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Calibration

Calibration:

Calibration is to adjust one
device with the standard one.

Why? To reduce or eliminate
bias and inaccuracy.

Difficult or even impossible to
calibrate high-performance
hardware.

Self-calibration: Equip sensors
with a smart algorithm which
takes care of calibration
automatically.
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Calibration realized by machine?

Uncalibrated device leads to imperfect sensing

We encounter imperfect sensing all the time: the sensing matrix A(h)
depending on an unknown calibration parameter h,

y = A(h)x + w .

This is too general to solve for h and x jointly.

Examples:

Phase retrieval problem: h is the unknown phase of the Fourier
transform of x .
Cryo-electron microscopy images: h can be the unknown orientation
of a protein molecule and x is the particle.
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A simplified but important model

Our focus:

One special case is to assume A(h) to be of the form

A(h) = D(h)A

where D(h) is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically
nontrivial to analyze.

Phase and gain calibration in array signal processing

Blind deconvolution (image deblurring; joint channel and signal
estimation, etc.)

Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 6 / 22



A simplified but important model

Our focus:

One special case is to assume A(h) to be of the form

A(h) = D(h)A

where D(h) is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically
nontrivial to analyze.

Phase and gain calibration in array signal processing

Blind deconvolution (image deblurring; joint channel and signal
estimation, etc.)

Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 6 / 22



Self-calibration in array signal processing

Calibration in the DOA (direction of arrival estimation)

One calibration issue comes from the unknown gains of the antennae
caused by temperature or humidity.

𝜃"

𝜃# 𝜃$

𝜃% 𝜃&

𝜃'
Antenna	elements

Consider s signals impinging on an
array of L antennae.

y =
s∑

k=1

DA(θ̄k)xk + w

where D is an unknown diagonal
matrix and dii is the unknown gain
for i-th sensor. A(θ): array mani-
fold. θ̄k : unknown direction of ar-
rival. {xk}sk=1 are the impinging
signals.
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How is it related to compressive sensing?

Discretize the manifold function A(θ) over [−π ≤ θ < π] on N grid points.

y = DAx + w

where

A =

 | · · · |
A(θ1) · · · A(θN)
| · · · |

 ∈ CL×N

To achieve high resolution, we usually have L ≤ N.

x ∈ CN×1 is s-sparse. Its s nonzero entries correspond to the
directions of signals. Moreover, we don’t know the locations of
nonzero entries.

Subspace constraint: assume D = diag(Bh) where B is a known
L× K matrix and K < L.

Number of constraints: L; number of unknowns: K + s.
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Self-calibration and biconvex compressive sensing

Goal: Find (h, x) s.t. y = diag(Bh)Ax + w and x is sparse.

Biconvex compressive sensing

We are solving a biconvex (not convex) optimization problem to recover
sparse signal x and calibrating parameter h.

min
h,x
‖ diag(Bh)Ax − y‖2 + λ‖x‖1

A ∈ CL×N and B ∈ CL×K are known. h ∈ CK×1 and x ∈ CN×1 are
unknown. x is sparse.

Remark: If h is known, x can be recovered; if x is known, we can find h as
well. Regarding identifiability issue, See [Lee, etc. 15].

Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 9 / 22



Biconvex compressive sensing

Goal: we want to find h and a sparse x from y , B and A.

= +

𝒚: 𝐿×1 𝑩: 𝐿×𝐾 𝒉:𝐾×1 𝐴: 𝐿×𝑁 𝑥:𝑁×1,
	𝑠-sparse

𝒘: 𝐿×1

⊙

Unknown	parameters
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Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints

Widely used in phase retrieval [Candès, etc, 11], blind deconvolution
[Ahmed, etc, 11], etc...

(b) Solving a convex relaxation (semi-definite program) to recover h0x∗
0.
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Lifting: from bilinear to linear

Step 1: lifting

Let ai be the i-th column of A∗ and bi be the i-th column of B∗.

yi = (Bh0)ix∗
0ai + wi = b∗

i h0x∗
0ai + wi .

Let X 0 := h0x∗
0 and define the linear operator A : CK×N → CL as,

A(Z ) := {b∗
i Zai}Li=1 = {〈Z ,bia∗

i 〉}Li=1.

Then, there holds
y = A(X 0) + w .

In this way, A∗(z) =
∑L

i=1 zibia∗
i : CL → CK×N .

Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 12 / 22



Rank-1 matrix recovery

Lifting: recovery of a rank - 1 and row-sparse matrix

Find Z s.t. rank(Z ) = 1

A(Z ) = A(X 0)

Z has sparse rows

‖X 0‖0 = Ks where X 0 = h0x∗
0, h0 ∈ CK and x0 ∈ CN with

‖x0‖0 = s.

Z =


0 0 h1xi1 0 · · · 0 h1xis 0 · · · 0
0 0 h2xi1 0 · · · 0 h2xis 0 · · · 0
...

...
...

...
. . .

...
...

...
. . .

...
0 0 hKxi1 0 · · · 0 hKxis 0 · · · 0


K×N

An NP-hard problem to find such a rank-1 and sparse matrix.
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SparseLift

‖Z‖∗: nuclear norm and ‖Z‖1: `1-norm of vectorized Z .

A popular way: nuclear norm + `1- minimization

min ‖Z‖1 + λ‖Z‖∗ s.t. A(Z ) = A(X 0), λ ≥ 0.

However, combination of multiple norms may not do any better.
[Oymak, etc. 12].

SparseLift

min ‖Z‖1 s.t. A(Z ) = A(X 0).

Idea: Lift the recovery problem of two unknown vectors to a matrix-valued
problem and exploit sparsity through `1-minimization.
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Main theorem

Theorem: [Ling-Strohmer, 2015]

Recall the model:
y = DAx , D = diag(Bh),

where

(a) B is an L× K DFT tall matrix with B∗B = IK
(b) A is an L× N real Gaussian random matrix or a random Fourier

matrix.

Then SparseLift recovers X 0 exactly with high probability if

L = O( K︸︷︷︸
dimension of h

s︸︷︷︸
level of sparsity

log2 L)

where Ks = ‖X 0‖0.
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Comments

It is shown that `1-2 minimization also works (exploit group sparsity)
[Flinth, 17].

min ‖X‖∗ fails if L < N.

min ‖X‖∗ L = O(K + N)
min ‖X‖1 L = O(Ks logKN)

Solving `1-minimization is easier and cheaper than solving SDP.

Compared with Compressive Sensing

Compressive Sensing L = O(s logN)
Our Case L = O(Ks logKN)

Believed to be optimal if one uses the ‘Lifting’ technique. It is
unknown whether any algorithm would work for L = O(K + s).
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Phase transition: SparseLift vs. ‖ · ‖1 + λ‖ · ‖∗
min ‖ · ‖1 + λ‖ · ‖∗ does not do any better than min ‖ · ‖1.
White: Success, Black: Failure

s:1 to 15 (Gaussian Case: Performance of Sparselift)
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Figure: SparseLift

s:1 to 15 (Gaussian Case and min ‖ · ‖1 + 0 .1‖ · ‖∗ solve
k
:1

 t
o

 1
5

  

Empirical prob of success: L = 128, N = 256

 

 

2 4 6 8 10 12 14

2

4

6

8

10

12

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: min ‖ · ‖1 + 0.1‖ · ‖∗
L = 128,N = 256. A: Gaussian and B: Non-random partial Fourier
matrix. 10 experiments for each pair (K , s), 1 ≤ K , s ≤ 15.
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Minimal L is nearly proportional to Ks

L : 10 to 400; N = 512; A: Gaussian random matrices;
B: first K columns of a DFT matrix.

n:1 to 15
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Empirical prob of success: N = 512, k = 5
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Figure: Fix K = 5
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Figure: Fix s = 5
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Stability theory

Assume that y is contaminated by noise, namely, y = A(X 0) + w with
‖w‖ ≤ η, we solve the following program to recover X 0,

min ‖Z‖1 s.t. ‖A(Z )− y‖ ≤ η.

Theorem

If A is either a Gaussian random matrix or a random Fourier matrix,

‖X̂ − X 0‖F ≤ (C0 + C1

√
Ks)η

with high probability. L satisfies the condition in the noiseless case. Both
C0 and C1 are constants.
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Numerical example: relative error vs SNR
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Figure: A: Gaussian matrix
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Figure: A: random Fourier matrix

Remarks: L = 128,N = 256,K = s = 5.
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DOA with a single snapshot

Assume we have L = 64 sensors on one circle (circular array) and the gain
d = Bh where B ∈ C64×4 and h is complex Gaussian. The discretization
of the angle consists of N = 180 grid points over [−89o , 90o ] and SNR is
25dB.
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Outlook and Conclusion

Conclusion:

Is it possible to recover (h, x) with L = O(K + s) measurements?

Consider multiple snapshots instead of one single snapshots.

See details:
1 Self-calibration and biconvex compressive sensing. Inverse Problems 31

(11), 115002
2 Blind deconvolution meets blind demixing: algorithms and performance

bounds, IEEE Transactions on Information Theory 63 (7), 4497-4520
3 Rapid, robust, and reliable blind deconvolution via nonconvex

optimization, arXiv:1606.04933.
4 Regularized gradient descent: a nonconvex recipe for fast joint blind

deconvolution and demixing arXiv:1703.08642.
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