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Data clustering and unsupervised learning

Question: Given a set of N data points in Rd , how to partition them into
k clusters based on the similarity?
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K -means clustering

K -means

Cluster the data by minimizing the k-means objective function:

min
{Γl}kl=1

k∑
l=1

∑
i∈Γl

∥∥∥xi −
centroid︷ ︸︸ ︷
1

|Γl |
∑
i∈Γl

xi

∥∥∥2

︸ ︷︷ ︸
within-cluster sum of squares

where {Γl}kl=1 is a partition of {1, · · · ,N}.

Widely used in vector quantization, unsupervised learning, Voronoi
tessellation, etc.

An NP-hard problem, even if d = 2. [Mahajan, etc 09]

Heuristic method: Lloyd’s algorithm [Lloyd 82]
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Limitation of k-means

Limitation of k-means

K -means only works for datasets with individual clusters:

isotropic and within convex boundaries

well-separated
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Kernel k-means and nonlinear embedding

Goal: map the data into a feature space so that they are well-separated
and k-means would work.

ϕ: nonlinear map−−−−−−−−−−→

How: locally-linear embedding, isomap, multidimensional scaling,
Laplacian eigenmaps, diffusion maps, etc.

Focus: We will focus on Laplacian eigenmaps. Spectral clustering consists
of Laplacian eigenmaps followed by k-means clustering.
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Graph Laplacian

Suppose {xi}Ni=1 ∈ Rd and construct a similarity (weight) matrix W via

wij := exp

(
−
‖xi − xj‖2

2σ2

)
, W ∈ RN×N ,

where σ controls the size of neighborhood. In fact, W represents a
weighted undirected graph.

Definition of graph Laplacian

The (unnormalized) graph Laplacian associated to W is

L = D −W

where
D = diag(W 1N)

is the degree matrix.
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Properties of graph Laplacian

The (unnormalized) graph Laplacian associated to W is

L = D −W , D = diag(W 1N).

Properties

L is positive semidefinite,

z>Lz =
∑
i<j

wij(zi − zj)
2.

1N is in the null space of L, i.e., λ1(L) = 0.

λ2(L) > 0 if and only if the graph is connected.

The dimension of null space equals the number of connected
components.
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Laplacian eigenmaps and k-means

Laplacian eigenmaps

For the graph Laplacian L, we let the Laplacian eigenmap beϕ(x1)
...

ϕ(xN)

 := [u1, · · · , uk ]︸ ︷︷ ︸
U

∈ RN×k

where {ul}kl=1 are the eigenvectors w.r.t. the k smallest eigenvalues.

In other words, ϕ maps data in Rd to Rk , a coordinate in terms of
eigenvectors:

ϕ : xi︸︷︷︸
Rd

−→ ϕ(xi )︸ ︷︷ ︸
Rk

.

Then we apply k-means to {ϕ(xi )}Ni=1 to perform clustering.
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Algorithm of spectral clustering based on graph Laplacian

Unnormalized spectral clustering1

Input: Given the number of clusters k and a dataset {xi}Ni=1,
construct the similarity matrix W from {xi}Ni=1.

Compute the unnormalized graph Laplacian

L = D −W

Compute the eigenvectors {ul}kl=1 of L w.r.t. the smallest k
eigenvalues.

Let U = [u1, u2, · · · , uk ] ∈ RN×k . Perform k-means clustering on the
rows of U by using Lloyd’s algorithm.

Obtain the partition based on the outcome of k-means.

1For more details, see an excellent review by [Von Luxburg, 2007]
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Another variant of spectral clustering

Normalized spectral clustering

Input: Given the number of clusters k and a dataset {xi}Ni=1,
construct the similarity matrix W from {xi}Ni=1.

Compute the normalized graph Laplacian

Lsym = IN − D−
1
2WD−

1
2 = D−

1
2LD−

1
2

Compute the eigenvectors {ul}kl=1 of Lsym w.r.t. the smallest k
eigenvalues.

Let U = [u1, u2, · · · , uk ] ∈ RN×k . Perform k-means clustering on the

rows of D−
1
2U by using Lloyd’s algorithm.

Obtain the partition based on the outcome of k-means.
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Comments on spectral clustering

Pros and Cons of spectral clustering

Pros:

Spectral clustering enjoys high popularity and conveniently applies to
various settings.

Rich connections to random walk on graph, spectral graph theory,
and differential geometry.

Cons:

Rigorous justifications of spectral clustering are still lacking.

The two-step procedures complicate the analysis, e.g. how to analyze
the performance of Laplacian eigenmaps and the convergence analysis
of k-means?

Our goal: we take a different route by looking at the convex relaxation
of spectral clustering to understand its performance better.
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A graph cut perspective

Key observation:

The matrix W is viewed as a weight matrix of a graph with N
vertices.

Partitioning the dataset into k clusters is equivalent to finding a
k-way graph cut such that any pair of induced subgraphs is not
well-connected.

Graph cut

The cut is defined as the weight sum of edges whose two ends are in
different subsets,

cut(Γ, Γc) :=
∑

i∈Γ,j∈Γc

wij

where Γ is a subset of vertices and Γc is its complement.
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A graph cut perspective

Graph cut

The cut is defined as the weight sum of edges whose two ends are in
different subsets,

cut(Γ, Γc) :=
∑

i∈Γ,j∈Γc

wij

where Γ is a subset of vertices and Γc is its complement.

However, minimizing cut(Γ, Γc) may not lead to satisfactory results since
it is more likely to get an imbalanced cut.
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RatioCut

RatioCut

The ratio cut of {Γa}ka=1 is given by

RatioCut({Γa}ka=1) =
k∑

a=1

cut(Γa, Γ
c
a)

|Γa|
.

In particular, if k = 2,

RatioCut(Γ, Γc) =
cut(Γ, Γc)

|Γ|
+

cut(Γ, Γc)

|Γc |
.

But, it is worth noting minimizing RatioCut is NP-hard.

A possible solution is to relax!!
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RatioCut and graph Laplacian

Let 1Γa(·) be an indicator vector which maps a vertex to a vector in RN via

1Γa(l) =

{
1, l ∈ Γa,

0, l /∈ Γa.

Relating RatioCut to graph Laplacian

There holds
cut(Γa, Γ

c
a) =

〈
L, 1Γa1>Γa

〉
= 1>Γa

L1Γa

RatioCut({Γa}ka=1) =
k∑

a=1

1

|Γa|

〈
L, 1Γa1>Γa

〉
= 〈L, Xrcut〉 ,

where

Xrcut :=
k∑

a=1

1

|Γa|
1Γa1>Γa

←− a block-diagonal matrix
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Spectral relaxation of RatioCut

Spectral clustering is a relaxation by these two properties,

Xrcut = UU>, U>U = Ik , U ∈ RN×k .

Spectral relaxation of RatioCut

Substituting Xrcut = UU> results in

min
U∈RN×k

〈
L,UU>

〉
s.t. U>U = Ik ,

whose global minimizer is easily found via computing the eigenvectors
w.r.t. the k smallest eigenvalues of the graph Laplacian L.

The spectral relaxation gives exactly the first step of unnormalized spectral
clustering.
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Normalized cut

For normalized spectral clustering, we consider

NCut({Γa}ka=1) :=
k∑

a=1

cut(Γa, Γ
c
a)

vol(Γa)

where vol(Γa) = 1>Γa
D1Γa . Therefore,

NCut({Γa}ka=1) = 〈Lsym,Xncut〉 .

Here Lsym = D−
1
2LD−

1
2 is the normalized Laplacian and

Xncut :=
k∑

a=1

1

1>Γa
D1Γa

D
1
2 1Γa1>Γa

D
1
2 .

By relaxing Xncut = UU>, it gives the spectral relaxation of normalized
graph Laplacian.
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Performance bound via matrix perturbation argument

Let W (a,a) be the weight matrix of the a-th cluster and define

Wiso :=

W
(1,1) · · · 0
...

. . .
...

0 · · · W (k,k)

 , Wδ = W −Wiso

Decomposition of W

We decompose the original graph into two subgraphs:

W =

diagonal blocks︷︸︸︷
Wiso︸ ︷︷ ︸

k connected components

+

off-diagonal︷︸︸︷
Wδ︸ ︷︷ ︸

k-partite graph

The corresponding degree matrix

Diso := diag(Wiso1N), Dδ := diag(Wδ1N)

where Diso: inner-cluster degree matrix; Dδ: outer-cluster degree matrix.
Shuyang Ling (New York University) Data Science Seminar, HKUST Aug 13, 2018 19 / 43



Spectral clustering

The unnormalized graph Laplacian associated to Wiso is

Liso := Diso −Wiso ←− a block-diagonal matrix.

There holds λl(Liso) = 0, 1 ≤ l ≤ k , λk+1(Liso) = minλ2(L
(a,a)
iso ) > 0.

What happens if the graph has k connected components?

The nullspace of Liso is spanned by k indicator vectors in RN , i.e., the
columns of Uiso,

Uiso :=


1√
n1

1n1 0 · · · 0

0 1√
n2

1n2 · · · 0
...

...
. . .

...
0 0 · · · 1√

nk
1nk

 ∈ RN×k , U>isoUiso = Ik .

However, this is not the case if the graph is fully connected.
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Matrix perturbation argument

Hope: If L is close to Liso, so is U to Uiso.

Davis-Kahan sin θ theorem

Davis-Kahan perturbation:

min
R∈O(3)

‖U − UisoR‖ ≤
√

2‖L− Liso‖
λk+1(Liso)

where

‖L− Liso‖ ≤ 2‖Dδ‖, λk+1(Liso) = minλ2(L
(a,a)
iso ) > 0.

In other words, if ‖Dδ‖ is small, i.e., the difference between L and Liso is
small, and λk+1(Liso) > 0, the eigenspace U should be close to Uiso. But it
does not imply the underlying membership.
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Convex relaxation of ratio cuts

Let’s review the RatioCut,

RatioCut({Γa}ka=1) =
k∑

a=1

1

|Γa|

〈
L, 1|Γa|1

>
|Γa|

〉
= 〈L,Xrcut〉 ,

where Xrcut :=
∑k

a=1
1
|Γa|1Γa1>Γa

.

Question: What constraints does Xrcut satisfy for any given {Γa}ka=1?

Convex sets

Given a partition {Γa}ka=1, the corresponding Xrcut satisfies

Xrcut is positive semidefinite, Xrcut � 0;

Xrcut is nonnegative, Xrcut ≥ 0 entrywisely;

the constant vector is an eigenvector of Z : Xrcut1N = 1N ;

the trace of Xrcut equals k , i.e., Tr(Xrcut) = k .
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Convex relaxation of normalized cuts

RatioCut-SDP - SDP relaxation of RatioCut

We relax the originally combinatorial optimization by

min 〈L,Z 〉 s.t. Z � 0, Z ≥ 0, Tr(Z ) = k , Z1N = 1N .

The major difference from spectral relaxation is the nonnegativity
constraint.

NCut-SDP - SDP relaxation of normalized cut

The corresponding convex relaxation of normalized cuta is

min 〈Lsym,Z 〉 s.t. Z � 0, Z ≥ 0, Tr(Z ) = k , ZD
1
2 1N = D

1
2 1N .

aA similar relaxation was proposed by [Xing, Jordan, 2003]

Question: How well do these two convex relaxations work?
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Intuitions

From the plain perturbation argument,

min
R∈O(3)

‖U − UisoR‖ ≤
2
√

2‖Dδ‖
λk+1(Liso)

where λk+1(Liso) = minλ2(L
(a,a)
iso ) > 0 if each cluster is connected.

What the perturbation argument tells us:

The success of spectral clustering depends on two ingredients:

Within-cluster connectivity: λ2(L
(a,a)
iso )), a.k.a. algebraic connectivity

or Fiedler eigenvalue, or equivalently, λk+1(Liso).

Inter-cluster connectivity: the operator norm of Dδ quantifies the
maximal outer-cluster degree.
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Main theorem for RatioCut-SDP

Theorem (Ling, Strohmer, 2018)

The SDP relaxation gives Xrcut as the unique global minimizer if

‖Dδ‖ <
λk+1(Liso)

4
,

where λk+1(Liso) is the (k + 1)-th smallest eigenvalue of the graph
Laplacian Liso.

Here λk+1(Liso) satisfies

λk+1(Liso) = min
1≤a≤k

λ2(L
(a,a)
iso )

where λ2(L
(a,a)
iso ) is the second smallest eigenvalue of graph Laplacian w.r.t.

the a-th cluster.
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A random walk perspective of normalized cut

For normalized cut, we first consider the Markov transition matrices on the
whole dataset and each individual cluster:

P := D−1W , P
(a,a)
iso = (D(a,a))−1W (a,a).

Two factors

Within-cluster connectivity: the smaller the second largest eigenvaluea

of P
(a,a)
iso is, the stronger connectivity of a-th cluster is.

Inter-cluster connectivity: let Pδ be the off-diagonal parts of P.
‖Pδ‖∞ is the largest probability of a random walker moving out of its
own cluster after one step.

aThis eigenvalue governs the mixing time of Markov chain.
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Main theorem for NCut-SDP

Theorem (Ling, Strohmer, 2018)

The SDP gives Xncut as the unique global minimizer if

‖Pδ‖∞
1− ‖Pδ‖∞

<
minλ2(Ina − P

(a,a)
iso )

4

Note that
‖Pδ‖∞

1− ‖Pδ‖∞
is small if a random walker starting from any node is more likely to
stay in its own cluster than leave it after one step, and vice versa.

minλ2(Ina − P
(a,a)
iso ) is the smallest eigengap of Markov transition

matrix defined across all the clusters.
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Main contribution of our result

Our contribution

Purely deterministic. Exact recovery under natural and mild condition.
No assumptions needed on the random data generative model.

General and applicable to various settings.

Easily verifiable criteria for the global optimality of a graph cut under
ratio cut and normalized cut.

Not only applies to spectral clustering but also to community
detection under stochastic block model.
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Example 1: two concentric circles

We consider

x1,i =

[
cos( 2πi

n )

sin( 2πi
n )

]
, 1 ≤ i ≤ n; x2,j = κ

[
cos( 2πj

m )

sin( 2πj
m )

]
, 1 ≤ j ≤ m

where m ≈ κn and κ > 1.
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Example 1: two concentric circles

Theorem

Let the data be given by {x1,i}ni=1 ∪ {x2,i}mi=1. The bandwidth σ is chosen
as

σ =
4γ

n
√

log( m
2π )

.

Then SDP recovers the underlying two clusters exactly if

κ− 1︸ ︷︷ ︸
minimal separation

≥ O
(γ
n

)
.

The bound is near-optimal since two adjacent points on one each is
O(n−1) apart. One cannot hope to recover the two clusters if the minimal
separation is smaller than O(n−1).
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Example 2: two parallel lines

Suppose the data points are distributed on two lines with separation ∆,

x1,i =

[
−∆

2
i−1
n−1

]
, x2,i =

[
∆
2

i−1
n−1

]
, 1 ≤ i ≤ n.

Which one partition is given by k-means objective function?

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
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1

Each cluster is highly anisotropic.
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Example 2: two parallel lines

K -means does not work if ∆ < 0.5.

Theorem

Let the data be given by {x1,i}ni=1 ∪ {x2,i}ni=1. Use the heat kernel with
bandwidth

σ =
γ

(n − 1)
√

log( n
π )
, γ > 0.

Assume the separation ∆ satisfies

∆ ≥ O
(γ
n

)
.

Then SDP recovers the underlying two clusters exactly.
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Example 3: community detection under stochastic block
model

The adjacency matrix is a binary random matrix:
1 if member i and j are in the same community, Pr(wij = 1) = p and

Pr(wij = 0) = 1− p;
2 if member i and j are in different communities, Pr(wij = 1) = q and

Pr(wij = 0) = 1− q.

Let p > q and we are interested in when SDP relaxation is able to recover
the underlying membership.
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Graph cuts and stochastic block model

Theorem

Let p = α log n
n and q = β log n

n . The RatioCut-SDP recovers the underlying
communities exactly if

α > 26

(
2

3
+
β

2
+
√
β

)
with high probability.

Compared with the state-of-the-art results where

α > 2 + β + 2
√

2β

is needed for exact recovery2, our performance bound is slightly looser by a
constant factor.

2[Abbe, Bandeira, Hall, 2016]
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Numerics - random instances

So far, the two toy examples are purely deterministic and it is of course
more interesting to look at random data. However, this task is nontrivial
which leads to a few open problems.

Therefore we turn to simulation to see how many random instances satisfy
the conditions in our theorem and how they depends on the choice of σ
and minimal separation ∆.

RatioCut-SDP:

‖Dδ‖ ≤
λk+1(Liso)

4
,

NCut-SDP:
‖Pδ‖∞

1− ‖Pδ‖∞
≤

minλ2(Ina − P
(a,a)
iso )

4
.
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Numerics for two concentric circles

Exact recovery is guaranteed empirically if ∆ ≥ 0.2, 5 ≤ p ≤ 75∆− 8, and
σ = n−1p.
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Figure: Two concentric circles with radii r1 = 1 and r2 = 1 + ∆. The smaller
circle has n = 250 uniformly distributed points and the larger one has
m = b250(1 + ∆)c where ∆ = r2 − r1.
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Numerics for two lines

Exact recovery is guaranteed empirically if ∆ ≥ 0.05 and
2 ≤ p ≤ 150∆− 4.
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Figure: Two parallel line segments of unit length with separation ∆ and 250
points are sampled uniformly on each line.
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Numerics - stochastic ball model

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Stochastic ball model with two clusters and the separation between the
centers is 2 + ∆. Each cluster has 1000 uniformly distributed points
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Numerics: stochastic ball model

1 if n = 250, we require ∆ ≥ 0.2, σ = p
5
√
n

and 2 ≤ p ≤ 40∆− 4;

2 if n = 1000, we require ∆ ≥ 0.1, σ = p
5
√
n

, and 2 ≤ p ≤ 60∆− 2.
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Performance of NCut-SDP for 2D stochastic ball model. Left: each ball
has n = 250 points; Right: each ball contains n = 1000 points.
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Comparison with k-means

For stochastic ball model, k-means should be the best choice since each
cluster is isotropic and separated. However, we have shown that exact
recovery via k-means SDP is impossible3 if

∆ ≤
√

3

2
− 1 ≈ 0.2247.

On the other hand, the SDP relaxation of RatioCut and NCut still works

1 if n = 250, we require ∆ ≥ 0.2, σ = p
5
√
n

and 2 ≤ p ≤ 40∆− 4;

2 if n = 1000, we require ∆ ≥ 0.1, σ = p
5
√
n

, and 2 ≤ p ≤ 60∆− 2.

3See arXiv:1710.06008, by Li, etc.
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Outlook for random data model

Open problem

Suppose there are n data points drawn from a probability density function
p(x) supported on a manifold M. How can we estimate the second
smallest eigenvalue of the graph Laplacian (either normalized or
unnormalized) given the kernel function Φ and σ?
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A possible solution to the open problem

It is well known that the graph Laplacian will converge to the
Laplace-Beltrami operator on the manifold (pointwisely and spectral
convergence).

In other words, if we know the second smallest eigenvalue of
Laplace-Beltrami operator manifold and convergence rate from graph
Laplacian to its continuum limit, we can have a lower bound of the
second smallest eigenvalue of graph Laplacian.

It require tools from empirical process, differential geometry, ...
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Conclusion and future works

We establish a systematic framework to certify the global optimality of a
graph cut under ratio cut and normalized cut. The performance guarantee
is purely algebraic and deterministic, only depending on the algebraic
properties of graph Laplacian. It may lead to a novel way to look at
spectral graph theory.

How to estimate the Fiedler eigenvalue of graph Laplacian associated
to a random data set?

Can we derive an analogue theory for directed graph?

Find a faster and scalable solver for SDP and how to analyze the
classical spectral clustering algorithm?

Preprint: Certifying global optimality of graph cuts via semidefinite
relaxation: a performance guarantee for spectral
clustering, arXiv:1806.11429.

Thank you!
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