When do birds of a feather flock together? k-means, proximity, and conic programming

Shuyang Ling

Courant Institute of Mathematical Sciences, NYU

May 14, 2018

Acknowledgement

Research in collaboration with:

- Prof. Xiaodong Li (Statistics, UC Davis)
- Prof. Thomas Strohmer, Yang Li (Mathematics, UC Davis)
- Prof. Ke Wei (School of Data Sciences, Fudan University, Shanghai)

k-means

Question: Given a set of N data points in \mathbb{R}^{m}, how to partition them into k clusters?
Criterion: minimize the k-means objective function:

- $\left\{\Gamma_{1}\right\}$ is a partition of $\{1, \cdots, N\}$
- $\boldsymbol{c}_{/}$is the sample mean of data points in $\Gamma_{/}$

k-means

Question: Given a set of N data points in \mathbb{R}^{m}, how to partition them into k clusters?
Criterion: minimize the k-means objective function:

$$
\min _{\left\{\Gamma_{l}\right\}_{l=1}^{k}} \sum_{l=1}^{k} \underbrace{\sum_{i \in \Gamma_{l}}\left\|\boldsymbol{x}_{i}-\boldsymbol{c}_{l}\right\|^{2}}_{\text {within-cluster sum of squares }}
$$

- $\left\{\Gamma_{l}\right\}$ is a partition of $\{1, \cdots, N\}$
- \boldsymbol{c}_{l} is the sample mean of data points in $\Gamma_{/}$

Difficulty of k-means

Importance and Difficulties

- Widely used in vector quantization, unsupervised learning, Voronoi tessellation, etc.
- It is an NP-hard problem, even if $m=2$. [Mahajan, etc 09]
- Heuristic method: Lloyd's algorithm [Lloyd 82] works well in practice. But convergence is not always guaranteed: it may take exponentially (in N) many steps to converge to stationary points (not even a local minimum).

Convex relaxation of k-means

Focus of talk

We are interested in the convex relaxation for k-means [Peng, Wei 07].

k-means

To minimize $k-m e a n s$ objective, it suffices to optimize over all possible choices of partition $\left\{\Gamma_{/}\right\}$

Convex relaxation of k-means

Focus of talk
We are interested in the convex relaxation for k-means [Peng, Wei 07].

k-means

To minimize k-means objective, it suffices to optimize over all possible choices of partition $\left\{\Gamma_{l}\right\}$:

$$
f\left(\left\{\Gamma_{l}\right\}\right):=\sum_{l=1}^{k} \sum_{i \in \Gamma_{l}}\left\|\boldsymbol{x}_{i}-\boldsymbol{c}_{l}\right\|^{2}
$$

Convex relaxation of k-means

Focus of talk

We are interested in the convex relaxation for k-means [Peng, Wei 07].

An equivalent form:

It suffices to minimize it over all choices of partition $\left\{\Gamma_{l}\right\}_{l=1}^{k}$:

$$
f\left(\left\{\Gamma_{l}\right\}_{l=1}^{k}\right):=\sum_{l=1}^{k} \sum_{i \in \Gamma_{l}}\left\|x_{i}-\boldsymbol{c}_{l}\right\|^{2}=\sum_{l=1}^{k} \frac{1}{\left|\Gamma_{l}\right|} \sum_{i \in \Gamma_{l}, j \in \Gamma_{l}}\left\|x_{i}-x_{j}\right\|^{2}
$$

which is the sum of the squared pairwise deviations of points in the same cluster.

A bit more calculation

$f\left(\left\{\Gamma_{l}\right\}_{l=1}^{k}\right)$ is the inner product between two matrices

$$
f\left(\left\{\Gamma_{\imath}\right\}\right)=\sum_{i=1}^{N} \sum_{j=1}^{N} \underbrace{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}}_{D_{i j}} \cdot \underbrace{\frac{1}{\left|\Gamma_{l}\right|} \mathbf{1}_{\left\{i \in \Gamma_{\left.l, j \in \Gamma_{l}\right\}}\right.}}_{X_{i j}}=\langle\boldsymbol{D}, \boldsymbol{X}\rangle
$$

where $\boldsymbol{D}=\left(\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}\right)_{1 \leq i, j \leq N}$ is the distance matrix and

$$
\boldsymbol{X}=\left(\frac{1}{\left|\Gamma_{l}\right|} \cdot \mathbf{1}_{\left\{i \in \Gamma_{l}, j \in \Gamma_{/}\right\}}\right)_{1 \leq i, j \leq N}
$$

We simply call \boldsymbol{X} the partition matrix.
What properties does X have for any given partition $\left\{\Gamma_{1}\right\}_{l=1}^{k}$?

A bit more calculation

$f\left(\left\{\Gamma_{l}\right\}_{l=1}^{k}\right)$ is the inner product between two matrices

$$
f\left(\left\{\Gamma_{\imath}\right\}\right)=\sum_{i=1}^{N} \sum_{j=1}^{N} \underbrace{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}}_{D_{i j}} \cdot \underbrace{\frac{1}{\left|\Gamma_{l}\right|} \mathbf{1}_{\left\{i \in \Gamma_{\left.l, j \in \Gamma_{l}\right\}}\right.}}_{X_{i j}}=\langle\boldsymbol{D}, \boldsymbol{X}\rangle
$$

where $\boldsymbol{D}=\left(\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}\right)_{1 \leq i, j \leq N}$ is the distance matrix and

$$
\boldsymbol{X}=\left(\frac{1}{\left|\Gamma_{l}\right|} \cdot \mathbf{1}_{\left\{i \in \Gamma_{l}, j \in \Gamma_{/}\right\}}\right)_{1 \leq i, j \leq N}
$$

We simply call \boldsymbol{X} the partition matrix.
What properties does \boldsymbol{X} have for any given partition $\left\{\Gamma_{l}\right\}_{l=1}^{k}$?

Relaxation

Up to certain permutation, the matrix \boldsymbol{X} is a block-diagonal matrix:

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
\frac{1}{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|}^{\top} & \cdots & \mathbf{0} \\
\vdots & \ddots & \vdots \\
\mathbf{0} & \cdots & \frac{1}{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|}^{\top}
\end{array}\right]
$$

We want to find a larger and convex search space containing all \boldsymbol{X} as a proper subset. What constraints does \boldsymbol{X} satisfy?

```
Four constraints
- Nonnegativity: X\geq0.
- Positive semidefinite: }\boldsymbol{X}\succeq0\mathrm{ .
- }\operatorname{Tr}(\boldsymbol{X})=k\mathrm{ (note that rank(X)=k is nonconvex)
- Leading eigenvalues are 1 with multiplicities k: X1
```


Relaxation

Up to certain permutation, the matrix \boldsymbol{X} is a block-diagonal matrix:

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
\frac{1}{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|}^{\top} & \cdots & \mathbf{0} \\
\vdots & \ddots & \vdots \\
\mathbf{0} & \cdots & \frac{1}{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|}^{\top}
\end{array}\right]
$$

We want to find a larger and convex search space containing all \boldsymbol{X} as a proper subset. What constraints does \boldsymbol{X} satisfy?

Four constraints

- Nonnegativity: $\boldsymbol{X} \geq 0$.
- Positive semidefinite: $X \succeq 0$.
- $\operatorname{Tr}(\boldsymbol{X})=k$ (note that $\operatorname{rank}(\boldsymbol{X})=k$ is nonconvex)
- Leading eigenvalues are 1 with multiplicities $k: X \mathbf{1}_{N}=1_{N}$.

Relaxation

Up to certain permutation, the matrix \boldsymbol{X} is a block-diagonal matrix:

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
\frac{1}{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|}^{\top} & \cdots & \mathbf{0} \\
\vdots & \ddots & \vdots \\
\mathbf{0} & \cdots & \frac{1}{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|}^{\top}
\end{array}\right]
$$

We want to find a larger and convex search space containing all \boldsymbol{X} as a proper subset. What constraints does \boldsymbol{X} satisfy?

Four constraints

- Nonnegativity: $\boldsymbol{X} \geq 0$.
- Positive semidefinite: $\boldsymbol{X} \succeq 0$.
- $\operatorname{Tr}(\boldsymbol{X})=k$ (note that $\operatorname{rank}(\boldsymbol{X})=k$ is nonconvex)
- Leading eigenvalues are 1 with multiplicities $k: X 1_{N}=1_{N}$.

Relaxation

Up to certain permutation, the matrix \boldsymbol{X} is a block-diagonal matrix:

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
\frac{1}{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|}^{\top} & \cdots & \mathbf{0} \\
\vdots & \ddots & \vdots \\
\mathbf{0} & \cdots & \frac{1}{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|}^{\top}
\end{array}\right]
$$

We want to find a larger and convex search space containing all \boldsymbol{X} as a proper subset. What constraints does \boldsymbol{X} satisfy?

Four constraints

- Nonnegativity: $\boldsymbol{X} \geq 0$.
- Positive semidefinite: $\boldsymbol{X} \succeq 0$.
- $\operatorname{Tr}(\boldsymbol{X})=k$ (note that $\operatorname{rank}(\boldsymbol{X})=k$ is nonconvex)
- Leading eigenvalues are 1 with multiplicities $k: X 1_{N}=1_{N}$.

Relaxation

Up to certain permutation, the matrix \boldsymbol{X} is a block-diagonal matrix:

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
\frac{1}{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|} \mathbf{1}_{\left|\Gamma_{1}\right|}^{\top} & \cdots & \mathbf{0} \\
\vdots & \ddots & \vdots \\
\mathbf{0} & \cdots & \frac{1}{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|} \mathbf{1}_{\left|\Gamma_{k}\right|}^{\top}
\end{array}\right]
$$

We want to find a larger and convex search space containing all \boldsymbol{X} as a proper subset. What constraints does \boldsymbol{X} satisfy?

Four constraints

- Nonnegativity: $\boldsymbol{X} \geq 0$.
- Positive semidefinite: $\boldsymbol{X} \succeq 0$.
- $\operatorname{Tr}(\boldsymbol{X})=k$ (note that $\operatorname{rank}(\boldsymbol{X})=k$ is nonconvex)
- Leading eigenvalues are 1 with multiplicities $k: ~ X \mathbf{1}_{N}=\mathbf{1}_{N}$.

Convex relaxation

Semidefinite programming relaxation [Peng, Wei, 07]
The convex relaxation of k-means is

$$
\min \langle\boldsymbol{D}, \boldsymbol{Z}\rangle \quad \text { s.t. } \quad \boldsymbol{Z} \geq 0, \boldsymbol{Z} \succeq 0, \operatorname{Tr}(\boldsymbol{Z})=k, \boldsymbol{Z} \mathbf{1}_{N}=\mathbf{1}_{N} .
$$

Key question
 Sunnose we assume $\left\{\Gamma_{/}\right\}_{l=1}^{K}$ is the ground truth partition,
 when does SDP relaxation recover $\boldsymbol{X}=\sum_{l=1}^{k} \frac{1}{\left|\Gamma_{,}\right|} \mathbf{1}_{\Gamma_{l}} \mathbf{1}_{\Gamma_{l}}^{\top}$?

Convex relaxation

Semidefinite programming relaxation [Peng, Wei, 07]
The convex relaxation of k-means is

$$
\min \langle\boldsymbol{D}, \boldsymbol{Z}\rangle \quad \text { s.t. } \quad \boldsymbol{Z} \geq 0, \boldsymbol{Z} \succeq 0, \operatorname{Tr}(\boldsymbol{Z})=k, \boldsymbol{Z} \mathbf{1}_{N}=\mathbf{1}_{N} .
$$

Key question

Suppose we assume $\left\{\Gamma_{l}\right\}_{l=1}^{k}$ is the ground truth partition, when does SDP relaxation recover $\boldsymbol{X}=\sum_{l=1}^{k} \frac{1}{\left|\Gamma_{l}\right|} \mathbf{1}_{\Gamma} \mathbf{l}_{\Gamma_{l}}^{\top}$?

A short literature review

Many excellent works for learning mixtures of distributions and SDP relaxation of k-means:

- SDP-relaxation of k-means: [Peng, Wei, 07], [Bandeira, Villar, Ward, etc, 17], [Mixon, Villar, etc, 15], etc.
- Spectral-projection based approaches: [Dasgupta, 99], [Vempala, Wang, 04], [Achlipotas, McSherry, 05], etc.

Almost all works have one thing in common: data are assumed to be sampled from a generative model, i.e., stochastic ball model, Gaussian mixture models, etc.

A short literature review

Many excellent works for learning mixtures of distributions and SDP relaxation of k-means:

- SDP-relaxation of k-means: [Peng, Wei, 07], [Bandeira, Villar, Ward, etc, 17], [Mixon, Villar, etc, 15], etc.
- Spectral-projection based approaches: [Dasgupta, 99], [Vempala, Wang, 04], [Achlipotas, McSherry, 05], etc.

Almost all works have one thing in common: data are assumed to be sampled from a generative model, i.e., stochastic ball model, Gaussian mixture models, etc.

A model-free framework?

Question: Can we establish a model-free framework to learn mixture of distributions?

- Model-free: No assumption on data generative model.
- One model-free idea: different clusters are mutually well-separated.
- How large the separation is needed and in what sense?
- This is made possible by proximity condition [Kumar, Kannan, 10], [Awashi, Sheffet, 12]

A model-free framework?

Question: Can we establish a model-free framework to learn mixture of distributions?

- Model-free: No assumption on data generative model.
- One model-free idea: different clusters are mutually well-separated.
- How large the separation is needed and in what sense?
- This is made possible by proximity condition [Kumar, Kannan, 10], [Awashi, Sheffet, 12].

What is proximity condition?

- $h_{a, b}$: the distance between two centers
- $\tau_{a, b}$: the largest distance between data and their corresponding centers when projected on the line linking \boldsymbol{c}_{a} with \boldsymbol{c}_{b}
- $d_{a, b}:=\frac{h_{a, b}}{2}-\tau_{a, b}$ is the smallest distance between the middle point and projected data onto the line, which is a measure of separability

Proximity condition

Proximity condition

The partition $\Gamma=\sqcup_{l=1}^{k} \Gamma$, satisfies proximity condition if

$$
d_{a, b}=\frac{h_{a, b}}{2}-\tau_{a, b}>\frac{1}{\sqrt{2}} \cdot \sqrt{k} \cdot \underbrace{\sqrt{\max \left\|\boldsymbol{\Sigma}_{l}\right\|}}_{\text {standard deviation }}
$$

holds for any $a \neq b$ where $\boldsymbol{\Sigma}_{l}$ is the sample covariance matrix of data in $\Gamma_{/}$. Proximity condition quantifies how far each data point is away from the other clusters.

Main theorem

Theorem

Suppose the partition $\left\{\Gamma_{l}\right\}_{l=1}^{k}$ obeys the proximity condition, i.e.,

$$
d_{a, b} \geq \frac{1}{\sqrt{2}} \cdot \underbrace{\sqrt{k}}_{\text {tight? }} \cdot \sqrt{\max \left\|\boldsymbol{\Sigma}_{l}\right\|} .
$$

The minimizer of the SDP relaxation is unique and given by the ground truth partition \boldsymbol{X}.

Main theorem

Theorem

Suppose the partition $\left\{\Gamma_{l}\right\}_{l=1}^{k}$ obeys the proximity condition, i.e.,

$$
d_{a, b} \geq \frac{1}{\sqrt{2}} \cdot \underbrace{\sqrt{k}}_{\text {tight? }} \cdot \sqrt{\max \left\|\boldsymbol{\Sigma}_{l}\right\|} .
$$

The minimizer of the SDP relaxation is unique and given by the ground truth partition \boldsymbol{X}.

- A purely deterministic and model-free condition.
- Conveniently apply to other data-generative models (shown in the next few slides).
- If all $\Gamma_{\text {, are of }}$ the same size, the right hand side is replaced by $\sqrt{k} \cdot \sqrt{\max \left\{\left\|\boldsymbol{\Sigma}_{a}\right\|,\left\|\boldsymbol{\Sigma}_{b}\right\|\right\}}$ which only depends on the covariance matrix of group Γ_{a} and Γ_{b}.
- The dependence of Δ on \sqrt{k} is not tight.

Data generative model - Stochastic ball model

Stochastic ball model

The data is generated from

$$
\boldsymbol{x}_{a, i}=\boldsymbol{\mu}_{a}+\boldsymbol{r}_{a, i}, \quad 1 \leq i \leq n, \quad 1 \leq a \leq k
$$

where $\boldsymbol{\mu}_{a} \in \mathbb{R}^{m}$ is the population center and $\boldsymbol{r}_{a, i}$ is uniform in $\mathcal{B}\left(\mathbb{R}^{m}\right)$.

Obviously, $\Delta=\min _{a \neq b}\left\|\mu_{a}-\boldsymbol{\mu}_{b}\right\|>2$ guarantees two balls are not overlapped and is necessary for exact recovery.

Data generative model - Stochastic ball model

- Our bound is slightly larger than 2 where the difference depends on the number of clusters k and dimension m.

Corollary
The proximity condition holds with high probability if

where Δ is the minimal separation $\Delta=\min _{a \neq b}\left\|\mu_{a}-\mu_{b}\right\|$ and m is the dimension.

State-of-the-art [Awashi, Bandeira, Villar, Ward, Mixon, etc, 2015, 2017]:

Data generative model - Stochastic ball model

- Our bound is slightly larger than 2 where the difference depends on the number of clusters k and dimension m.

Corollary

The proximity condition holds with high probability if

$$
\Delta \geq 2+\sqrt{2 k \max \left\|\boldsymbol{\Sigma}_{l}\right\|}=2+\sqrt{\frac{2 k}{m+2}}+o(1)
$$

where Δ is the minimal separation $\Delta=\min _{a \neq b}\left\|\mu_{a}-\mu_{b}\right\|$ and m is the dimension.

State-of-the-art [Awashi, Bandeira, Villar, Ward, Mixon, etc, 2015, 2017]:

$$
\Delta>\min \left\{2 \sqrt{2}\left(1+\frac{1}{\sqrt{m}}\right), 2+\frac{k^{2}}{m}\right\} .
$$

Data generative model - Gaussian mixture model

Gaussian mixture model
Consider

$$
\boldsymbol{x}_{a, i} \sim \mathcal{N}\left(\boldsymbol{\mu}_{a}, \boldsymbol{\Sigma}_{a}\right), \quad 1 \leq i \leq n, 1 \leq a \leq k
$$

where $\boldsymbol{\Sigma}_{\boldsymbol{a}}$ is the covariance matrix.

Data generative model - Gaussian mixture model

Corollary

Assume $\boldsymbol{\Sigma}_{a}=\boldsymbol{I}_{m}$ for all $1 \leq a \leq k$, the proximity condition holds with high probability if

$$
\Delta \geq 2 \sqrt{k}+4 \sqrt{2} \log ^{1 / 2}\left(k N^{2}\right)+o(1)
$$

if $N \gg m^{2} k^{3} \log (k)$.
Gaussian mixture model: we achieve state-of-the-art result

$$
\Delta \geq \mathcal{O}\left(\sqrt{k}+\log ^{1 / 2}(k N)\right)
$$

for minimal separation by e.g. [Awasthi, Sheffet, 12] and [Mixon, Villar, Ward, 17], etc.

An impossibility theorem

Question: How tight is our bound?
The minimal separation Δ cannot be arbitrarily small, i.e., there is a lower bound for the separation for SDP to work. Here is one specific example:

Theorem

For stochastic ball model, the Peng-Wei relaxation fails to achieve exact recovery if N is large enough and

$$
\Delta<1+\sqrt{1+\frac{2}{m+2}} \approx 2+\|\boldsymbol{\Sigma}\|
$$

where $\|\boldsymbol{\Sigma}\|=\frac{1}{m+2}$.

Numerics: How does Δ depend on k ?

Our bound: $\Delta \geq 2+\sqrt{\frac{2 k}{m+2}}$;
State-of-the-art bound: $\Delta \geq \min \left\{2 \sqrt{2}\left(1+\frac{1}{\sqrt{m}}\right), 2+\frac{k^{2}}{m}\right\}$
The bound does not depend on k much.

Figure: Numerical experiment on the stochastic ball model with dimension 2 and number of clusters k varies from 2 to 6 .

Numerics: How does Δ depend on m ?

Here $k=2$ and change m from 2 to 7 .
Conjectured bound: $\Delta \geq 2+\frac{2}{m+2}$
Necessary lower bound: $\Delta>1+\sqrt{1+\frac{2}{m+2}}$
Sufficient lower bound: $\Delta>2+\frac{2}{\sqrt{m+2}}$
State-of-the-art: $\Delta>\min \left\{2 \sqrt{2}\left(1+\frac{1}{\sqrt{m}}\right), 2+\frac{k^{2}}{m}\right\}$

Is k-means always a good choice? - toy example 1

Example 1: data are on two circles with the same centers but different radius.

k-means does not work at all since it usually works for convex clusters.

Is k-means always a good choice? - toy example 2

Example 2: data are lying uniformly on two unit intervals with separation about $\Delta \approx 0.65$. Let's guess where the centers are?

Is k-means always a good choice? - toy example 2

Advertisement for an upcoming paper: kernel k-means?

- Observation: k-means does not work if the geometry of data is complicated.
- Solution: spectral clustering which consists of Laplacian eigenmap and k-means. However, many theoretic questions are not well understood.
- Question: Can we extend this convex relaxation framework to spectral clustering or kernel k-means?
- Yes, we will propose a convex relaxation of spectral clustering. It is also model-free and provably solves the previous two cases where ordinary k-means fails. The paper will be released soon!

Advertisement for an upcoming paper: kernel k-means?

- Observation: k-means does not work if the geometry of data is complicated.
- Solution: spectral clustering which consists of Laplacian eigenmap and k-means. However, many theoretic questions are not well understood.
- Question: Can we extend this convex relaxation framework to spectral clustering or kernel k-means?
- Yes, we will propose a convex relaxation of spectral clustering. It is also model-free and provably solves the previous two cases where ordinary k-means fails. The paper will be released soon!

Advertisement for an upcoming paper: kernel k-means?

- Observation: k-means does not work if the geometry of data is complicated.
- Solution: spectral clustering which consists of Laplacian eigenmap and k-means. However, many theoretic questions are not well understood.
- Question: Can we extend this convex relaxation framework to spectral clustering or kernel k-means?
- Yes, we will propose a convex relaxation of spectral clustering. It is also model-free and provably solves the previous two cases where ordinary k-means fails. The paper will be released soon!

Advertisement for an upcoming paper: kernel k-means?

- Observation: k-means does not work if the geometry of data is complicated.
- Solution: spectral clustering which consists of Laplacian eigenmap and k-means. However, many theoretic questions are not well understood.
- Question: Can we extend this convex relaxation framework to spectral clustering or kernel k-means?
- Yes, we will propose a convex relaxation of spectral clustering. It is also model-free and provably solves the previous two cases where ordinary k-means fails. The paper will be released soon!

Open problem and conclusions

Conclusions

- A model-free framework to certify the exactness of SDP relaxation applied to k-means.
- More details can be found arXiv:1710.06008.

suffices provided that the total number of points N is large enough
- How to analyze misclassification rate via convex optimization approach?
- Understand the convergence of Lloyd's algorithm?

Open problem and conclusions

Conclusions

- A model-free framework to certify the exactness of SDP relaxation applied to k-means.
- More details can be found arXiv:1710.06008.

Open problems

- For a mixture generated by the generalized stochastic ball model, is it possible to show

$$
\Delta \geq 2+\mathcal{O}\left(\frac{1}{m}\right)
$$

suffices provided that the total number of points N is large enough.

- How to analyze misclassification rate via convex optimization approach?
- Understand the convergence of Lloyd's algorithm?

