Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Shuyang Ling

Courant Institute of Mathematical Sciences, NYU

Aug 13, 2018

Joint work with Prof. Thomas Strohmer at UC Davis

- Motivation: data clustering
- K-means and spectral clustering
- A graph cut perspective of spectral clustering
- Convex relaxation of ratio cuts and normalized cuts
- Theory and applications

Question: Given a set of N data points in \mathbb{R}^d , how to partition them into k clusters based on the similarity?

K-means clustering

K-means

Cluster the data by minimizing the *k*-means objective function:

$$\min_{\{\Gamma_l\}_{l=1}^k} \sum_{l=1}^k \sum_{i \in \Gamma_l} \left\| x_i - \frac{1}{|\Gamma_l|} \sum_{i \in \Gamma_l} x_i \right\|^2$$

within-cluster sum of squares

where $\{\Gamma_l\}_{l=1}^k$ is a partition of $\{1, \dots, N\}$.

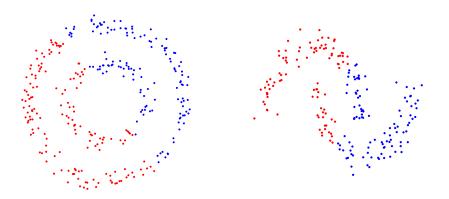
- Widely used in vector quantization, unsupervised learning, Voronoi tessellation, etc.
- An NP-hard problem, even if d = 2. [Mahajan, etc 09]
- Heuristic method: Lloyd's algorithm [Lloyd 82]

Limitation of k-means

Limitation of k-means

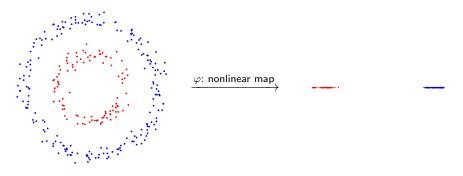
K-means only works for datasets with individual clusters:

- isotropic and within convex boundaries
- well-separated



Kernel k-means and nonlinear embedding

Goal: map the data into a feature space so that they are well-separated and *k*-means would work.



How: locally-linear embedding, isomap, multidimensional scaling, Laplacian eigenmaps, diffusion maps, etc.

Focus: We will focus on Laplacian eigenmaps. Spectral clustering consists of Laplacian eigenmaps followed by *k*-means clustering.

Shuyang Ling (New York University)

Data Science Seminar, HKUST

Graph Laplacian

Suppose $\{x_i\}_{i=1}^N \in \mathbb{R}^d$ and construct a similarity (weight) matrix W via

$$w_{ij} := \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}
ight), \quad W \in \mathbb{R}^{N \times N},$$

where σ controls the size of neighborhood. In fact, W represents a weighted undirected graph.

Definition of graph Laplacian

The (unnormalized) graph Laplacian associated to W is

$$L = D - W$$

where

$$D = \operatorname{diag}(W1_N)$$

is the degree matrix.

Shuyang Ling (New York University)

The (unnormalized) graph Laplacian associated to W is

$$L = D - W$$
, $D = diag(W1_N)$.

Properties

• L is positive semidefinite,

$$z^{\top}Lz = \sum_{i < j} w_{ij}(z_i - z_j)^2.$$

- 1_N is in the null space of L, i.e., $\lambda_1(L) = 0$.
- $\lambda_2(L) > 0$ if and only if the graph is connected.
- The dimension of null space equals the number of connected components.

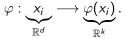
Laplacian eigenmaps

For the graph Laplacian L, we let the Laplacian eigenmap be

$$\begin{bmatrix} \varphi(x_1) \\ \vdots \\ \varphi(x_N) \end{bmatrix} := \underbrace{[u_1, \cdots, u_k]}_{U} \in \mathbb{R}^{N \times k}$$

where $\{u_l\}_{l=1}^k$ are the eigenvectors w.r.t. the k smallest eigenvalues.

In other words, φ maps data in \mathbb{R}^d to \mathbb{R}^k , a coordinate in terms of eigenvectors:



Then we apply k-means to $\{\varphi(x_i)\}_{i=1}^N$ to perform clustering.

Unnormalized spectral clustering¹

- Input: Given the number of clusters k and a dataset $\{x_i\}_{i=1}^N$, construct the similarity matrix W from $\{x_i\}_{i=1}^N$.
- Compute the unnormalized graph Laplacian

$$L = D - W$$

- Compute the eigenvectors $\{u_l\}_{l=1}^k$ of L w.r.t. the smallest k eigenvalues.
- Let U = [u₁, u₂, · · · , u_k] ∈ ℝ^{N×k}. Perform k-means clustering on the rows of U by using Lloyd's algorithm.
- Obtain the partition based on the outcome of *k*-means.

¹For more details, see an excellent review by [Von Luxburg, 2007]

Normalized spectral clustering

- Input: Given the number of clusters k and a dataset $\{x_i\}_{i=1}^N$, construct the similarity matrix W from $\{x_i\}_{i=1}^N$.
- Compute the normalized graph Laplacian

$$L_{\text{sym}} = I_N - D^{-\frac{1}{2}} W D^{-\frac{1}{2}} = D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$$

- Compute the eigenvectors $\{u_l\}_{l=1}^k$ of L_{sym} w.r.t. the smallest k eigenvalues.
- Let U = [u₁, u₂, · · · , u_k] ∈ ℝ^{N×k}. Perform k-means clustering on the rows of D^{-1/2} U by using Lloyd's algorithm.
- Obtain the partition based on the outcome of *k*-means.

Pros and Cons of spectral clustering

Pros:

- Spectral clustering enjoys high popularity and conveniently applies to various settings.
- Rich connections to random walk on graph, spectral graph theory, and differential geometry.

Cons:

- Rigorous justifications of spectral clustering are still lacking.
- The two-step procedures complicate the analysis, e.g. how to analyze the performance of Laplacian eigenmaps and the convergence analysis of *k*-means?

Our goal: we take a different route by looking at the **convex relaxation** of spectral clustering to understand its performance better.

Key observation:

- The matrix *W* is viewed as a weight matrix of a graph with *N* vertices.
- Partitioning the dataset into k clusters is equivalent to finding a k-way graph cut such that any pair of induced subgraphs is not well-connected.

Graph cut

The cut is defined as the weight sum of edges whose two ends are in different subsets,

$$\mathsf{cut}(\Gamma,\Gamma^c):=\sum_{i\in\Gamma,j\in\Gamma^c}w_{ij}$$

where Γ is a subset of vertices and Γ^c is its complement.

A graph cut perspective

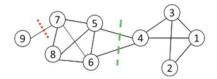
Graph cut

The cut is defined as the weight sum of edges whose two ends are in different subsets,

$$\mathsf{cut}(\Gamma,\Gamma^c):=\sum_{i\in\Gamma,j\in\Gamma^c}w_{ij}$$

where Γ is a subset of vertices and Γ^c is its complement.

However, minimizing $cut(\Gamma, \Gamma^c)$ may not lead to satisfactory results since it is more likely to get an imbalanced cut.



RatioCut

RatioCut

The ratio cut of $\{\Gamma_a\}_{a=1}^k$ is given by

$$\mathsf{RatioCut}(\{\Gamma_a\}_{a=1}^k) = \sum_{a=1}^k \frac{\mathsf{cut}(\Gamma_a, \Gamma_a^c)}{|\Gamma_a|}$$

In particular, if k = 2,

$$\mathsf{RatioCut}(\Gamma,\Gamma^c) = \frac{\mathsf{cut}(\Gamma,\Gamma^c)}{|\Gamma|} + \frac{\mathsf{cut}(\Gamma,\Gamma^c)}{|\Gamma^c|}.$$

- But, it is worth noting minimizing RatioCut is NP-hard.
- A possible solution is to relax!!

RatioCut and graph Laplacian

Let $\mathbf{1}_{\Gamma_a}(\cdot)$ be an indicator vector which maps a vertex to a vector in \mathbb{R}^N via

$$1_{\Gamma_a}(I) = \begin{cases} 1, & I \in \Gamma_a, \\ 0, & I \notin \Gamma_a. \end{cases}$$

Relating RatioCut to graph Laplacian

There holds

$$\operatorname{cut}(\Gamma_{a},\Gamma_{a}^{c}) = \left\langle L, \ \mathbf{1}_{\Gamma_{a}}\mathbf{1}_{\Gamma_{a}}^{\top} \right\rangle = \mathbf{1}_{\Gamma_{a}}^{\top}L\mathbf{1}_{\Gamma_{a}}$$

$$\mathsf{RatioCut}(\{\mathsf{\Gamma}_{a}\}_{a=1}^{k}) = \sum_{a=1}^{k} \frac{1}{|\mathsf{\Gamma}_{a}|} \left\langle L, \ \mathbf{1}_{\mathsf{\Gamma}_{a}} \mathbf{1}_{\mathsf{\Gamma}_{a}}^{\top} \right\rangle = \left\langle L, \ X_{\mathsf{rcut}} \right\rangle,$$

where

$$X_{\mathsf{rcut}} := \sum_{a=1}^k \frac{1}{|\Gamma_a|} \mathbf{1}_{\Gamma_a} \mathbf{1}_{\Gamma_a}^\top \ \longleftarrow \ \mathsf{a} \ \mathsf{block-diagonal} \ \mathsf{matrix}$$

Spectral clustering is a relaxation by these two properties,

$$X_{\mathsf{rcut}} = UU^{\top}, \quad U^{\top}U = I_k, \quad U \in \mathbb{R}^{N \times k}$$

Spectral relaxation of RatioCut

Substituting $X_{\text{rcut}} = UU^{\top}$ results in

$$\min_{U \in \mathbb{R}^{N \times k}} \left\langle L, UU^{\top} \right\rangle \quad \text{s.t.} \quad U^{\top}U = I_k,$$

whose global minimizer is easily found via computing the eigenvectors w.r.t. the k smallest eigenvalues of the graph Laplacian L.

The spectral relaxation gives exactly the first step of unnormalized spectral clustering.

Normalized cut

For normalized spectral clustering, we consider

$$\mathsf{NCut}(\{\mathsf{\Gamma}_{a}\}_{a=1}^{k}) := \sum_{a=1}^{k} \frac{\mathsf{cut}(\mathsf{\Gamma}_{a},\mathsf{\Gamma}_{a}^{c})}{\mathsf{vol}(\mathsf{\Gamma}_{a})}$$

where $\operatorname{vol}(\Gamma_a) = \mathbf{1}_{\Gamma_a}^{\top} D \mathbf{1}_{\Gamma_a}$. Therefore,

$$\mathsf{NCut}(\{\mathsf{\Gamma}_a\}_{a=1}^k) = \langle L_{\mathsf{sym}}, X_{\mathsf{ncut}} \rangle.$$

Here $L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$ is the normalized Laplacian and

$$X_{\text{ncut}} := \sum_{a=1}^{k} \frac{1}{\mathbf{1}_{\Gamma_{a}}^{\top} D \mathbf{1}_{\Gamma_{a}}} D^{\frac{1}{2}} \mathbf{1}_{\Gamma_{a}} \mathbf{1}_{\Gamma_{a}}^{\top} D^{\frac{1}{2}}.$$

By relaxing $X_{ncut} = UU^{\top}$, it gives the spectral relaxation of normalized graph Laplacian.

Shuyang Ling (New York University)

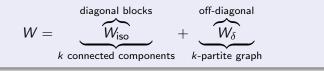
Performance bound via matrix perturbation argument

Let $W^{(a,a)}$ be the weight matrix of the *a*-th cluster and define

$$W_{ ext{iso}} := egin{bmatrix} W^{(1,1)} & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & W^{(k,k)} \end{bmatrix}, \quad W_{\delta} = W - W_{ ext{iso}}$$

Decomposition of W

We decompose the original graph into two subgraphs:



The corresponding degree matrix

$$D_{\mathsf{iso}} := \mathsf{diag}(W_{\mathsf{iso}} \mathbb{1}_N), \quad D_{\delta} := \mathsf{diag}(W_{\delta} \mathbb{1}_N)$$

where D_{iso} : inner-cluster degree matrix; D_{δ} : outer-cluster degree matrix.

19 / 43

Spectral clustering

The unnormalized graph Laplacian associated to $W_{\rm iso}$ is

$$L_{iso} := D_{iso} - W_{iso} \longleftarrow$$
 a block-diagonal matrix.

There holds $\lambda_l(L_{iso}) = 0, 1 \leq l \leq k, \quad \lambda_{k+1}(L_{iso}) = \min \lambda_2(L_{iso}^{(a,a)}) > 0.$

What happens if the graph has k connected components?

The nullspace of L_{iso} is spanned by k indicator vectors in \mathbb{R}^N , i.e., the columns of U_{iso} ,

$$U_{\rm iso} := \begin{bmatrix} \frac{1}{\sqrt{n_1}} 1_{n_1} & 0 & \cdots & 0\\ 0 & \frac{1}{\sqrt{n_2}} 1_{n_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{\sqrt{n_k}} 1_{n_k} \end{bmatrix} \in \mathbb{R}^{N \times k}, \quad U_{\rm iso}^\top U_{\rm iso} = I_k.$$

However, this is not the case if the graph is fully connected.

Hope: If *L* is close to L_{iso} , so is *U* to U_{iso} .

Davis-Kahan $\sin\theta$ theorem

Davis-Kahan perturbation:

$$\min_{\mathsf{R}\in\mathcal{O}(3)} \|U - U_{\mathsf{iso}} R\| \leq \frac{\sqrt{2}\|L - L_{\mathsf{iso}}\|}{\lambda_{k+1}(L_{\mathsf{iso}})}$$

where

$$\|L - L_{\mathrm{iso}}\| \leq 2\|D_{\delta}\|, \quad \lambda_{k+1}(L_{\mathrm{iso}}) = \min \lambda_2(L_{\mathrm{iso}}^{(a,a)}) > 0.$$

In other words, if $||D_{\delta}||$ is small, i.e., the difference between L and L_{iso} is small, and $\lambda_{k+1}(L_{iso}) > 0$, the eigenspace U should be close to U_{iso} . But it does not imply the underlying membership.

Convex relaxation of ratio cuts

Let's review the RatioCut,

$$\mathsf{RatioCut}(\{\Gamma_a\}_{a=1}^k) = \sum_{a=1}^k \frac{1}{|\Gamma_a|} \left\langle L, \mathbf{1}_{|\Gamma_a|} \mathbf{1}_{|\Gamma_a|}^\top \right\rangle = \left\langle L, X_{\mathsf{rcut}} \right\rangle,$$

where $X_{\text{rcut}} := \sum_{a=1}^{k} \frac{1}{|\Gamma_a|} \mathbb{1}_{\Gamma_a} \mathbb{1}_{\Gamma_a}^{\top}$.

Question: What constraints does X_{rcut} satisfy for any given $\{\Gamma_a\}_{a=1}^k$?

Convex sets

Given a partition $\{\Gamma_a\}_{a=1}^k$, the corresponding X_{rcut} satisfies

- X_{rcut} is positive semidefinite, $X_{\text{rcut}} \succeq 0$;
- X_{rcut} is nonnegative, $X_{\text{rcut}} \ge 0$ entrywisely;
- the constant vector is an eigenvector of Z: $X_{\text{rcut}} 1_N = 1_N$;
- the trace of X_{rcut} equals k, i.e., $\text{Tr}(X_{\text{rcut}}) = k$.

RatioCut-SDP - SDP relaxation of RatioCut

We relax the originally combinatorial optimization by

 $\min \langle L, Z \rangle$ s.t. $Z \succeq 0, Z \ge 0, \operatorname{Tr}(Z) = k, Z \mathbb{1}_N = \mathbb{1}_N.$

The major difference from spectral relaxation is the *nonnegativity* constraint.

NCut-SDP - SDP relaxation of normalized cut

The corresponding convex relaxation of normalized cut^a is

$$\min \langle L_{\text{sym}}, Z \rangle \text{ s.t. } Z \succeq 0, \ Z \ge 0, \ \text{Tr}(Z) = k, \ ZD^{\frac{1}{2}} \mathbb{1}_N = D^{\frac{1}{2}} \mathbb{1}_N.$$

^aA similar relaxation was proposed by [Xing, Jordan, 2003]

Question: How well do these two convex relaxations work?

From the plain perturbation argument,

$$\min_{R \in O(3)} \|U - U_{\text{iso}}R\| \le \frac{2\sqrt{2}\|D_{\delta}\|}{\lambda_{k+1}(L_{\text{iso}})}$$

where $\lambda_{k+1}(L_{iso}) = \min \lambda_2(L_{iso}^{(a,a)}) > 0$ if each cluster is connected.

What the perturbation argument tells us:

The success of spectral clustering depends on two ingredients:

- Within-cluster connectivity: $\lambda_2(L_{iso}^{(a,a)}))$, a.k.a. algebraic connectivity or Fiedler eigenvalue, or equivalently, $\lambda_{k+1}(L_{iso})$.
- Inter-cluster connectivity: the operator norm of D_{δ} quantifies the maximal outer-cluster degree.

Theorem (Ling, Strohmer, 2018)

The SDP relaxation gives X_{rcut} as the unique global minimizer if

$$\|D_{\delta}\| < rac{\lambda_{k+1}(L_{\mathsf{iso}})}{4},$$

where $\lambda_{k+1}(L_{iso})$ is the (k + 1)-th smallest eigenvalue of the graph Laplacian L_{iso} .

Here $\lambda_{k+1}(L_{iso})$ satisfies

$$\lambda_{k+1}(\mathcal{L}_{\mathsf{iso}}) = \min_{1 \le a \le k} \lambda_2(\mathcal{L}_{\mathsf{iso}}^{(a,a)})$$

where $\lambda_2(L_{iso}^{(a,a)})$ is the second smallest eigenvalue of graph Laplacian w.r.t. the *a*-th cluster.

For normalized cut, we first consider the Markov transition matrices on the whole dataset and each individual cluster:

$$P := D^{-1}W, \qquad P^{(a,a)}_{iso} = (D^{(a,a)})^{-1}W^{(a,a)}.$$

Two factors

- Within-cluster connectivity: the smaller the second largest eigenvalue^a of P^(a,a)_{iso} is, the stronger connectivity of *a*-th cluster is.
- Inter-cluster connectivity: let P_δ be the off-diagonal parts of P. ||P_δ||_∞ is the largest probability of a random walker moving out of its own cluster after one step.

^aThis eigenvalue governs the mixing time of Markov chain.

Theorem (Ling, Strohmer, 2018)

The SDP gives X_{ncut} as the unique global minimizer if

$$\frac{\|P_{\delta}\|_{\infty}}{1-\|P_{\delta}\|_{\infty}} < \frac{\min \lambda_2(I_{n_a}-P_{\mathrm{iso}}^{(a,a)})}{4}$$

Note that

$$\frac{\|P_{\delta}\|_{\infty}}{1-\|P_{\delta}\|_{\infty}}$$

is small if a random walker starting from *any* node is *more* likely to stay in its own cluster than leave it after one step, and vice versa.
min λ₂(I_{na} - P^(a,a)_{iso}) is the smallest eigengap of Markov transition

matrix defined across all the clusters.

Our contribution

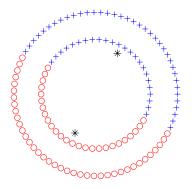
- Purely deterministic. Exact recovery under natural and mild condition. No assumptions needed on the random data generative model.
- General and applicable to various settings.
- Easily verifiable criteria for the global optimality of a graph cut under ratio cut and normalized cut.
- Not only applies to spectral clustering but also to community detection under stochastic block model.

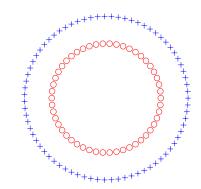
Example 1: two concentric circles

We consider

$$x_{1,i} = \begin{bmatrix} \cos(\frac{2\pi i}{n}) \\ \sin(\frac{2\pi i}{n}) \end{bmatrix}, \ 1 \le i \le n; \qquad x_{2,j} = \kappa \begin{bmatrix} \cos(\frac{2\pi j}{m}) \\ \sin(\frac{2\pi j}{m}) \end{bmatrix}, \ 1 \le j \le m$$

where $m \approx \kappa n$ and $\kappa > 1$.





Theorem

Let the data be given by $\{x_{1,i}\}_{i=1}^n \cup \{x_{2,i}\}_{i=1}^m$. The bandwidth σ is chosen as 4γ

$$\sigma = \frac{4\gamma}{n\sqrt{\log(\frac{m}{2\pi})}}.$$

Then SDP recovers the underlying two clusters exactly if

$$\underbrace{\kappa-1}_{n} \geq \mathcal{O}\left(\frac{\gamma}{n}\right).$$

minimal separation

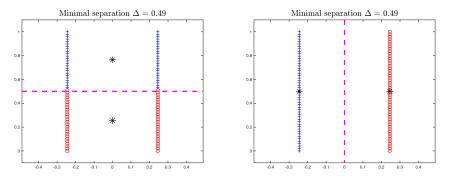
The bound is near-optimal since two adjacent points on one each is $\mathcal{O}(n^{-1})$ apart. One cannot hope to recover the two clusters if the minimal separation is smaller than $\mathcal{O}(n^{-1})$.

Example 2: two parallel lines

Suppose the data points are distributed on two lines with separation Δ ,

$$x_{1,i} = \begin{bmatrix} -\frac{\Delta}{2} \\ \frac{i-1}{n-1} \end{bmatrix}, \quad x_{2,i} = \begin{bmatrix} \frac{\Delta}{2} \\ \frac{i-1}{n-1} \end{bmatrix}, \quad 1 \le i \le n$$

Which one partition is given by k-means objective function?



Each cluster is highly anisotropic.

Shuyang Ling (New York University)

K-means does not work if $\Delta < 0.5$.

Theorem

Let the data be given by $\{x_{1,i}\}_{i=1}^n \cup \{x_{2,i}\}_{i=1}^n$. Use the heat kernel with bandwidth

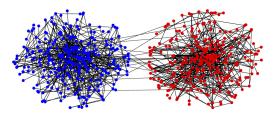
$$\sigma = rac{\gamma}{(n-1)\sqrt{\log(rac{n}{\pi})}}, \qquad \gamma > 0.$$

Assume the separation Δ satisfies

$$\Delta \geq \mathcal{O}\left(\frac{\gamma}{n}\right).$$

Then SDP recovers the underlying two clusters exactly.

Example 3: community detection under stochastic block model



The adjacency matrix is a binary random matrix:

- if member *i* and *j* are in the same community, $Pr(w_{ij} = 1) = p$ and $Pr(w_{ij} = 0) = 1 p$;
- (2) if member *i* and *j* are in different communities, $Pr(w_{ij} = 1) = q$ and $Pr(w_{ij} = 0) = 1 q$.

Let p > q and we are interested in when SDP relaxation is able to recover the underlying membership.

Theorem

Let $p = \frac{\alpha \log n}{n}$ and $q = \frac{\beta \log n}{n}$. The RatioCut-SDP recovers the underlying communities exactly if

$$\alpha > 26\left(\frac{2}{3} + \frac{\beta}{2} + \sqrt{\beta}\right)$$

with high probability.

Compared with the state-of-the-art results where

$$\alpha > 2 + \beta + 2\sqrt{2\beta}$$

is needed for exact recovery², our performance bound is slightly looser by a constant factor.

Shuyang Ling (New York University)

²[Abbe, Bandeira, Hall, 2016]

So far, the two toy examples are purely deterministic and it is of course more interesting to look at random data. However, this task is nontrivial which leads to a few open problems.

Therefore we turn to simulation to see how many random instances satisfy the conditions in our theorem and how they depends on the choice of σ and minimal separation Δ .

• RatioCut-SDP:

$$\|D_{\delta}\| \leq rac{\lambda_{k+1}(L_{\mathrm{iso}})}{4},$$

• NCut-SDP:

$$\frac{\|P_{\delta}\|_{\infty}}{1-\|P_{\delta}\|_{\infty}} \leq \frac{\min \lambda_2(I_{n_a}-P_{iso}^{(a,a)})}{4}.$$

Numerics for two concentric circles

Exact recovery is guaranteed empirically if $\Delta \ge 0.2$, $5 \le p \le 75\Delta - 8$, and $\sigma = n^{-1}p$.

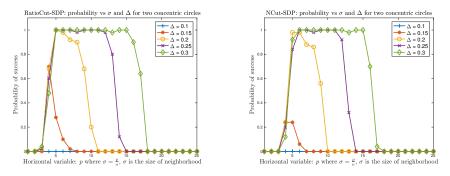


Figure: Two concentric circles with radii $r_1 = 1$ and $r_2 = 1 + \Delta$. The smaller circle has n = 250 uniformly distributed points and the larger one has $m = \lfloor 250(1 + \Delta) \rfloor$ where $\Delta = r_2 - r_1$.

Numerics for two lines

Exact recovery is guaranteed empirically if $\Delta \ge 0.05$ and $2 \le p \le 150\Delta - 4$.

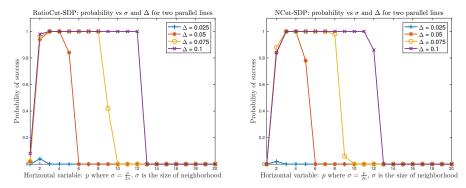
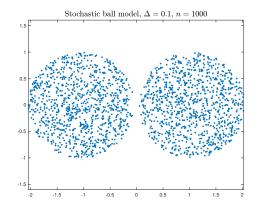


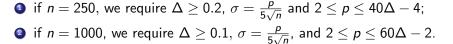
Figure: Two parallel line segments of unit length with separation Δ and 250 points are sampled uniformly on each line.

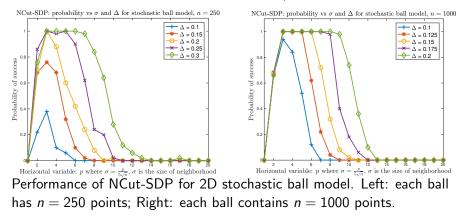
Numerics - stochastic ball model



Stochastic ball model with two clusters and the separation between the centers is $2 + \Delta$. Each cluster has 1000 uniformly distributed points

Numerics: stochastic ball model





For stochastic ball model, k-means should be the best choice since each cluster is isotropic and separated. However, we have shown that exact recovery via k-means SDP is impossible³ if

$$\Delta \leq \sqrt{rac{3}{2}} - 1 pprox 0.2247.$$

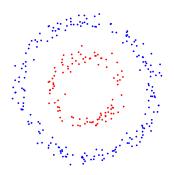
On the other hand, the SDP relaxation of RatioCut and NCut still works

- if n = 250, we require $\Delta \ge 0.2$, $\sigma = \frac{p}{5\sqrt{n}}$ and $2 \le p \le 40\Delta 4$;
- 2) if n = 1000, we require $\Delta \ge 0.1$, $\sigma = \frac{p}{5\sqrt{n}}$, and $2 \le p \le 60\Delta 2$.

³See arXiv:1710.06008, by Li, etc.

Open problem

Suppose there are *n* data points drawn from a probability density function p(x) supported on a manifold \mathcal{M} . How can we estimate the second smallest eigenvalue of the graph Laplacian (either normalized or unnormalized) given the kernel function Φ and σ ?



- It is well known that the graph Laplacian will converge to the Laplace-Beltrami operator on the manifold (pointwisely and spectral convergence).
- In other words, if we know the second smallest eigenvalue of Laplace-Beltrami operator manifold and convergence rate from graph Laplacian to its continuum limit, we can have a lower bound of the second smallest eigenvalue of graph Laplacian.
- It require tools from empirical process, differential geometry, ...

Conclusion and future works

We establish a systematic framework to certify the global optimality of a graph cut under ratio cut and normalized cut. The performance guarantee is purely algebraic and deterministic, only depending on the algebraic properties of graph Laplacian. It may lead to a novel way to look at spectral graph theory.

- How to estimate the Fiedler eigenvalue of graph Laplacian associated to a random data set?
- Can we derive an analogue theory for directed graph?
- Find a faster and scalable solver for SDP and how to analyze the classical spectral clustering algorithm?
- **Preprint:** Certifying global optimality of graph cuts via semidefinite relaxation: a performance guarantee for spectral clustering, *arXiv:1806.11429*.

Thank you!