
Bilinear Inverse Problems: Theory, Algorithms, and
Applications in Imaging Science and Signal Processing

Shuyang Ling

Department of Mathematics, UC Davis

May 31, 2017

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 1 / 54



Acknowledgements

Research in collaboration with:

Prof.Xiaodong Li (UC Davis)

Prof.Thomas Strohmer (UC Davis)

Dr.Ke Wei (UC Davis)

This work is sponsored by NSF-DMS and DARPA.

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 2 / 54



Outline

(a) Part I: self-calibration and biconvex compressive sensing

Application in array signal processing
SparseLift: a convex approach towards biconvex compressive sensing

(b) Part II: blind deconvolution

Applications in image deblurring and wireless communication
Mathematical models and convex approach
A nonconvex optimization approach towards blind deconvolution
Extended to joint blind deconvolution and blind demixing

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 3 / 54



Part I

Part I: self-calibration and biconvex compressive sensing
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Linear inverse problem

Inverse problem: to infer the values or parameters that
characterize/describe the system from the obversations.

Many inverse problems involve solving a linear
system:

y = A︸︷︷︸
perfectly known

x︸︷︷︸
signal of interests

+w .

Find x when y and A are given:

A is overdetermined =⇒ linear least squares

A is underdetermined: we need
regularization, e.g., Tikhonov regularization
and `1 regularization (sparsity and
compressive sensing)
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Calibration

However, the sensing matrix A may not be perfectly known.

Calibration issue:

Calibration is to adjust one
device with the standard one.

Why? To reduce or eliminate
bias and inaccuracy.

Difficult or even impossible to
calibrate high-performance
hardware.

Self-calibration: Equip sensors
with a smart algorithm which
takes care of calibration
automatically.
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Calibration realized by machine?

Uncalibrated devices leads to imperfect sensing

We encounter imperfect sensing all the time: the sensing matrix A(h)
depending on an unknown calibration parameter h,

y = A(h)x + w .

This is too general to solve for h and x jointly.

Examples:

Phase retrieval problem: h is the unknown phase of the Fourier
transform of x .
Cryo-electron microscopy images: h can be the unknown orientation
of a protein molecule and x is the particle.
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A simplified but important model

Our focus:

One special case is to assume A(h) to be of the form

A(h) = D(h)A

where D(h) is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically
nontrivial to analyze.

Phase and gain calibration in array signal processing

Blind deconvolution
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Self-calibration in array signal processing

Calibration in the DOA (direction of arrival estimation)

One calibration issue comes from the unknown gains of the antennae
caused by temperature or humidity.

𝜃"

𝜃# 𝜃$

𝜃% 𝜃&

𝜃'
Antenna	elements

Consider s signals impinging on an
array of L antennae.

y =
s∑

k=1

DA(θ̄k)xk + w

where D is an unknown diagonal
matrix and dii is the unknown gain
for i-th sensor. A(θ): array mani-
fold. θ̄k : unknown direction of ar-
rival. {xk}sk=1 are the impinging
signals.
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How is it related to compressive sensing?

Discretize the manifold function A(θ) over [−π ≤ θ < π] on N grid points.

y = DAx + w

where

A =

 | · · · |
A(θ1) · · · A(θN)
| · · · |

 ∈ CL×N

To achieve high resolution, we usually have L ≤ N.

x ∈ CN×1 is s-sparse. Its s nonzero entries correspond to the
directions of signals. Moreover, we don’t know the locations of
nonzero entries.

Subspace constraint: assume D = diag(Bh) where B is a known
L× K matrix and K < L.

Number of constraints: L; number of unknowns: K + s.
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Self-calibration and biconvex compressive sensing

Goal: Find (h, x) s.t. y = diag(Bh)Ax + w and x is sparse.

Biconvex compressive sensing

We are solving a biconvex (not convex) optimization problem to recover
sparse signal x and calibrating parameter h.

min
h,x
‖ diag(Bh)Ax − y‖2 + λ‖x‖1

A ∈ CL×N and B ∈ CL×K are known. h ∈ CK×1 and x ∈ CN×1 are
unknown. x is sparse.

Remark: If h is known, x can be recovered; if x is known, we can find h as
well. Regarding identifiability issue, See [Lee, Bresler, etc. 15].
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Biconvex compressive sensing

Goal: we want to find h and a sparse x from y , B and A.

= +

𝒚: 𝐿×1 𝑩: 𝐿×𝐾 𝒉:𝐾×1 𝐴: 𝐿×𝑁 𝑥:𝑁×1,
	𝑠-sparse

𝒘: 𝐿×1

⊙
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Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints

(b) Solving a convex relaxation to recover h0x∗0.

Step 1: lifting

Let ai be the i-th column of A∗ and bi be the i-th column of B∗.

yi = (Bh0)ix∗0ai + wi = b∗i h0x∗0ai + wi .

Let X 0 := h0x∗0 and define the linear operator A : CK×N → CL as,

A(Z ) := {b∗i Zai}Li=1 = {〈Z ,bia∗i 〉}Li=1.

Then, there holds
y = A(X 0) + w .

In this way, A∗(z) =
∑L

i=1 zibia∗i : CL → CK×N .
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Rank-1 matrix recovery

Lifting: recovery of a rank - 1 and row-sparse matrix

Find Z s.t. rank(Z ) = 1

A(Z ) = A(X 0)

Z has sparse rows

‖X 0‖0 = Ks where X 0 = h0x∗0, h0 ∈ CK and x0 ∈ CN with
‖x0‖0 = s.

Z =


0 0 h1xi1 0 · · · 0 h1xis 0 · · · 0
0 0 h2xi1 0 · · · 0 h2xis 0 · · · 0
...

...
...

...
. . .

...
...

...
. . .

...
0 0 hKxi1 0 · · · 0 hKxis 0 · · · 0


K×N

An NP-hard problem to find such a rank-1 and sparse matrix.

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 14 / 54



Rank-1 matrix recovery

Lifting: recovery of a rank - 1 and row-sparse matrix

Find Z s.t. rank(Z ) = 1

A(Z ) = A(X 0)

Z has sparse rows

‖X 0‖0 = Ks where X 0 = h0x∗0, h0 ∈ CK and x0 ∈ CN with
‖x0‖0 = s.

Z =


0 0 h1xi1 0 · · · 0 h1xis 0 · · · 0
0 0 h2xi1 0 · · · 0 h2xis 0 · · · 0
...

...
...

...
. . .

...
...

...
. . .

...
0 0 hKxi1 0 · · · 0 hKxis 0 · · · 0


K×N

An NP-hard problem to find such a rank-1 and sparse matrix.

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 14 / 54



SparseLift

‖Z‖∗: nuclear norm and ‖Z‖1: `1-norm of vectorized Z .

A popular way: nuclear norm + `1- minimization

min ‖Z‖1 + λ‖Z‖∗ s.t. A(Z ) = A(X 0), λ ≥ 0.

However, combination of multiple norms may not do any better.
[Oymak, Jalali, Fazel, Eldar and Hassibi 12].

SparseLift

min ‖Z‖1 s.t. A(Z ) = A(X 0).

Idea: Lift the recovery problem of two unknown vectors to a matrix-valued
problem and exploit sparsity through `1-minimization.
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Main theorem

Theorem: [Ling-Strohmer, 2015]

Recall the model:
y = DAx , D = diag(Bh),

where

(a) B is an L× K DFT tall matrix with B∗B = IK
(b) A is an L× N real Gaussian random matrix or a random Fourier

matrix.

Then SparseLift recovers X 0 exactly with high probability if

L = O( K︸︷︷︸
dimension of h

s︸︷︷︸
level of sparsity

log2 L)

where Ks = ‖X 0‖0.
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Comments

min ‖X‖∗ fails if L < N.

min ‖X‖∗ L = O(K + N)
min ‖X‖1 L = O(Ks logKN)

Solving `1-minimization is easier and cheaper than solving SDP.

Compared with Compressive Sensing

Compressive Sensing L = O(s logN)
Our Case L = O(Ks logKN)

Believed to be optimal if one uses the ‘Lifting’ technique. It is
unknown whether any algorithm would work for L = O(K + s).

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 17 / 54



Phase transition: SparseLift vs. ‖ · ‖1 + λ‖ · ‖∗
min ‖ · ‖1 + λ‖ · ‖∗ does not do any better than min ‖ · ‖1.
White: Success, Black: Failure

2 4 6 8 10 12 14

2

4

6

8

10

12

14

s:1 to 15 (Gaussian Case: Performance of Sparselift)

k
:1

 t
o

 1
5

  

The Frequency of Success: L = 128, N = 256

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: SparseLift
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Figure: min ‖ · ‖1 + 0.1‖ · ‖∗

L = 128,N = 256. A: Gaussian and B: Non-random partial Fourier
matrix. 10 experiments for each pair (K , s), 1 ≤ K , s ≤ 15.
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Minimal L is nearly proportional to Ks

L : 10 to 400; N = 512; A: Gaussian random matrices;
B: first K columns of a DFT matrix.
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Figure: Fix K = 5
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Stability theory

Assume that y is contaminated by noise, namely, y = A(X 0) + w with
‖w‖ ≤ η, we solve the following program to recover X 0,

min ‖Z‖1 s.t. ‖A(Z )− y‖ ≤ η.

Theorem

If A is either a Gaussian random matrix or a random Fourier matrix,

‖X̂ − X 0‖F ≤ (C0 + C1

√
Ks)η

with high probability. L satisfies the condition in the noiseless case. Both
C0 and C1 are constants.
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Numerical example: relative error vs SNR
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Figure: A: Gaussian matrix
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Figure: A: random Fourier matrix

Remarks: L = 128,N = 256,K = s = 5.
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Part II

Part II: Blind deconvolution and nonconvex optimization
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What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function y which consists of the convolution of two
unknown functions, the blurring function f and the signal of interest g ,
plus noise w . How to reconstruct f and g from y?

y = f ∗ g + w .

It is obviously a highly ill-posed bilinear inverse problem...

Much more difficult than ordinary deconvolution...but have important
applications in various fields.

Solvability? What conditions on f and g make this problem solvable?

How? What algorithms shall we use to recover f and g?
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Why do we care about blind deconvolution?

Image deblurring

Let f be the blurring kernel and g be the original image, then y = f ∗ g is
the blurred image.
Question: how to reconstruct f and g from y

=  

y 
blurred  
image

f
blurring  
kernel

g
original  
image

 
= +

+

w
noise
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Why do we care about blind deconvolution?

Joint channel and signal estimation in wireless communication

Suppose that a signal x , encoded by A, is transmitted through an
unknown channel f . How to reconstruct f and x from y?

y = f ∗ Ax + w .

=

f:unknown  
channel

A:Encoding  
matrix

x:unknown  
signal

y:received  
signal

  +

w:noise
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Subspace assumptions

We start from the original model

y = f ∗ g + w .

As mentioned before, it is an ill-posed problem. Phase retrieval is actually
a special case if g(−x) = f̄ (x). Hence, this problem is unsolvable without
further assumptions...

Subspace assumption

Both f and g belong to known subspaces: there exist known tall matrices
B̃ ∈ CL×K and Ã ∈ CL×N such that

f = B̃h0, g = Ãx0,

for some unknown vectors h0 ∈ CK and x0 ∈ CN . Here x0 is not
necessarily sparse.
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Examples for subspace assumption:

Subspace assumption

Both f and g belong to known subspaces: there exist known tall matrices
B̃ ∈ CL×K and Ã ∈ CL×N such that

f = B̃h0, g = Ãx0,

for some unknown vectors h0 ∈ CK and x0 ∈ CN .

Useful examples:

In image deblurring, B̃ can be the support of the blurring kernel;
Ã is a wavelet basis.

In wireless communication, B̃ is related to the maximum delay spread
and Ã is an encoding matrix.
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Model under subspace assumption

After taking Fourier transform, circular convolution becomes entrywise
multiplication:

y = (B̃h0) ∗ (Ãx0) + w =⇒ ŷ = diag(Bh0)Ax0 + ŵ ,

where
ŷ = Fy ∈ CL, B = FB̃, A = FÃ

and F is the L× L DFT matrix.

Goal: recover h0, x0 from B, A, and ŷ .
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More on subspace assumption

+
= +

𝒚: 𝐿×1 𝑩: 𝐿×𝐾 𝒉:𝐾×1 𝐴: 𝐿×𝑁 𝑥:𝑁×1 𝒘: 𝐿×1

⊙

Since we don’t assume x to be sparse, the degree of freedom for unknowns
is K + N; number of constraints: L.
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Mathematical model

y = diag(Bh0)Ax0 + w ,

where w
d0
∼ 1√

2
N (0, σ2I L) + i 1√

2
N (0, σ2I L) and d0 = ‖h0‖‖x0‖.

One might want to solve the following nonlinear least squares problem,

min F (h, x) := ‖ diag(Bh)Ax − y‖2.

Difficulties:

1 Nonconvexity: F is a nonconvex function; algorithms (such as
gradient descent) are likely to get trapped at local minima.

2 No performance guarantees.
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Convex relaxation and state of the art

Nuclear norm minimization

Consider the convex envelop of rank(Z ): nuclear norm ‖Z‖∗ =
∑
σi (Z ).

min ‖Z‖∗ s.t. A(Z ) = A(X 0)

where X 0 = h0x∗0.

Theorem [Ahmed-Recht-Romberg 11]

Assume y = diag(Bh0)Ax0, A : L× N is a complex Gaussian random
matrix,

B∗B = IK , ‖bi‖2 ≤
µ2maxK

L
, L‖Bh0‖2∞ ≤ µ2h,

the above convex relaxation recovers X = h0x∗0 exactly with high
probability if

C0(K + µ2hN) ≤ L

log3 L
.
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C0(K + µ2hN) ≤ L

log3 L
.
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Pros and Cons of Convex Approach

Pros and Cons

Pros: Simple, efficient and comes with theoretic guarantees

Cons: Computationally too expensive to solve SDP

Our Goal: rapid, robust, reliable nonconvex approach

Rapid: linear convergence

Robust: stable to noise

Reliable: provable and comes with theoretic guarantees; number of
measurement close to information-theoretic limits.
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A nonconvex optimization approach?

An increasing list of nonconvex approach to various problems:

Phase retrieval: by Candès, Li, Soltanolkotabi, Chen, etc...

Matrix completion: by Sun, Luo, Montanari, etc...

Various problems: by Wainwright, Recht, Constantine, etc...

Two-step philosophy for provable nonconvex optimization

(a) Use spectral initialization to construct a starting point inside “the
basin of attraction”;

(b) Simple gradient descent method.

The key is to build up “the basin of attraction”.

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 33 / 54



A nonconvex optimization approach?

An increasing list of nonconvex approach to various problems:

Phase retrieval: by Candès, Li, Soltanolkotabi, Chen, etc...

Matrix completion: by Sun, Luo, Montanari, etc...

Various problems: by Wainwright, Recht, Constantine, etc...

Two-step philosophy for provable nonconvex optimization

(a) Use spectral initialization to construct a starting point inside “the
basin of attraction”;

(b) Simple gradient descent method.

The key is to build up “the basin of attraction”.

Shuyang Ling (UC Davis) University of California Davis, May 2017 May 31, 2017 33 / 54



Building “the basin of attraction”

The basin of the attraction relies on the following three observations.

Observation 1: Unboundedness of solution

If the pair (h0, x0) is a solution to y = diag(Bh0)Ax0, then so is the
pair (αh0, α

−1x0) for any α 6= 0.

Thus the blind deconvolution problem always has infinitely many
solutions of this type. We can recover (h0, x0) only up to a scalar.

It is possible that ‖h‖ � ‖x‖ (vice versa) while ‖h‖ · ‖x‖ = d0.
Hence we define Nd0 to balance ‖h‖ and ‖x‖:

Nd0 := {(h, x) : ‖h‖ ≤ 2
√

d0, ‖x‖ ≤ 2
√

d0}.
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Building “the basin of attraction”

Observation 2: Incoherence

How much bl and h0 are aligned matters:

µ2h :=
L‖Bh0‖2∞
‖h0‖2

= L
maxi |b∗i h0|2

‖h0‖2
, the smaller µh, the better.

Therefore, we introduce the Nµ to control the incoherence:

Nµ := {h :
√
L‖Bh‖∞ ≤ 4µ

√
d0}.

“Incoherence” is not a new idea. In matrix completion, we also require the
left and right singular vectors of the ground truth cannot be too “aligned”
with those of measurement matrices {bia∗i }1≤i≤L. The same philosophy
applies here.
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Building “the basin of attraction”

Observation 3: “Close” to the ground truth

We define Nε to quantify closeness of (h, x) to true solution, i.e.,

Nε := {(h, x) : ‖hx∗ − h0x∗0‖F ≤ εd0}.

We want to find an initial guess close to (h0, x0).
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Building “the basin of attraction”

Based on the three observations above, we define the
three neighborhoods (denoting d0 = ‖h0‖‖x0‖):

Nd0 := {(h, x) : ‖h‖ ≤ 2
√

d0, ‖x‖ ≤ 2
√
d0}

Nµ := {h :
√
L‖Bh‖∞ ≤ 4µ

√
d0}

Nε := {(h, x) : ‖hx∗ − h0x∗0‖F ≤ εd0}.

where ε < 1
15 . We first obtain a good initial guess

(u0, v0) ∈ Nd0 ∩Nµ ∩Nε, which is followed by regularized gradient
descent.
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Objective function: a variant of projected gradient descent

The objective function F̃ consists of two parts: F and G :

min
(h,x)

F̃ (h, x) := F (h, x) + G (h, x),

where F (h, x) = ‖A(hx∗)− y‖2 = ‖ diag(Bh)Ax − y‖2 and

G (h, x) := ρ
[
G0

(
‖h‖2

2d

)
+ G0

(
‖x‖2

2d

)
︸ ︷︷ ︸

Nd0

+
L∑

l=1

G0

(
L|b∗l h|2

8dµ2

)
︸ ︷︷ ︸

Nµ

]
.

Here G0(z) = max{z − 1, 0}2, ρ ≈ d2, d ≈ d0 and µ ≥ µh.
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Objective function: a variant of projected gradient descent

The objective function F̃ consists of two parts: F and G :

min
(h,x)

F̃ (h, x) := F (h, x) + G (h, x)

We refer F and G as

F : least squares term, i.e., impose the measurement equations

G : regularization term, i.e., regularization forces iterates (ut , v t)
inside Nd0 ∩Nµ ∩Nε.
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Algorithm: Wirtinger Gradient Descent

Step 1: Initialization via spectral method and projection:

1: Compute A∗(y), (since E(A∗(y)) = h0x∗0);
2: Find the leading singular value, left and right singular vec-

tors of A∗(y), denoted by (d , ĥ0, x̂0) respectively;
3: u(0) := PNµ(

√
d ĥ0) and v (0) :=

√
d x̂0;

4: Output: (u(0), v (0)).

Step 2: Gradient descent with constant stepsize η:

1: Initialization: obtain (u(0), v (0)) via Algorithm 1.
2: for t = 1, 2, . . . , do
3: u(t) = u(t−1) − η∇F̃h(u(t−1), v (t−1))
4: v (t) = v (t−1) − η∇F̃x(u(t−1), v (t−1))
5: end for
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Main theorem

Theorem: [Li-Ling-Strohmer-Wei, 2016]

Let B be a tall partial DFT matrix and A be a complex Gaussian random
matrix. If the number of measurements satisfies

L ≥ C (µ2h + σ2)(K + N) log2(L)/ε2,

(i) then the initialization (u(0), v (0)) ∈ 1√
3
Nd0

⋂ 1√
3
Nµ
⋂
N 2

5
ε;

(ii) the regularized gradient descent algorithm creates a sequence
(u(t), v (t)) in Nd0 ∩Nµ ∩Nε satisfying

‖u(t)(v (t))∗ − h0x∗0‖F ≤ (1− α)tεd0 + c0‖A∗(w)‖

with high probability where α = O( 1
(1+σ2)(K+N) log2 L

)
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Remarks

(a) If w = 0, (u(t), v (t)) converges to (h0, x0) linearly.

‖u(t)(v (t))∗ − h0x∗0‖F ≤ (1− α)tεd0 → 0, as t →∞

(b) If w 6= 0, (u(t), v (t)) converges to a small neighborhood of (h0, x0)
linearly.

‖u(t)(v (t))∗ − h0x∗0‖F → c0‖A∗(w)‖, as t →∞

where

‖A∗(w)‖ = O

(
σd0

√
(K + N) log L

L

)
→ 0, if L→∞.

As L is becoming larger and larger, the effect of noise diminishes.
(Recall linear least squares.)
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Numerical experiments

Nonconvex approach v.s. convex approach:

min
(h,x)

F̃ (h, x) v.s. min ‖Z‖∗ s.t.‖A(Z )− y‖ ≤ η.

Nonconvex method requires fewer measurements to achieve exact recovery
than convex method. Moreover, if A is a partial Hadamard matrix, our
algorithm still gives satisfactory performance.
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K = N = 50, B is a low-frequency DFT matrix.
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Stability

Our algorithm yields stable recovery if the observation is noisy.
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MRI image deblurring:

Here B is a partial DFT matrix and A is a partial wavelet matrix.

When the subspace B, (K = 65) or support of blurring kernel is known:
g ≈ Ax : image of 512× 512; A : wavelet subspace corresponding to the
N = 20000 largest Haar wavelet coefficients of g .
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Extended to joint blind deconvolution and blind demixing

Suppose there are s users and each of them sends a message x i , which is
encoded by C i , to a common receiver. Each encoded message g i = C ix i

is convolved with an unknown impulse response function f i .

User	
1

User	
𝑖

User	
𝑠

𝑔$ = 𝐶$𝑥$: signal

⋮

⋮
𝑦 = ∑ 𝑓3 ∗ 𝑔3 + 𝑤7

38$
𝑓3: channel

𝑓$: channel

𝑓7: channel

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓$, 𝑥$)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓3, 𝑥3)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓7, 𝑥7)
Decoder

𝑓3 ∗ 𝑔3

𝑓$ ∗ 𝑔$

𝑓7 ∗ 𝑔7

𝑔3 = 𝐶3𝑥3: signal

𝑔7 = 𝐶7𝑥7: signal
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Suppose that

Each impulse response f i has maximum delay spread K (compact
support):

f i (n) = 0, for n > K .

g i := C ix i is the signal x i ∈ CN encoded by C i ∈ CL×N with L > N.

Mathematical model

Let B be the first K columns of the DFT matrix and Ai = FC i ,

y =
s∑

i=1

diag(Bhi )Aix i + w .

Goal: We want to recover {(hi , x i )}si=1 from (y ,B, {Ai}si=1).
The degree of freedom for unknowns: s(K + N); number of constraints: L.
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Objective function: a variant of projected gradient descent

The objective function F̃ consists of two parts: F and G ,

min
(h,x)

F̃ (h, x) := F (h, x)︸ ︷︷ ︸
least squares term

+ G (h, x)︸ ︷︷ ︸
regularization term

where F (h, x) := ‖
∑s

i=1 diag(Bhi )Aix i − y‖2 and

G (h, x) := ρ

s∑
i=1

[
G0

(
‖hi‖2

2di

)
+ G0

(
‖x i‖2

2di

)
︸ ︷︷ ︸
Nd0

: balance ‖hi‖ and ‖x i‖

+
L∑

l=1

G0

(
L|b∗l hi |2

8diµ2

)
︸ ︷︷ ︸
Nµ: impose incoherence

]
.

Algorithm:

Spectral initialization

Apply gradient descent to F̃
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Main results

Theorem [Ling-Strohmer 17]

Assume w ∼ CN (0, σ2d2
0/L) and Ai as a complex Gaussian matrix.

Starting with the initial value

(u(0), v (0)) ∈ 1√
3
Nd0

⋂ 1√
3
Nµ
⋂
N 2ε

5
√
sκ
,

(u(t), v (t)) converges to the global minima linearly,√√√√ s∑
i=1

‖u(t)
i (v (t)

i )∗ − hi0x∗i0‖2F ≤ (1− α)tεd0︸ ︷︷ ︸
linear convergence

+ c0‖A∗(w)‖︸ ︷︷ ︸
error term

with probability at least 1− L−γ+1 and α = O((s(K + N) log2 L)−1) if

L ≥ Cγ(µ2h + σ2)s2κ4(K + N) log2 L log s/ε2.
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Numerics: Does L scale linearly with s?

Let each Ai be a complex Gaussian matrix. The number of measurement
scales linearly with the number of sources s if K and N are fixed.
Approximately, L ≈ 1.5s(K + N) yields exact recovery.
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A communication example

A more practical and useful choice of encoding matrix C i : C i = D iH (i.e.,
Ai = FD iH) where D i is a diagonal random binary ±1 matrix and H is
an L× N deterministic partial Hadamard matrix. With this setting, our
approach can demix many users without performing channel estimation.
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L ≈ 1.5s(K + N) yields exact recovery.
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Important ingredients of proof

The first three conditions hold over “the basin of attraction”
Nd0 ∩Nµ ∩Nε.

Condition 1: Local Regularity Condition

Guarantee sufficient decrease in each iterate and linear convergence of F̃ :

‖∇F̃ (h, x)‖2 ≥ ωF̃ (h, x)

where ω > 0 and (h, x) ∈ Nd0 ∩Nµ ∩Nε.

Condition 2: Local Smoothness Condition

Governs rate of convergence. Let z = (h, x). There exists a constant CL

(Lipschitz constant of gradient) such that

‖∇F̃ (z + t∆z)−∇F̃ (z)‖ ≤ CLt‖∆z‖, ∀ 0 ≤ t ≤ 1,

for all {(z ,∆z) : z + t∆z ∈ Nd0 ∩Nµ ∩Nε,∀0 ≤ t ≤ 1}.
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Important ingredients of proof

Condition 3: Local Restricted Isometry Property

Transfer convergence of objective function to convergence of iterates.

2

3
‖hx∗ − h0x∗0‖2F ≤ ‖A(hx∗ − h0x∗0)‖2 ≤ 3

2
‖hx∗ − h0x∗0‖2F

holds uniformly for all (h, x) ∈ Nd0 ∩Nµ ∩Nε.

Condition 4: Robustness Condition

Provide stability against noise.

‖A∗(w)‖ ≤ εd0

10
√

2
.

where A∗(w) =
∑L

l=1 wlbla∗l is a sum of L rank-1 random matrices. It
concentrates around 0.
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Outlook and Conclusion

Conclusion: The proposed algorithm is arguably the first nonconvex blind
deconvolution/demixing algorithm with rigorous recovery guarantees. We
also propose a convex approach (sub-optimal) to solve a self-calibration
problem related to biconvex compressive sensing.

Can we show if similar result holds for other types of A?

What if x or h is sparse/both of them are sparse?

See details:
1 Self-calibration and biconvex compressive sensing. Inverse Problems 31

(11), 115002
2 Blind deconvolution meets blind demixing: algorithms and performance

bounds, To appear in IEEE Trans on Information Theory
3 Rapid, robust, and reliable blind deconvolution via nonconvex

optimization, arXiv:1606.04933.
4 Regularized gradient descent: a nonconvex recipe for fast joint blind

deconvolution and demixing arXiv:1703.08642.
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MRI imaging deblurring:

When the subspace B or support of blurring kernel is unknown:
we assume the support of blurring kernel is contained in a small box;
N = 35000.
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Two-page proof

Condition 1 + 2 =⇒ Linear convergence of F̃

Proof.

Let z t+1 = z t − η∇F̃ (z t) with η ≤ 1
CL

. By using modified descent lemma,

F̃ (z t + η∇F̃ (z t)) ≤ F̃ (z t)− (2η + CLη
2)‖∇F̃ (z t)‖2

≤ F̃ (z t)− ηωF̃ (z t)

which gives F̃ (z t+1) ≤ (1− ηω)t F̃ (z0).
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Two-page proof: continued

Condition 3 =⇒ Linear convergence of ‖utv ∗t − h0x∗0‖F .

It follows from F̃ (z t) ≥ F (z t) ≥ 3
4‖utv∗t − h0x∗0‖2F . Hence, linear

convergence of objective function also implies linear convergence of
iterates.

Condition 4 =⇒ Proof of stability theory

If L is sufficiently large, A∗(w) is small since ‖A∗(w)‖ → 0. There holds

‖A(hx∗ − h0x∗0)−w‖2 ≈ ‖A(hx∗ − h0x∗0)‖2 + σ2d2
0 .

Hence, the objective function behaves “almost like” ‖A(hx∗ − h0x∗0)‖2,
the noiseless version of F if the sample size is sufficiently large.
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