=1).
The degree of freedom for unknowns: s(K + N); number of constraints: L.
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Objective function: a variant of projected gradient descent

The objective function F̃ consists of two parts: F and G ,

min
(h,x)

F̃ (h, x) := F (h, x)︸ ︷︷ ︸
least squares term

+ G (h, x)︸ ︷︷ ︸
regularization term

where F (h, x) := ‖
∑s

i=1 diag(Bhi )Aix i − y‖2 and

G (h, x) := ρ

s∑
i=1

[
G0

(
‖hi‖2

2di

)
+ G0

(
‖x i‖2

2di

)
︸ ︷︷ ︸
Nd0

: balance ‖hi‖ and ‖x i‖

+
L∑

l=1

G0

(
L|b∗l hi |2

8diµ2

)
︸ ︷︷ ︸
Nµ: impose incoherence

]
.

Algorithm:

Spectral initialization

Apply gradient descent to F̃
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Main results

Theorem [Ling-Strohmer 17]

Assume w ∼ CN (0, σ2d2
0/L) and Ai as a complex Gaussian matrix.

Starting with the initial value

(u(0), v (0)) ∈ 1√
3
Nd0

⋂ 1√
3
Nµ
⋂
N 2ε

5
√
sκ
,

(u(t), v (t)) converges to the global minima linearly,√√√√ s∑
i=1

‖u(t)
i (v (t)

i )∗ − hi0x∗i0‖2F ≤ (1− α)tεd0︸ ︷︷ ︸
linear convergence

+ c0‖A∗(w)‖︸ ︷︷ ︸
error term

with probability at least 1− L−γ+1 and α = O((s(K + N) log2 L)−1) if

L ≥ Cγ(µ2h + σ2)s2κ4(K + N) log2 L log s/ε2.
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Numerics: Does L scale linearly with s?

Let each Ai be a complex Gaussian matrix. The number of measurement
scales linearly with the number of sources s if K and N are fixed.
Approximately, L ≈ 1.5s(K + N) yields exact recovery.
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A communication example

A more practical and useful choice of encoding matrix C i : C i = D iH (i.e.,
Ai = FD iH) where D i is a diagonal random binary ±1 matrix and H is
an L× N deterministic partial Hadamard matrix. With this setting, our
approach can demix many users without performing channel estimation.
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L ≈ 1.5s(K + N) yields exact recovery.
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Important ingredients of proof

The first three conditions hold over “the basin of attraction”
Nd0 ∩Nµ ∩Nε.

Condition 1: Local Regularity Condition

Guarantee sufficient decrease in each iterate and linear convergence of F̃ :

‖∇F̃ (h, x)‖2 ≥ ωF̃ (h, x)

where ω > 0 and (h, x) ∈ Nd0 ∩Nµ ∩Nε.

Condition 2: Local Smoothness Condition

Governs rate of convergence. Let z = (h, x). There exists a constant CL

(Lipschitz constant of gradient) such that

‖∇F̃ (z + t∆z)−∇F̃ (z)‖ ≤ CLt‖∆z‖, ∀ 0 ≤ t ≤ 1,

for all {(z ,∆z) : z + t∆z ∈ Nd0 ∩Nµ ∩Nε,∀0 ≤ t ≤ 1}.
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Important ingredients of proof

Condition 3: Local Restricted Isometry Property

Transfer convergence of objective function to convergence of iterates.

2

3
‖hx∗ − h0x∗0‖2F ≤ ‖A(hx∗ − h0x∗0)‖2 ≤ 3

2
‖hx∗ − h0x∗0‖2F

holds uniformly for all (h, x) ∈ Nd0 ∩Nµ ∩Nε.

Condition 4: Robustness Condition

Provide stability against noise.

‖A∗(w)‖ ≤ εd0

10
√

2
.

where A∗(w) =
∑L

l=1 wlbla∗l is a sum of L rank-1 random matrices. It
concentrates around 0.
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Outlook and Conclusion

Conclusion: The proposed algorithm is arguably the first nonconvex blind
deconvolution/demixing algorithm with rigorous recovery guarantees. We
also propose a convex approach (sub-optimal) to solve a self-calibration
problem related to biconvex compressive sensing.

Can we show if similar result holds for other types of A?

What if x or h is sparse/both of them are sparse?

See details:
1 Self-calibration and biconvex compressive sensing. Inverse Problems 31

(11), 115002
2 Blind deconvolution meets blind demixing: algorithms and performance

bounds, To appear in IEEE Trans on Information Theory
3 Rapid, robust, and reliable blind deconvolution via nonconvex

optimization, arXiv:1606.04933.
4 Regularized gradient descent: a nonconvex recipe for fast joint blind

deconvolution and demixing arXiv:1703.08642.
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MRI imaging deblurring:

When the subspace B or support of blurring kernel is unknown:
we assume the support of blurring kernel is contained in a small box;
N = 35000.
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Two-page proof

Condition 1 + 2 =⇒ Linear convergence of F̃

Proof.

Let z t+1 = z t − η∇F̃ (z t) with η ≤ 1
CL

. By using modified descent lemma,

F̃ (z t + η∇F̃ (z t)) ≤ F̃ (z t)− (2η + CLη
2)‖∇F̃ (z t)‖2

≤ F̃ (z t)− ηωF̃ (z t)

which gives F̃ (z t+1) ≤ (1− ηω)t F̃ (z0).
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Two-page proof: continued

Condition 3 =⇒ Linear convergence of ‖utv ∗t − h0x∗0‖F .

It follows from F̃ (z t) ≥ F (z t) ≥ 3
4‖utv∗t − h0x∗0‖2F . Hence, linear

convergence of objective function also implies linear convergence of
iterates.

Condition 4 =⇒ Proof of stability theory

If L is sufficiently large, A∗(w) is small since ‖A∗(w)‖ → 0. There holds

‖A(hx∗ − h0x∗0)−w‖2 ≈ ‖A(hx∗ − h0x∗0)‖2 + σ2d2
0 .

Hence, the objective function behaves “almost like” ‖A(hx∗ − h0x∗0)‖2,
the noiseless version of F if the sample size is sufficiently large.
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