
When do birds of a feather flock together?
k-means, proximity, and conic programming

Shuyang Ling

Courant Institute of Mathematical Sciences, NYU

May 14, 2018

Shuyang Ling (New York University) ICCHA7 2018, Nashville, TN May 14, 2018 1 / 26



Acknowledgement

Research in collaboration with:

Prof. Xiaodong Li (Statistics, UC Davis)

Prof. Thomas Strohmer, Yang Li (Mathematics, UC Davis)

Prof. Ke Wei (School of Data Sciences, Fudan University, Shanghai)

Shuyang Ling (New York University) ICCHA7 2018, Nashville, TN May 14, 2018 2 / 26



k-means

Question: Given a set of N data points in Rm, how to partition them into
k clusters?
Criterion: minimize the k-means objective function:

min
{Γl}kl=1

k∑
l=1

∑
i∈Γl

‖x i − c l‖2

︸ ︷︷ ︸
within-cluster sum of squares

,

{Γl} is a partition of {1, · · · ,N}
c l is the sample mean of data points in Γl
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Difficulty of k-means

Importance and Difficulties

Widely used in vector quantization, unsupervised learning, Voronoi
tessellation, etc.

It is an NP-hard problem, even if m = 2. [Mahajan, etc 09]

Heuristic method: Lloyd’s algorithm [Lloyd 82] works well in practice.
But convergence is not always guaranteed: it may take exponentially
(in N) many steps to converge to stationary points (not even a local
minimum).
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Convex relaxation of k-means

Focus of talk

We are interested in the convex relaxation for k-means [Peng, Wei 07].

k-means

To minimize k-means objective, it suffices to optimize over all possible
choices of partition {Γl}:

f ({Γl}) :=
k∑

l=1

∑
i∈Γl

‖x i − c l‖2
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Convex relaxation of k-means

Focus of talk

We are interested in the convex relaxation for k-means [Peng, Wei 07].

An equivalent form:

It suffices to minimize it over all choices of partition {Γl}kl=1:

f ({Γl}kl=1) :=
k∑

l=1

∑
i∈Γl

‖x i − c l‖2 =
k∑

l=1

1

|Γl |
∑

i∈Γl ,j∈Γl

‖x i − x j‖2

which is the sum of the squared pairwise deviations of points in the same
cluster.

Shuyang Ling (New York University) ICCHA7 2018, Nashville, TN May 14, 2018 6 / 26



A bit more calculation

f ({Γl}kl=1) is the inner product between two matrices

f ({Γl}) =
N∑
i=1

N∑
j=1

‖x i − x j‖2︸ ︷︷ ︸
Dij

· 1

|Γl |
1{i∈Γl ,j∈Γl}︸ ︷︷ ︸

Xij

= 〈D,X 〉

where D = (‖x i − x j‖2)1≤i ,j≤N is the distance matrix and

X =

(
1

|Γl |
· 1{i∈Γl ,j∈Γl}

)
1≤i ,j≤N

We simply call X the partition matrix.

What properties does X have for any given partition {Γl}kl=1?
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Relaxation

Up to certain permutation, the matrix X is a block-diagonal matrix:

X =


1
|Γ1|1|Γ1|1

>
|Γ1| · · · 0

...
. . .

...

0 · · · 1
|Γk |1|Γk |1

>
|Γk |


We want to find a larger and convex search space containing all X as a
proper subset. What constraints does X satisfy?

Four constraints

Nonnegativity: X ≥ 0.

Positive semidefinite: X � 0.

Tr(X ) = k (note that rank(X ) = k is nonconvex)

Leading eigenvalues are 1 with multiplicities k: X1N = 1N .
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Convex relaxation

Semidefinite programming relaxation [Peng, Wei, 07]

The convex relaxation of k-means is

min 〈D,Z 〉 s.t. Z ≥ 0,Z � 0,Tr(Z ) = k ,Z1N = 1N .

Key question

Suppose we assume {Γl}kl=1 is the ground truth partition,

when does SDP relaxation recover X =
∑k

l=1
1
|Γl |1Γl

1>Γl
?
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A short literature review

Many excellent works for learning mixtures of distributions and SDP
relaxation of k-means:

SDP-relaxation of k-means: [Peng, Wei, 07], [Bandeira, Villar, Ward,
etc, 17], [Mixon, Villar, etc, 15], etc.

Spectral-projection based approaches: [Dasgupta, 99], [Vempala,
Wang, 04], [Achlipotas, McSherry, 05], etc.

Almost all works have one thing in common: data are assumed to be
sampled from a generative model, i.e., stochastic ball model, Gaussian
mixture models, etc.
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A model-free framework?

Question: Can we establish a model-free framework to learn mixture of
distributions?

Model-free: No assumption on data generative model.

One model-free idea: different clusters are mutually well-separated.

How large the separation is needed and in what sense?

This is made possible by proximity condition [Kumar, Kannan, 10],
[Awashi, Sheffet, 12].
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What is proximity condition?

𝑐" + 𝑐$
2

𝑐$𝑐"

𝜏",$

ℎ",$
2 −𝜏",$

ha,b: the distance between two centers

τa,b: the largest distance between data and their corresponding
centers when projected on the line linking ca with cb

da,b :=
ha,b

2 − τa,b is the smallest distance between the middle point
and projected data onto the line, which is a measure of separability
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Proximity condition

Proximity condition

The partition Γ = tkl=1Γl satisfies proximity condition if

da,b =
ha,b

2
− τa,b >

1√
2
·
√
k ·

√
max ‖Σl‖︸ ︷︷ ︸

standard deviation

holds for any a 6= b where Σl is the sample covariance matrix of data in
Γl . Proximity condition quantifies how far each data point is away from
the other clusters.

𝑐" + 𝑐$
2

𝑐$𝑐"

𝜏",$

ℎ",$
2 −𝜏",$
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Main theorem

Theorem

Suppose the partition {Γl}kl=1 obeys the proximity condition, i.e.,

da,b ≥
1√
2
·
√
k︸︷︷︸

tight?

·
√

max ‖Σl‖.

The minimizer of the SDP relaxation is unique and given by the ground
truth partition X .

A purely deterministic and model-free condition.

Conveniently apply to other data-generative models (shown in the
next few slides).

If all Γl are of the same size, the right hand side is replaced by√
k ·
√

max{‖Σa‖, ‖Σb‖} which only depends on the covariance
matrix of group Γa and Γb.

The dependence of ∆ on
√
k is not tight.
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Data generative model - Stochastic ball model

Stochastic ball model

The data is generated from

xa,i = µa + r a,i , 1 ≤ i ≤ n, 1 ≤ a ≤ k

where µa ∈ Rm is the population center and r a,i is uniform in B(Rm).

Obviously, ∆ = mina 6=b ‖µa − µb‖ > 2 guarantees two balls are not
overlapped and is necessary for exact recovery.
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Data generative model - Stochastic ball model

Our bound is slightly larger than 2 where the difference depends on
the number of clusters k and dimension m.

Corollary

The proximity condition holds with high probability if

∆ ≥ 2 +
√

2k max ‖Σl‖ = 2 +

√
2k

m + 2
+ o(1)

where ∆ is the minimal separation ∆ = mina 6=b ‖µa − µb‖ and m is the
dimension.

State-of-the-art [Awashi, Bandeira, Villar, Ward, Mixon, etc, 2015, 2017]:

∆ > min

{
2
√

2

(
1 +

1√
m

)
, 2 +

k2

m

}
.
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Data generative model - Gaussian mixture model

Gaussian mixture model

Consider
xa,i ∼ N (µa,Σa), 1 ≤ i ≤ n, 1 ≤ a ≤ k

where Σa is the covariance matrix.
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Data generative model - Gaussian mixture model

Corollary

Assume Σa = Im for all 1 ≤ a ≤ k, the proximity condition holds with
high probability if

∆ ≥ 2
√
k + 4

√
2 log1/2(kN2) + o(1),

if N � m2k3 log(k).

Gaussian mixture model: we achieve state-of-the-art result

∆ ≥ O(
√
k + log1/2(kN))

for minimal separation by e.g. [Awasthi, Sheffet, 12] and [Mixon, Villar,
Ward, 17], etc.
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An impossibility theorem

Question: How tight is our bound?

The minimal separation ∆ cannot be arbitrarily small, i.e., there is a lower
bound for the separation for SDP to work. Here is one specific example:

Theorem

For stochastic ball model, the Peng-Wei relaxation fails to achieve exact
recovery if N is large enough and

∆ < 1 +

√
1 +

2

m + 2
≈ 2 + ‖Σ‖

where ‖Σ‖ = 1
m+2 .
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Numerics: How does ∆ depend on k?

Our bound: ∆ ≥ 2 +
√

2k
m+2 ;

State-of-the-art bound: ∆ ≥ min
{

2
√

2
(

1 + 1√
m

)
, 2 + k2

m

}
The bound does not depend on k much.
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Figure: Numerical experiment on the stochastic ball model with dimension 2 and
number of clusters k varies from 2 to 6.
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Numerics: How does ∆ depend on m?

Here k = 2 and change m from 2 to 7.
Conjectured bound: ∆ ≥ 2 + 2

m+2

Necessary lower bound: ∆ > 1 +
√

1 + 2
m+2

Sufficient lower bound: ∆ > 2 + 2√
m+2

State-of-the-art: ∆ > min
{

2
√

2
(

1 + 1√
m

)
, 2 + k2

m

}
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State-of-the-art bound
Empircal lower bound
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Is k-means always a good choice? - toy example 1

Example 1: data are on two circles with the same centers but different
radius.

k-means does not work at all since it usually works for convex clusters.
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Is k-means always a good choice? - toy example 2

Example 2: data are lying uniformly on two unit intervals with separation
about ∆ ≈ 0.65. Let’s guess where the centers are?
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Is k-means always a good choice? - toy example 2

-0.5 0 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 0.67

-0.5 0 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 0.63
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Advertisement for an upcoming paper: kernel k-means?

Observation: k-means does not work if the geometry of data is
complicated.

Solution: spectral clustering which consists of Laplacian eigenmap
and k-means. However, many theoretic questions are not well
understood.

Question: Can we extend this convex relaxation framework to
spectral clustering or kernel k-means?

Yes, we will propose a convex relaxation of spectral clustering. It is
also model-free and provably solves the previous two cases where
ordinary k-means fails. The paper will be released soon!
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Open problem and conclusions

Conclusions

A model-free framework to certify the exactness of SDP relaxation
applied to k-means.

More details can be found arXiv:1710.06008.

Open problems

For a mixture generated by the generalized stochastic ball model, is it
possible to show

∆ ≥ 2 +O
(

1

m

)
,

suffices provided that the total number of points N is large enough.

How to analyze misclassification rate via convex optimization
approach?

Understand the convergence of Lloyd’s algorithm?
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