Bilinear Inverse Problems: Theory, Algorithms, and Applications in Imaging Science and Signal Processing

Shuyang Ling

Department of Mathematics, UC Davis

May 31, 2017

Research in collaboration with:

- Prof.Xiaodong Li (UC Davis)
- Prof.Thomas Strohmer (UC Davis)
- Dr.Ke Wei (UC Davis)

This work is sponsored by NSF-DMS and DARPA.

(a) Part I: self-calibration and biconvex compressive sensing

- Application in array signal processing
- SparseLift: a convex approach towards biconvex compressive sensing
- (b) Part II: blind deconvolution
 - Applications in image deblurring and wireless communication
 - Mathematical models and convex approach
 - A nonconvex optimization approach towards blind deconvolution
 - Extended to joint blind deconvolution and blind demixing

Part I: self-calibration and biconvex compressive sensing

Linear inverse problem

Inverse problem: to infer the values or parameters that characterize/describe the system from the obversations.

Many inverse problems involve solving a linear system:

Find x when y and A are given:

- A is overdetermined \implies linear least squares
- A is underdetermined: we need regularization, e.g., Tikhonov regularization and l₁ regularization (sparsity and compressive sensing)

Inverse problem: to infer the values or parameters that characterize/describe the system from the obversations.

Many inverse problems involve solving a linear system:

Find **x** when **y** and **A** are given:

- A is overdetermined \implies linear least squares
- A is underdetermined: we need regularization, e.g., Tikhonov regularization and l₁ regularization (sparsity and compressive sensing)

Inverse problem: to infer the values or parameters that characterize/describe the system from the obversations.

Many inverse problems involve solving a linear system:

Find **x** when **y** and **A** are given:

- A is overdetermined \implies linear least squares
- A is underdetermined: we need regularization, e.g., Tikhonov regularization and l₁ regularization (sparsity and compressive sensing)

Calibration

However, the sensing matrix **A** may not be perfectly known.

Calibration issue:

- Calibration is to adjust one device with the standard one.
- Why? To reduce or eliminate bias and inaccuracy.
- Difficult or even impossible to calibrate high-performance hardware.
- Self-calibration: Equip sensors with a smart algorithm which takes care of calibration automatically.

Calibration

However, the sensing matrix **A** may not be perfectly known.

Calibration issue:

- Calibration is to adjust one device with the standard one.
- Why? To reduce or eliminate bias and inaccuracy.
- Difficult or even impossible to calibrate high-performance hardware.
- Self-calibration: Equip sensors with a smart algorithm which takes care of calibration automatically.

Calibration

However, the sensing matrix **A** may not be perfectly known.

Calibration issue:

- Calibration is to adjust one device with the standard one.
- Why? To reduce or eliminate bias and inaccuracy.
- Difficult or even impossible to calibrate high-performance hardware.
- Self-calibration: Equip sensors with a smart algorithm which takes care of calibration automatically.

Uncalibrated devices leads to imperfect sensing

We encounter imperfect sensing all the time: the sensing matrix A(h) depending on an unknown calibration parameter h,

y = A(h)x + w.

This is too general to solve for h and x jointly.

Examples:

- Phase retrieval problem: *h* is the unknown phase of the Fourier transform of *x*.
- Cryo-electron microscopy images: *h* can be the unknown orientation of a protein molecule and *x* is the particle.

Uncalibrated devices leads to imperfect sensing

We encounter imperfect sensing all the time: the sensing matrix A(h) depending on an unknown calibration parameter h,

y = A(h)x + w.

This is too general to solve for h and x jointly.

Examples:

- Phase retrieval problem: **h** is the unknown phase of the Fourier transform of **x**.
- Cryo-electron microscopy images: **h** can be the unknown orientation of a protein molecule and **x** is the particle.

Our focus:

One special case is to assume A(h) to be of the form

A(h) = D(h)A

where D(h) is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically nontrivial to analyze.

- Phase and gain calibration in array signal processing
- Blind deconvolution

Our focus:

One special case is to assume A(h) to be of the form

A(h) = D(h)A

where D(h) is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically nontrivial to analyze.

- Phase and gain calibration in array signal processing
- Blind deconvolution

Self-calibration in array signal processing

Calibration in the DOA (direction of arrival estimation)

One calibration issue comes from the unknown gains of the antennae caused by temperature or humidity.

Consider *s* signals impinging on an array of *L* antennae.

$$oldsymbol{y} = \sum_{k=1}^{s} oldsymbol{D}oldsymbol{A}(ar{ heta}_k) x_k + oldsymbol{w}_k)$$

where **D** is an unknown diagonal matrix and d_{ii} is the unknown gain for *i*-th sensor. $A(\theta)$: array manifold. $\overline{\theta}_k$: unknown direction of arrival. $\{x_k\}_{k=1}^s$ are the impinging signals.

Calibration in the DOA (direction of arrival estimation)

One calibration issue comes from the unknown gains of the antennae caused by temperature or humidity.

Consider s signals impinging on an array of L antennae.

$$oldsymbol{y} = \sum_{k=1}^{s} oldsymbol{D}oldsymbol{A}(ar{ heta}_k) x_k + oldsymbol{w}$$

where **D** is an unknown diagonal matrix and d_{ii} is the unknown gain for *i*-th sensor. **A**(θ): array manifold. $\bar{\theta}_k$: unknown direction of arrival. $\{x_k\}_{k=1}^s$ are the impinging signals.

How is it related to compressive sensing?

Discretize the manifold function $A(\theta)$ over $[-\pi \le \theta < \pi]$ on N grid points.

$$y = DAx + w$$

where

$$\mathbf{A} = \begin{bmatrix} | & \cdots & | \\ \mathbf{A}(\theta_1) & \cdots & \mathbf{A}(\theta_N) \\ | & \cdots & | \end{bmatrix} \in \mathbb{C}^{L \times N}$$

- To achieve high resolution, we usually have $L \leq N$.
- *x* ∈ ℂ^{N×1} is *s*-sparse. Its *s* nonzero entries correspond to the directions of signals. Moreover, we don't know the locations of nonzero entries.
- Subspace constraint: assume D = diag(Bh) where B is a known $L \times K$ matrix and K < L.
- Number of constraints: L; number of unknowns: K + s.

Goal: Find (h, x) s.t. y = diag(Bh)Ax + w and x is sparse.

Biconvex compressive sensing

We are solving a biconvex (not convex) optimization problem to recover sparse signal x and calibrating parameter h.

$$\min_{\boldsymbol{h},\boldsymbol{x}} \|\operatorname{diag}(\boldsymbol{B}\boldsymbol{h})\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{x}\|_1$$

 $A \in \mathbb{C}^{L \times N}$ and $B \in \mathbb{C}^{L \times K}$ are known. $h \in \mathbb{C}^{K \times 1}$ and $x \in \mathbb{C}^{N \times 1}$ are unknown. x is sparse.

Remark: If h is known, x can be recovered; if x is known, we can find h as well. Regarding identifiability issue, See [Lee, Bresler, etc. 15].

Goal: we want to find h and a sparse x from y, B and A.

Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints

(b) Solving a convex relaxation to recover $h_0 x_0^*$.

Step 1: lifting

Let a_i be the *i*-th column of A^* and b_i be the *i*-th column of B^* .

$$y_i = (\boldsymbol{B}\boldsymbol{h}_0)_i \boldsymbol{x}_0^* \boldsymbol{a}_i + w_i = \boldsymbol{b}_i^* \boldsymbol{h}_0 \boldsymbol{x}_0^* \boldsymbol{a}_i + w_i.$$

Let $X_0 := h_0 x_0^*$ and define the linear operator $\mathcal{A} : \mathbb{C}^{K \times N} \to \mathbb{C}^L$ as,

$$\mathcal{A}(\boldsymbol{Z}) := \{\boldsymbol{b}_i^* \boldsymbol{Z} \boldsymbol{a}_i\}_{i=1}^L = \{\langle \boldsymbol{Z}, \boldsymbol{b}_i \boldsymbol{a}_i^* \rangle\}_{i=1}^L.$$

Then, there holds

 $\boldsymbol{y} = \mathcal{A}(\boldsymbol{X}_0) + \boldsymbol{w}.$

In this way, $\mathcal{A}^*(\boldsymbol{z}) = \sum_{i=1}^L z_i \boldsymbol{b}_i \boldsymbol{a}_i^* : \mathbb{C}^L \to \mathbb{C}^{K \times N}.$

Shuyang Ling (UC Davis)

University of California Davis, May 2017

Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints

(b) Solving a convex relaxation to recover $h_0 x_0^*$.

Step 1: lifting

Let a_i be the *i*-th column of A^* and b_i be the *i*-th column of B^* .

$$y_i = (\boldsymbol{B}\boldsymbol{h}_0)_i \boldsymbol{x}_0^* \boldsymbol{a}_i + w_i = \boldsymbol{b}_i^* \boldsymbol{h}_0 \boldsymbol{x}_0^* \boldsymbol{a}_i + w_i.$$

Let $X_0 := h_0 x_0^*$ and define the linear operator $\mathcal{A} : \mathbb{C}^{K \times N} \to \mathbb{C}^L$ as,

$$\mathcal{A}(\mathbf{Z}) := \{ \mathbf{b}_i^* \mathbf{Z} \mathbf{a}_i \}_{i=1}^L = \{ \langle \mathbf{Z}, \mathbf{b}_i \mathbf{a}_i^* \rangle \}_{i=1}^L.$$

Then, there holds

$$\boldsymbol{y} = \mathcal{A}(\boldsymbol{X}_0) + \boldsymbol{w}.$$

In this way, $\mathcal{A}^*(\mathbf{z}) = \sum_{i=1}^L z_i \mathbf{b}_i \mathbf{a}_i^* : \mathbb{C}^L \to \mathbb{C}^{K \times N}$.

Rank-1 matrix recovery

Lifting: recovery of a rank - 1 and row-sparse matrix

Find
$$m{Z}$$
 s.t. rank $(m{Z}) = 1$
 $\mathcal{A}(m{Z}) = \mathcal{A}(m{X}_0)$
 $m{Z}$ has sparse rows

• $\|\boldsymbol{X}_0\|_0 = Ks$ where $\boldsymbol{X}_0 = \boldsymbol{h}_0 \boldsymbol{x}_0^*$, $\boldsymbol{h}_0 \in \mathbb{C}^K$ and $\boldsymbol{x}_0 \in \mathbb{C}^N$ with $\|\boldsymbol{x}_0\|_0 = s$.

$$\boldsymbol{Z} = \begin{bmatrix} 0 & 0 & h_1 x_{i_1} & 0 & \cdots & 0 & h_1 x_{i_s} & 0 & \cdots & 0 \\ 0 & 0 & h_2 x_{i_1} & 0 & \cdots & 0 & h_2 x_{i_s} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & h_K x_{i_1} & 0 & \cdots & 0 & h_K x_{i_s} & 0 & \cdots & 0 \end{bmatrix}_{K \times N}$$

• An NP-hard problem to find such a rank-1 and sparse matrix.

Shuyang Ling (UC Davis)

University of California Davis, May 2017

Lifting: recovery of a rank - 1 and row-sparse matrix

Find
$$m{Z}$$
 s.t. rank $(m{Z}) = 1$
 $\mathcal{A}(m{Z}) = \mathcal{A}(m{X}_0)$
 $m{Z}$ has sparse rows

• $\|\boldsymbol{X}_0\|_0 = Ks$ where $\boldsymbol{X}_0 = \boldsymbol{h}_0 \boldsymbol{x}_0^*$, $\boldsymbol{h}_0 \in \mathbb{C}^K$ and $\boldsymbol{x}_0 \in \mathbb{C}^N$ with $\|\boldsymbol{x}_0\|_0 = s$.

$$\boldsymbol{Z} = \begin{bmatrix} 0 & 0 & h_1 x_{i_1} & 0 & \cdots & 0 & h_1 x_{i_s} & 0 & \cdots & 0 \\ 0 & 0 & h_2 x_{i_1} & 0 & \cdots & 0 & h_2 x_{i_s} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & h_K x_{i_1} & 0 & \cdots & 0 & h_K x_{i_s} & 0 & \cdots & 0 \end{bmatrix}_{K \times N}$$

• An NP-hard problem to find such a rank-1 and sparse matrix.

Shuyang Ling (UC Davis)

$\|\boldsymbol{Z}\|_{*}$: nuclear norm and $\|\boldsymbol{Z}\|_{1}$: ℓ_{1} -norm of vectorized \boldsymbol{Z} .

A popular way: nuclear norm + ℓ_1 - minimization

 $\min \|\boldsymbol{Z}\|_1 + \boldsymbol{\lambda} \|\boldsymbol{Z}\|_* \quad \text{s.t.} \quad \mathcal{A}(\boldsymbol{Z}) = \mathcal{A}(\boldsymbol{X}_0), \quad \boldsymbol{\lambda} \geq 0.$

However, combination of multiple norms may not do any better. [Oymak, Jalali, Fazel, Eldar and Hassibi 12].

SparseLift

$$\min \|\boldsymbol{Z}\|_1 \quad \text{s.t.} \quad \mathcal{A}(\boldsymbol{Z}) = \mathcal{A}(\boldsymbol{X}_0).$$

Idea: Lift the recovery problem of two unknown vectors to a matrix-valued problem and exploit sparsity through ℓ_1 -minimization.

 $\|\boldsymbol{Z}\|_{*}$: nuclear norm and $\|\boldsymbol{Z}\|_{1}$: ℓ_{1} -norm of vectorized \boldsymbol{Z} .

A popular way: nuclear norm + ℓ_1 - minimization

$$\min \|\boldsymbol{Z}\|_1 + \frac{\lambda}{\|\boldsymbol{Z}\|_*} \quad \text{s.t.} \quad \mathcal{A}(\boldsymbol{Z}) = \mathcal{A}(\boldsymbol{X}_0), \quad \lambda \geq 0.$$

However, combination of multiple norms may not do any better. [Oymak, Jalali, Fazel, Eldar and Hassibi 12].

SparseLift

$$\min \|\boldsymbol{Z}\|_1 \quad \text{s.t.} \quad \mathcal{A}(\boldsymbol{Z}) = \mathcal{A}(\boldsymbol{X}_0).$$

Idea: Lift the recovery problem of two unknown vectors to a matrix-valued problem and exploit sparsity through ℓ_1 -minimization.

Theorem: [Ling-Strohmer, 2015]

Recall the model:

$$y = DAx$$
, $D = diag(Bh)$,

where

- (a) **B** is an $L \times K$ DFT tall matrix with $B^*B = I_K$
- (b) **A** is an $L \times N$ real Gaussian random matrix or a random Fourier matrix.

Then SparseLift recovers \boldsymbol{X}_0 exactly with high probability if

$$L = \mathcal{O}(\underbrace{K}_{\mu})$$

 $\log^2 L$ s

dimension of \pmb{h}

level of sparsity

where $K_s = \|\boldsymbol{X}_0\|_0$.

• min $\|\boldsymbol{X}\|_*$ fails if L < N.

$$\begin{array}{c|c} \min \|\boldsymbol{X}\|_{*} & L = \mathcal{O}(K + N) \\ \min \|\boldsymbol{X}\|_{1} & L = \mathcal{O}(\mathsf{Ks} \log KN) \end{array}$$

- \bullet Solving $\ell_1\text{-minimization}$ is easier and cheaper than solving SDP.
- Compared with Compressive Sensing

Compressive Sensing	$L = \mathcal{O}(\mathbf{s} \log N)$
Our Case	$L = \mathcal{O}(\mathbf{Ks} \log \mathbf{KN})$

• Believed to be optimal if one uses the 'Lifting' technique. It is unknown whether any algorithm would work for L = O(K + s).

Phase transition: SparseLift vs. $\|\cdot\|_1 + \lambda \|\cdot\|_*$

 $\label{eq:min} \min \|\cdot\|_1 + \lambda \|\cdot\|_* \text{ does not do any better than } \min \|\cdot\|_1.$ White: Success, Black: Failure

L = 128, N = 256. **A**: Gaussian and **B**: Non-random partial Fourier matrix. 10 experiments for each pair (K, s), $1 \le K, s \le 15$.

Shuyang Ling (UC Davis)

University of California Davis, May 2017

Minimal L is nearly proportional to Ks

L : 10 to 400; N = 512; **A**: Gaussian random matrices; **B**: first K columns of a DFT matrix.

Assume that \boldsymbol{y} is contaminated by noise, namely, $\boldsymbol{y} = \mathcal{A}(\boldsymbol{X}_0) + \boldsymbol{w}$ with $\|\boldsymbol{w}\| \leq \eta$, we solve the following program to recover \boldsymbol{X}_0 ,

$$\min \|\boldsymbol{Z}\|_1 \quad \text{s.t.} \ \|\boldsymbol{\mathcal{A}}(\boldsymbol{Z}) - \boldsymbol{y}\| \leq \eta.$$

Theorem

If A is either a Gaussian random matrix or a random Fourier matrix,

$$\|\hat{\boldsymbol{X}} - \boldsymbol{X}_0\|_F \le (C_0 + C_1\sqrt{Ks})\eta$$

with high probability. L satisfies the condition in the noiseless case. Both C_0 and C_1 are constants.

Assume that \boldsymbol{y} is contaminated by noise, namely, $\boldsymbol{y} = \mathcal{A}(\boldsymbol{X}_0) + \boldsymbol{w}$ with $\|\boldsymbol{w}\| \leq \eta$, we solve the following program to recover \boldsymbol{X}_0 ,

$$\min \|\boldsymbol{Z}\|_1 \quad \text{s.t.} \ \|\boldsymbol{\mathcal{A}}(\boldsymbol{Z}) - \boldsymbol{y}\| \leq \eta.$$

Theorem

If A is either a Gaussian random matrix or a random Fourier matrix,

$$\|\hat{oldsymbol{X}}-oldsymbol{X}_0\|_{F}\leq (C_0+C_1\sqrt{Ks})\eta$$

with high probability. L satisfies the condition in the noiseless case. Both C_0 and C_1 are constants.

Numerical example: relative error vs SNR

Part II: Blind deconvolution and nonconvex optimization

What is blind deconvolution?

Suppose we observe a function y which consists of the convolution of two unknown functions, the blurring function f and the signal of interest g, plus noise w. How to reconstruct f and g from y?

$$\boldsymbol{y} = \boldsymbol{f} * \boldsymbol{g} + \boldsymbol{w}.$$

It is obviously a highly ill-posed bilinear inverse problem...

- Much more difficult than ordinary deconvolution...but have important applications in various fields.
- Solvability? What conditions on **f** and **g** make this problem solvable?
- How? What algorithms shall we use to recover **f** and **g**?

Why do we care about blind deconvolution?

Image deblurring

Let **f** be the blurring kernel and **g** be the original image, then y = f * g is the blurred image.

Question: how to reconstruct f and g from y

Why do we care about blind deconvolution?

Joint channel and signal estimation in wireless communication

Suppose that a signal x, encoded by A, is transmitted through an unknown channel f. How to reconstruct f and x from y?

$$y = f * Ax + w.$$

University of California Davis, May 2017

We start from the original model

$$\mathbf{y} = \mathbf{f} * \mathbf{g} + \mathbf{w}$$
.

As mentioned before, it is an ill-posed problem. Phase retrieval is actually a special case if $\mathbf{g}(-x) = \mathbf{\bar{f}}(x)$. Hence, this problem is unsolvable without further assumptions...

Subspace assumption

Both \boldsymbol{f} and \boldsymbol{g} belong to known subspaces: there exist known tall matrices $\widetilde{\boldsymbol{B}} \in \mathbb{C}^{L \times K}$ and $\widetilde{\boldsymbol{A}} \in \mathbb{C}^{L \times N}$ such that

$$\boldsymbol{f} = \widetilde{\boldsymbol{B}}\boldsymbol{h}_0, \quad \boldsymbol{g} = \widetilde{\boldsymbol{A}}\boldsymbol{x}_0,$$

for some unknown vectors $h_0 \in \mathbb{C}^K$ and $x_0 \in \mathbb{C}^N$. Here x_0 is not necessarily sparse.

We start from the original model

$$\mathbf{y} = \mathbf{f} * \mathbf{g} + \mathbf{w}.$$

As mentioned before, it is an ill-posed problem. Phase retrieval is actually a special case if $\mathbf{g}(-x) = \mathbf{\bar{f}}(x)$. Hence, this problem is unsolvable without further assumptions...

Subspace assumption

Both \boldsymbol{f} and \boldsymbol{g} belong to known subspaces: there exist known tall matrices $\widetilde{\boldsymbol{B}} \in \mathbb{C}^{L \times K}$ and $\widetilde{\boldsymbol{A}} \in \mathbb{C}^{L \times N}$ such that

$$\boldsymbol{f} = \widetilde{\boldsymbol{B}} \boldsymbol{h}_0, \quad \boldsymbol{g} = \widetilde{\boldsymbol{A}} \boldsymbol{x}_0,$$

for some unknown vectors $\mathbf{h}_0 \in \mathbb{C}^K$ and $\mathbf{x}_0 \in \mathbb{C}^N$. Here \mathbf{x}_0 is not necessarily sparse.

Subspace assumption

Both \boldsymbol{f} and \boldsymbol{g} belong to known subspaces: there exist known tall matrices $\widetilde{\boldsymbol{B}} \in \mathbb{C}^{L \times K}$ and $\widetilde{\boldsymbol{A}} \in \mathbb{C}^{L \times N}$ such that

$$\mathbf{f} = \widetilde{\mathbf{B}}\mathbf{h}_0, \quad \mathbf{g} = \widetilde{\mathbf{A}}\mathbf{x}_0,$$

for some unknown vectors $\boldsymbol{h}_0 \in \mathbb{C}^K$ and $\boldsymbol{x}_0 \in \mathbb{C}^N$.

Useful examples:

- In image deblurring, \tilde{B} can be the support of the blurring kernel; \tilde{A} is a wavelet basis.
- In wireless communication, \widetilde{B} is related to the maximum delay spread and \widetilde{A} is an encoding matrix.

After taking Fourier transform, circular convolution becomes entrywise multiplication:

$$oldsymbol{y} = (\widetilde{oldsymbol{B}}oldsymbol{h}_0) * (\widetilde{oldsymbol{A}}oldsymbol{x}_0) + oldsymbol{w} \Longrightarrow \hat{oldsymbol{y}} = ext{diag}(oldsymbol{B}oldsymbol{h}_0)oldsymbol{A}oldsymbol{x}_0 + \hat{oldsymbol{w}},$$

where

$$\hat{\boldsymbol{y}} = \boldsymbol{F} \boldsymbol{y} \in \mathbb{C}^{L}, \quad \boldsymbol{B} = \boldsymbol{F} \widetilde{\boldsymbol{B}}, \quad \boldsymbol{A} = \boldsymbol{F} \widetilde{\boldsymbol{A}}$$

and \boldsymbol{F} is the $L \times L$ DFT matrix.

Goal: recover h_0, x_0 from B, A, and \hat{y} .

More on subspace assumption

Since we don't assume x to be sparse, the degree of freedom for unknowns is K + N; number of constraints: *L*.

$$\mathbf{y} = \operatorname{diag}(\mathbf{B}\mathbf{h}_0)\mathbf{A}\mathbf{x}_0 + \mathbf{w},$$

where $\frac{\mathbf{w}}{d_0} \sim \frac{1}{\sqrt{2}} \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_L) + i \frac{1}{\sqrt{2}} \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_L)$ and $d_0 = \|\mathbf{h}_0\| \|\mathbf{x}_0\|$. One might want to solve the following nonlinear least squares problem

min
$$F(\boldsymbol{h}, \boldsymbol{x}) := \|\operatorname{diag}(\boldsymbol{B}\boldsymbol{h})\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2$$
.

Difficulties:

 Nonconvexity: F is a nonconvex function; algorithms (such as gradient descent) are likely to get trapped at local minima.

On the second second

$$\mathbf{y} = \operatorname{diag}(\mathbf{B}\mathbf{h}_0)\mathbf{A}\mathbf{x}_0 + \mathbf{w},$$

where $\frac{\mathbf{w}}{d_0} \sim \frac{1}{\sqrt{2}} \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_L) + i \frac{1}{\sqrt{2}} \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_L)$ and $d_0 = \|\mathbf{h}_0\| \|\mathbf{x}_0\|$. One might want to solve the following nonlinear least squares problem,

min
$$F(\boldsymbol{h}, \boldsymbol{x}) := \|\operatorname{diag}(\boldsymbol{B}\boldsymbol{h})\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2.$$

Difficulties:

- **Nonconvexity:** *F* is a nonconvex function; algorithms (such as gradient descent) are likely to get trapped at local minima.
- No performance guarantees.

Convex relaxation and state of the art

Nuclear norm minimization

Consider the convex envelop of rank(Z): nuclear norm $||Z||_* = \sum \sigma_i(Z)$.

$$\min \|\boldsymbol{Z}\|_*$$
 s.t. $\mathcal{A}(\boldsymbol{Z}) = \mathcal{A}(\boldsymbol{X}_0)$

where $X_0 = h_0 x_0^*$.

Theorem [Ahmed-Recht-Romberg 11]

Assume $\mathbf{y} = \text{diag}(\mathbf{B}\mathbf{h}_0)\mathbf{A}\mathbf{x}_0$, $\mathbf{A} : L \times N$ is a complex Gaussian random matrix,

$$\boldsymbol{B}^*\boldsymbol{B} = \boldsymbol{I}_K, \quad \|\boldsymbol{b}_i\|^2 \leq \frac{\mu_{\max}^2 K}{L}, \quad L\|\boldsymbol{B}\boldsymbol{h}_0\|_{\infty}^2 \leq \mu_h^2,$$

the above convex relaxation recovers $\mathbf{X} = \mathbf{h}_0 \mathbf{x}_0^*$ exactly with high probability if

$$C_0(K + \mu_h^2 N) \le \frac{L}{\log^3 L}.$$

Convex relaxation and state of the art

Nuclear norm minimization

Consider the convex envelop of rank(Z): nuclear norm $||Z||_* = \sum \sigma_i(Z)$.

$$\min \|\boldsymbol{Z}\|_*$$
 s.t. $\mathcal{A}(\boldsymbol{Z}) = \mathcal{A}(\boldsymbol{X}_0)$

where $X_0 = h_0 x_0^*$.

Theorem [Ahmed-Recht-Romberg 11]

Assume $\mathbf{y} = \text{diag}(\mathbf{B}\mathbf{h}_0)\mathbf{A}\mathbf{x}_0$, $\mathbf{A} : L \times N$ is a complex Gaussian random matrix,

$$\boldsymbol{B}^*\boldsymbol{B} = \boldsymbol{I}_K, \quad \|\boldsymbol{b}_i\|^2 \leq \frac{\mu_{\max}^2 K}{L}, \quad L\|\boldsymbol{B}\boldsymbol{h}_0\|_{\infty}^2 \leq \mu_h^2,$$

the above convex relaxation recovers $\boldsymbol{X} = \boldsymbol{h}_0 \boldsymbol{x}_0^*$ exactly with high probability if

$$C_0(K+\mu_h^2 N) \leq \frac{L}{\log^3 L}.$$

Pros and Cons

- Pros: Simple, efficient and comes with theoretic guarantees
- Cons: Computationally too expensive to solve SDP

Our Goal: rapid, robust, reliable nonconvex approach

- Rapid: linear convergence
- Robust: stable to noise
- Reliable: provable and comes with theoretic guarantees; number of measurement close to information-theoretic limits.

An increasing list of nonconvex approach to various problems:

- Phase retrieval: by Candès, Li, Soltanolkotabi, Chen, etc...
- Matrix completion: by Sun, Luo, Montanari, etc...
- Various problems: by Wainwright, Recht, Constantine, etc...

Two-step philosophy for provable nonconvex optimization

- (a) Use spectral initialization to construct a starting point inside *"the basin of attraction"*;
- (b) Simple gradient descent method.

The key is to build up "the basin of attraction".

An increasing list of nonconvex approach to various problems:

- Phase retrieval: by Candès, Li, Soltanolkotabi, Chen, etc...
- Matrix completion: by Sun, Luo, Montanari, etc...
- Various problems: by Wainwright, Recht, Constantine, etc...

Two-step philosophy for provable nonconvex optimization

- (a) Use spectral initialization to construct a starting point inside *"the basin of attraction"*;
- (b) Simple gradient descent method.

The key is to build up "the basin of attraction".

The basin of the attraction relies on the following three observations.

Observation 1: Unboundedness of solution

- If the pair (h_0, x_0) is a solution to $y = \text{diag}(Bh_0)Ax_0$, then so is the pair $(\alpha h_0, \alpha^{-1}x_0)$ for any $\alpha \neq 0$.
- Thus the blind deconvolution problem always has infinitely many solutions of this type. We can recover (*h*₀, *x*₀) only up to a scalar.
- It is possible that $\|\boldsymbol{h}\| \gg \|\boldsymbol{x}\|$ (vice versa) while $\|\boldsymbol{h}\| \cdot \|\boldsymbol{x}\| = d_0$. Hence we define \mathcal{N}_{d_0} to balance $\|\boldsymbol{h}\|$ and $\|\boldsymbol{x}\|$:

$$\mathcal{N}_{d_0} := \{(\boldsymbol{h}, \boldsymbol{x}) : \|\boldsymbol{h}\| \le 2\sqrt{d_0}, \|\boldsymbol{x}\| \le 2\sqrt{d_0}\}.$$

Observation 2: Incoherence

How much \boldsymbol{b}_l and \boldsymbol{h}_0 are aligned matters:

$$\mu_{h}^{2} := \frac{L \|\boldsymbol{B}\boldsymbol{h}_{0}\|_{\infty}^{2}}{\|\boldsymbol{h}_{0}\|^{2}} = L \frac{\max_{i} |\boldsymbol{b}_{i}^{*}\boldsymbol{h}_{0}|^{2}}{\|\boldsymbol{h}_{0}\|^{2}}, \text{ the smaller } \mu_{h} \text{, the better.}$$

Therefore, we introduce the \mathcal{N}_{μ} to control the incoherence:

$$\mathcal{N}_{\mu} := \{ \boldsymbol{h} : \sqrt{L} \| \boldsymbol{B} \boldsymbol{h} \|_{\infty} \leq 4 \mu \sqrt{d_0} \}.$$

"Incoherence" is not a new idea. In matrix completion, we also require the left and right singular vectors of the ground truth cannot be too "aligned" with those of measurement matrices $\{\boldsymbol{b}_i \boldsymbol{a}_i^*\}_{1 \le i \le L}$. The same philosophy applies here.

Building "the basin of attraction"

Observation 3: "Close" to the ground truth

We define $\mathcal{N}_{\varepsilon}$ to quantify closeness of $(\boldsymbol{h}, \boldsymbol{x})$ to true solution, i.e.,

$$\mathcal{N}_{\varepsilon} := \{ (\boldsymbol{h}, \boldsymbol{x}) : \| \boldsymbol{h} \boldsymbol{x}^* - \boldsymbol{h}_0 \boldsymbol{x}_0^* \|_F \leq \varepsilon d_0 \}.$$

We want to find an initial guess close to (h_0, x_0) .

Based on the three observations above, we define the three neighborhoods (denoting $d_0 = ||h_0|| ||x_0||$):

$$\begin{array}{rcl} \mathcal{N}_{d_0} & := & \{(\boldsymbol{h}, \boldsymbol{x}) : \|\boldsymbol{h}\| \leq 2\sqrt{d_0}, \|\boldsymbol{x}\| \leq 2\sqrt{d_0}\} \\ \mathcal{N}_{\mu} & := & \{\boldsymbol{h} : \sqrt{L} \|\boldsymbol{B}\boldsymbol{h}\|_{\infty} \leq 4\mu\sqrt{d_0}\} \\ \mathcal{N}_{\varepsilon} & := & \{(\boldsymbol{h}, \boldsymbol{x}) : \|\boldsymbol{h}\boldsymbol{x}^* - \boldsymbol{h}_0\boldsymbol{x}_0^*\|_F \leq \varepsilon d_0\}. \end{array}$$

where $\varepsilon < \frac{1}{15}$. We first obtain a good initial guess $(\boldsymbol{u}_0, \boldsymbol{v}_0) \in \mathcal{N}_{d_0} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$, which is followed by regularized gradient descent.

The objective function \widetilde{F} consists of two parts: F and G:

$$\min_{(\boldsymbol{h},\boldsymbol{x})} \quad \widetilde{F}(\boldsymbol{h},\boldsymbol{x}) := F(\boldsymbol{h},\boldsymbol{x}) + G(\boldsymbol{h},\boldsymbol{x}),$$

where $F(\boldsymbol{h}, \boldsymbol{x}) = \|\mathcal{A}(\boldsymbol{h}\boldsymbol{x}^*) - \boldsymbol{y}\|^2 = \|\operatorname{diag}(\boldsymbol{B}\boldsymbol{h})\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2$ and

$$G(\boldsymbol{h},\boldsymbol{x}) := \rho \Big[\underbrace{G_0\left(\frac{\|\boldsymbol{h}\|^2}{2d}\right) + G_0\left(\frac{\|\boldsymbol{x}\|^2}{2d}\right)}_{\mathcal{N}_{d_0}} + \underbrace{\sum_{l=1}^{L} G_0\left(\frac{L|\boldsymbol{b}_l^*\boldsymbol{h}|^2}{8d\mu^2}\right)}_{\mathcal{N}_{\mu}} \Big].$$

Here $G_0(z) = \max\{z-1,0\}^2$, $\rho \approx d^2$, $d \approx d_0$ and $\mu \ge \mu_h$.

The objective function \widetilde{F} consists of two parts: F and G:

$$\min_{(\boldsymbol{h},\boldsymbol{x})} \quad \widetilde{F}(\boldsymbol{h},\boldsymbol{x}) := F(\boldsymbol{h},\boldsymbol{x}) + G(\boldsymbol{h},\boldsymbol{x})$$

We refer F and G as

- *F* : least squares term, i.e., impose the measurement equations
- G: regularization term, i.e., regularization forces iterates $(\boldsymbol{u}_t, \boldsymbol{v}_t)$ inside $\mathcal{N}_{d_0} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Algorithm: Wirtinger Gradient Descent

Step 1: Initialization via spectral method and projection:

- 1: Compute $\mathcal{A}^*(\boldsymbol{y})$, (since $\mathbb{E}(\mathcal{A}^*(\boldsymbol{y})) = \boldsymbol{h}_0 \boldsymbol{x}_0^*)$;
- 2: Find the leading singular value, left and right singular vectors of $\mathcal{A}^*(\boldsymbol{y})$, denoted by $(d, \hat{\boldsymbol{h}}_0, \hat{\boldsymbol{x}}_0)$ respectively;

3:
$$oldsymbol{u}^{(0)} := \mathcal{P}_{\mathcal{N}_{\mu}}(\sqrt{d}oldsymbol{h}_0)$$
 and $oldsymbol{v}^{(0)} := \sqrt{d}\hat{oldsymbol{x}}_0$

4: Output:
$$(u^{(0)}, v^{(0)})$$
.

Step 2: Gradient descent with constant stepsize η :

1: Initialization: obtain $(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)})$ via Algorithm 1.

2: for
$$t = 1, 2, ..., do$$

3:
$$\boldsymbol{u}^{(t)} = \boldsymbol{u}^{(t-1)} - \eta \nabla \widetilde{F}_{\boldsymbol{h}}(\boldsymbol{u}^{(t-1)}, \boldsymbol{v}^{(t-1)})$$

4:
$$\mathbf{v}^{(t)} = \mathbf{v}^{(t-1)} - \eta \nabla \widetilde{F}_{\mathbf{x}}(\mathbf{u}^{(t-1)}, \mathbf{v}^{(t-1)})$$

5: end for

Algorithm: Wirtinger Gradient Descent

Step 1: Initialization via spectral method and projection:

- 1: Compute $\mathcal{A}^*(\boldsymbol{y})$, (since $\mathbb{E}(\mathcal{A}^*(\boldsymbol{y})) = \boldsymbol{h}_0 \boldsymbol{x}_0^*$);
- 2: Find the leading singular value, left and right singular vectors of $\mathcal{A}^*(\mathbf{y})$, denoted by $(d, \hat{\mathbf{h}}_0, \hat{\mathbf{x}}_0)$ respectively;

3:
$$\boldsymbol{u}^{(0)} := \mathcal{P}_{\mathcal{N}_{\mu}}(\sqrt{d}\boldsymbol{h}_{0})$$
 and $\boldsymbol{v}^{(0)} := \sqrt{d}\hat{\boldsymbol{x}}_{0}$

Step 2: Gradient descent with constant stepsize η :

1: Initialization: obtain $(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)})$ via Algorithm 1.

2: for
$$t = 1, 2, ..., do$$

3: $\boldsymbol{u}^{(t)} = \boldsymbol{u}^{(t-1)} - \eta \nabla \widetilde{F}_{\boldsymbol{h}}(\boldsymbol{u}^{(t-1)}, \boldsymbol{v}^{(t-1)})$
4: $\boldsymbol{v}^{(t)} = \boldsymbol{v}^{(t-1)} - \eta \nabla \widetilde{F}_{\boldsymbol{x}}(\boldsymbol{u}^{(t-1)}, \boldsymbol{v}^{(t-1)})$

5: end for

Theorem: [Li-Ling-Strohmer-Wei, 2016]

Let \boldsymbol{B} be a tall partial DFT matrix and \boldsymbol{A} be a complex Gaussian random matrix. If the number of measurements satisfies

$$L \geq C(\mu_h^2 + \sigma^2)(K + N) \log^2(L)/\varepsilon^2,$$

(i) then the initialization $(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)}) \in \frac{1}{\sqrt{3}} \mathcal{N}_{d_0} \bigcap \frac{1}{\sqrt{3}} \mathcal{N}_{\mu} \bigcap \mathcal{N}_{\frac{2}{5}\varepsilon}^2$; (ii) the regularized gradient descent algorithm creates a sequence $(\boldsymbol{u}^{(t)}, \boldsymbol{v}^{(t)})$ in $\mathcal{N}_{d_0} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$ satisfying

$$\|\boldsymbol{u}^{(t)}(\boldsymbol{v}^{(t)})^* - \boldsymbol{h}_0 \boldsymbol{x}_0^*\|_F \le (1-lpha)^t \varepsilon d_0 + c_0 \|\mathcal{A}^*(\boldsymbol{w})\|$$

with high probability where $\alpha = \mathcal{O}(\frac{1}{(1+\sigma^2)(K+N)\log^2 L})$

Remarks

(a) If
$$\boldsymbol{w} = \boldsymbol{0}$$
, $(\boldsymbol{u}^{(t)}, \boldsymbol{v}^{(t)})$ converges to $(\boldsymbol{h}_0, \boldsymbol{x}_0)$ linearly.
$$\|\boldsymbol{u}^{(t)}(\boldsymbol{v}^{(t)})^* - \boldsymbol{h}_0 \boldsymbol{x}_0^*\|_F \le (1-\alpha)^t \varepsilon d_0 \to 0, \text{ as } t \to \infty$$

(b) If $\boldsymbol{w} \neq \boldsymbol{0}$, $(\boldsymbol{u}^{(t)}, \boldsymbol{v}^{(t)})$ converges to a small neighborhood of $(\boldsymbol{h}_0, \boldsymbol{x}_0)$ linearly.

$$\|oldsymbol{u}^{(t)}(oldsymbol{v}^{(t)})^* - oldsymbol{h}_0 oldsymbol{x}_0^*\|_{ extsf{F}} o c_0 \|\mathcal{A}^*(oldsymbol{w})\|, extsf{ as } t o \infty$$

where

$$\|\mathcal{A}^*(\boldsymbol{w})\| = \mathcal{O}\left(\sigma d_0 \sqrt{\frac{(K+N)\log L}{L}}\right) \to 0, \text{ if } L \to \infty.$$

As *L* is becoming larger and larger, the effect of noise diminishes. (Recall linear least squares.)

Numerical experiments

Nonconvex approach v.s. convex approach:

$$\min_{(\boldsymbol{h},\boldsymbol{x})} \widetilde{F}(\boldsymbol{h},\boldsymbol{x}) \quad \text{v.s.} \quad \min \|\boldsymbol{Z}\|_* \quad s.t.\|\mathcal{A}(\boldsymbol{Z}) - \boldsymbol{y}\| \leq \eta.$$

Nonconvex method requires fewer measurements to achieve exact recovery than convex method. Moreover, if A is a partial Hadamard matrix, our algorithm still gives satisfactory performance.

K = N = 50, **B** is a low-frequency DFT matrix.

Shuyang Ling (UC Davis)

University of California Davis, May 2017

Our algorithm yields stable recovery if the observation is noisy.

Here K = N = 100.

Here \boldsymbol{B} is a partial DFT matrix and \boldsymbol{A} is a partial wavelet matrix.

When the subspace B, (K = 65) or support of blurring kernel is known: $g \approx Ax$: image of 512 × 512; A: wavelet subspace corresponding to the N = 20000 largest Haar wavelet coefficients of g.

Extended to joint blind deconvolution and blind demixing

Suppose there are s users and each of them sends a message x_i , which is encoded by C_i , to a common receiver. Each encoded message $g_i = C_i x_i$ is convolved with an unknown impulse response function f_i .

Suppose that

• Each impulse response **f**_i has maximum delay spread K (compact support):

$$\boldsymbol{f}_i(n) = 0, \quad \text{ for } n > K.$$

• $\boldsymbol{g}_i := \boldsymbol{C}_i \boldsymbol{x}_i$ is the signal $\boldsymbol{x}_i \in \mathbb{C}^N$ encoded by $\boldsymbol{C}_i \in \mathbb{C}^{L \times N}$ with L > N.

Mathematical model

Let **B** be the first K columns of the DFT matrix and $A_i = FC_i$,

$$m{y} = \sum_{i=1}^{s} \operatorname{diag}(m{B}m{h}_i)m{A}_im{x}_i + m{w}.$$

Goal: We want to recover $\{(h_i, x_i)\}_{i=1}^s$ from $(y, B, \{A_i\}_{i=1}^s)$. The degree of freedom for unknowns: s(K + N); number of constraints: *L*. Objective function: a variant of projected gradient descent

The objective function \widetilde{F} consists of two parts: F and G,

$$\min_{(\boldsymbol{h},\boldsymbol{x})} \quad \widetilde{F}(\boldsymbol{h},\boldsymbol{x}) := \underbrace{F(\boldsymbol{h},\boldsymbol{x})}_{\text{least squares term}} + \underbrace{G(\boldsymbol{h},\boldsymbol{x})}_{\text{regularization term}}$$
where $F(\boldsymbol{h},\boldsymbol{x}) := \|\sum_{i=1}^{s} \operatorname{diag}(\boldsymbol{B}\boldsymbol{h}_{i})\boldsymbol{A}_{i}\boldsymbol{x}_{i} - \boldsymbol{y}\|^{2}$ and
$$G(\boldsymbol{h},\boldsymbol{x}) := \rho \sum_{i=1}^{s} \left[\underbrace{G_{0}\left(\frac{\|\boldsymbol{h}_{i}\|^{2}}{2d_{i}}\right) + G_{0}\left(\frac{\|\boldsymbol{x}_{i}\|^{2}}{2d_{i}}\right)}_{\mathcal{N}_{d_{0}}: \text{ balance } \|\boldsymbol{h}_{i}\| \text{ and } \|\boldsymbol{x}_{i}\|} + \sum_{l=1}^{L} G_{0}\left(\frac{L|\boldsymbol{b}_{l}^{*}\boldsymbol{h}_{i}|^{2}}{8d_{i}\mu^{2}}\right) \right].$$

Algorithm:

- Spectral initialization
- Apply gradient descent to \widetilde{F}

Main results

Theorem [Ling-Strohmer 17]

Assume $\boldsymbol{w} \sim C\mathcal{N}(0, \sigma^2 d_0^2/L)$ and \boldsymbol{A}_i as a complex Gaussian matrix. Starting with the initial value

$$(oldsymbol{u}^{(0)},oldsymbol{v}^{(0)})\in rac{1}{\sqrt{3}}\mathcal{N}_{d_0}iggarged rac{1}{\sqrt{3}}\mathcal{N}_{\mu}igcap\mathcal{N}_{rac{2arepsilon}{5\sqrt{s\kappa}}},$$

 $(u^{(t)}, v^{(t)})$ converges to the global minima linearly,

$$\sqrt{\sum_{i=1}^{s} \|\boldsymbol{u}_{i}^{(t)}(\boldsymbol{v}_{i}^{(t)})^{*} - \boldsymbol{h}_{i0}\boldsymbol{x}_{i0}^{*}\|_{F}^{2}} \leq \underbrace{(1-\alpha)^{t}\varepsilon d_{0}}_{\text{linear convergence}} + \underbrace{c_{0}\|\mathcal{A}^{*}(\boldsymbol{w})\|}_{\text{error term}}$$

with probability at least $1 - L^{-\gamma+1}$ and $\alpha = \mathcal{O}((s(K + N) \log^2 L)^{-1})$ if

$$L \geq C_{\gamma}(\mu_h^2 + \sigma^2) s^2 \kappa^4 (K + N) \log^2 L \log s / \varepsilon^2.$$

Numerics: Does L scale linearly with s?

Let each A_i be a complex Gaussian matrix. The number of measurement scales linearly with the number of sources s if K and N are fixed. Approximately, $L \approx 1.5s(K + N)$ yields exact recovery.

Figure: Black: failure; white: success

Shuyang Ling (UC Davis)

University of California Davis, May 2017

A communication example

A more practical and useful choice of encoding matrix C_i : $C_i = D_i H$ (i.e., $A_i = FD_iH$) where D_i is a diagonal random binary ± 1 matrix and H is an $L \times N$ deterministic partial Hadamard matrix. With this setting, our approach can demix many users **without** performing channel estimation.

 $L \approx 1.5 s(K + N)$ yields exact recovery.

Shuyang Ling (UC Davis)

Important ingredients of proof

The first three conditions hold over "the basin of attraction" $\mathcal{N}_{d_0} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Condition 1: Local Regularity Condition

Guarantee sufficient decrease in each iterate and linear convergence of F:

 $\|\nabla \widetilde{F}(\boldsymbol{h}, \boldsymbol{x})\|^2 \geq \omega \widetilde{F}(\boldsymbol{h}, \boldsymbol{x})$

where $\omega > 0$ and $(\boldsymbol{h}, \boldsymbol{x}) \in \mathcal{N}_{d_0} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Condition 2: Local Smoothness Condition

Governs rate of convergence. Let $\mathbf{z} = (\mathbf{h}, \mathbf{x})$. There exists a constant C_L (Lipschitz constant of gradient) such that

$$\|\nabla \widetilde{F}(\boldsymbol{z} + t\Delta \boldsymbol{z}) - \nabla \widetilde{F}(\boldsymbol{z})\| \leq C_L t \|\Delta \boldsymbol{z}\|, \quad \forall \, 0 \leq t \leq 1,$$

for all $\{(\boldsymbol{z}, \Delta \boldsymbol{z}) : \boldsymbol{z} + t\Delta \boldsymbol{z} \in \mathcal{N}_{d_0} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}, \forall 0 \leq t \leq 1\}.$

Condition 3: Local Restricted Isometry Property

Transfer convergence of objective function to convergence of iterates.

$$\frac{2}{3}\|\boldsymbol{h}\boldsymbol{x}^* - \boldsymbol{h}_0\boldsymbol{x}_0^*\|_F^2 \leq \|\mathcal{A}(\boldsymbol{h}\boldsymbol{x}^* - \boldsymbol{h}_0\boldsymbol{x}_0^*)\|^2 \leq \frac{3}{2}\|\boldsymbol{h}\boldsymbol{x}^* - \boldsymbol{h}_0\boldsymbol{x}_0^*\|_F^2$$

holds uniformly for all $(\boldsymbol{h}, \boldsymbol{x}) \in \mathcal{N}_{d_0} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Condition 4: Robustness Condition

Provide stability against noise.

$$\|\mathcal{A}^*(\boldsymbol{w})\| \leq rac{arepsilon d_0}{10\sqrt{2}}.$$

where $\mathcal{A}^*(\boldsymbol{w}) = \sum_{l=1}^{L} w_l \boldsymbol{b}_l \boldsymbol{a}_l^*$ is a sum of *L* rank-1 random matrices. It concentrates around **0**.

Conclusion: The proposed algorithm is arguably the first nonconvex blind deconvolution/demixing algorithm with rigorous recovery guarantees. We also propose a convex approach (sub-optimal) to solve a self-calibration problem related to biconvex compressive sensing.

- Can we show if similar result holds for other types of A?
- What if **x** or **h** is sparse/both of them are sparse?
- See details:
 - Self-calibration and biconvex compressive sensing. *Inverse Problems* 31 (11), 115002
 - Blind deconvolution meets blind demixing: algorithms and performance bounds, To appear in IEEE Trans on Information Theory
 - Rapid, robust, and reliable blind deconvolution via nonconvex optimization, arXiv:1606.04933.
 - Regularized gradient descent: a nonconvex recipe for fast joint blind deconvolution and demixing arXiv:1703.08642.

Conclusion: The proposed algorithm is arguably the first nonconvex blind deconvolution/demixing algorithm with rigorous recovery guarantees. We also propose a convex approach (sub-optimal) to solve a self-calibration problem related to biconvex compressive sensing.

- Can we show if similar result holds for other types of A?
- What if **x** or **h** is sparse/both of them are sparse?
- See details:
 - Self-calibration and biconvex compressive sensing. *Inverse Problems* 31 (11), 115002
 - Blind deconvolution meets blind demixing: algorithms and performance bounds, To appear in IEEE Trans on Information Theory
 - Rapid, robust, and reliable blind deconvolution via nonconvex optimization, arXiv:1606.04933.
 - Regularized gradient descent: a nonconvex recipe for fast joint blind deconvolution and demixing arXiv:1703.08642.

When the subspace B or support of blurring kernel is unknown: we assume the support of blurring kernel is contained in a small box; N = 35000.

Condition $1 + 2 \Longrightarrow$ Linear convergence of \tilde{F}

Proof.

Let
$$\mathbf{z}_{t+1} = \mathbf{z}_t - \eta \nabla \widetilde{F}(\mathbf{z}_t)$$
 with $\eta \leq \frac{1}{C_L}$. By using modified descent lemma,
 $\widetilde{F}(\mathbf{z}_t + \eta \nabla \widetilde{F}(\mathbf{z}_t)) \leq \widetilde{F}(\mathbf{z}_t) - (2\eta + C_L \eta^2) \|\nabla \widetilde{F}(\mathbf{z}_t)\|^2$
 $\leq \widetilde{F}(\mathbf{z}_t) - \eta \omega \widetilde{F}(\mathbf{z}_t)$
which gives $\widetilde{F}(\mathbf{z}_{t+1}) \leq (1 - \eta \omega)^t \widetilde{F}(\mathbf{z}_0)$.

Condition 3 \implies Linear convergence of $\|\boldsymbol{u}_t \boldsymbol{v}_t^* - \boldsymbol{h}_0 \boldsymbol{x}_0^*\|_F$.

It follows from $\tilde{F}(\boldsymbol{z}_t) \geq F(\boldsymbol{z}_t) \geq \frac{3}{4} \|\boldsymbol{u}_t \boldsymbol{v}_t^* - \boldsymbol{h}_0 \boldsymbol{x}_0^*\|_F^2$. Hence, linear convergence of objective function also implies linear convergence of iterates.

Condition 4 \implies Proof of stability theory

If L is sufficiently large, $\mathcal{A}^*(\boldsymbol{w})$ is small since $\|\mathcal{A}^*(\boldsymbol{w})\| \to 0$. There holds

$$\|\mathcal{A}(\boldsymbol{h}\boldsymbol{x}^*-\boldsymbol{h}_0\boldsymbol{x}_0^*)-\boldsymbol{w}\|^2pprox\|\mathcal{A}(\boldsymbol{h}\boldsymbol{x}^*-\boldsymbol{h}_0\boldsymbol{x}_0^*)\|^2+\sigma^2d_0^2.$$

Hence, the objective function behaves "almost like" $\|\mathcal{A}(\boldsymbol{h}\boldsymbol{x}^* - \boldsymbol{h}_0\boldsymbol{x}_0^*)\|^2$, the noiseless version of F if the sample size is sufficiently large.