Self-Calibration and Biconvex Compressive Sensing

Shuyang Ling
Department of Mathematics, UC Davis

July 12, 2017

Acknowledgements

Research in collaboration with:
Prof.Thomas Strohmer (UC Davis)

This work is sponsored by NSF-DMS and DARPA.

Outline

(a) Self-calibration and mathematical framework
(b) Biconvex compressive sensing in array signal processing
(c) SparseLift: a convex approach towards biconvex compressive sensing
(d) Theory and numerical simulations

Calibration

Calibration:

- Calibration is to adjust one device with the standard one.
- Why? To reduce or eliminate bias and inaccuracy.
- Difficult or even impossible to calibrate high-performance hardware.
- Self-calibration: Equip sensors with a smart algorithm which takes care of calibration
 automatically.

Calibration

Calibration:

- Calibration is to adjust one device with the standard one.
- Why? To reduce or eliminate bias and inaccuracy.
- Difficult or even impossible to calibrate high-performance hardware.
- Self-calibration: Equip sensors with a smart algorithm which takes care of calibration
 automatically.

Calibration realized by machine?

Uncalibrated device leads to imperfect sensing

We encounter imperfect sensing all the time: the sensing matrix $\boldsymbol{A}(\boldsymbol{h})$ depending on an unknown calibration parameter \boldsymbol{h},

$$
\boldsymbol{y}=\boldsymbol{A}(\boldsymbol{h}) \boldsymbol{x}+\boldsymbol{w}
$$

This is too general to solve for \boldsymbol{h} and \boldsymbol{x} jointly.

```
Examples:
- Phase retrieval problem: \(\boldsymbol{h}\) is the unknown phase of the Fourier transform of \(x\).
- Cryo-electron microscopy images: h can be the unknown orientation of a protein molecule and \(\boldsymbol{x}\) is the particle.
```


Calibration realized by machine?

Uncalibrated device leads to imperfect sensing

We encounter imperfect sensing all the time: the sensing matrix $\boldsymbol{A}(\boldsymbol{h})$ depending on an unknown calibration parameter \boldsymbol{h},

$$
\boldsymbol{y}=\boldsymbol{A}(\boldsymbol{h}) \boldsymbol{x}+\boldsymbol{w}
$$

This is too general to solve for \boldsymbol{h} and \boldsymbol{x} jointly.
Examples:

- Phase retrieval problem: \boldsymbol{h} is the unknown phase of the Fourier transform of \boldsymbol{x}.
- Cryo-electron microscopy images: \boldsymbol{h} can be the unknown orientation of a protein molecule and \boldsymbol{x} is the particle.

A simplified but important model

Our focus:

One special case is to assume $\boldsymbol{A}(\boldsymbol{h})$ to be of the form

$$
A(h)=D(h) A
$$

where $\boldsymbol{D}(\boldsymbol{h})$ is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically nontrivial to analyze.

- Phase and gain calibration in array signal processing
- Blind deconvolution (image deblurring; joint channel and signal estimation, etc.)

A simplified but important model

Our focus:

One special case is to assume $\boldsymbol{A}(\boldsymbol{h})$ to be of the form

$$
A(h)=D(h) A
$$

where $\boldsymbol{D}(\boldsymbol{h})$ is an unknown diagonal matrix.

However, this seemingly simple model is very useful and mathematically nontrivial to analyze.

- Phase and gain calibration in array signal processing
- Blind deconvolution (image deblurring; joint channel and signal estimation, etc.)

Self-calibration in array signal processing

Calibration in the DOA (direction of arrival estimation)
One calibration issue comes from the unknown gains of the antennae caused by temperature or humidity.

Consider s signals impinging on an
array of L antennae.

Self-calibration in array signal processing

Calibration in the DOA (direction of arrival estimation)

One calibration issue comes from the unknown gains of the antennae caused by temperature or humidity.

Consider s signals impinging on an array of L antennae.

$$
\boldsymbol{y}=\sum_{k=1}^{s} \boldsymbol{D} \boldsymbol{A}\left(\bar{\theta}_{k}\right) x_{k}+\boldsymbol{w}
$$

where \boldsymbol{D} is an unknown diagonal matrix and $d_{i j}$ is the unknown gain for i-th sensor. $\boldsymbol{A}(\theta)$: array manifold. $\bar{\theta}_{k}$: unknown direction of arrival. $\left\{x_{k}\right\}_{k=1}^{s}$ are the impinging signals.

How is it related to compressive sensing?

Discretize the manifold function $\boldsymbol{A}(\theta)$ over $[-\pi \leq \theta<\pi]$ on N grid points.

$$
y=D A x+w
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\boldsymbol{A}\left(\theta_{1}\right) & \cdots & \boldsymbol{A}\left(\theta_{N}\right) \\
\mid & \cdots & \mid
\end{array}\right] \in \mathbb{C}^{L \times N}
$$

- To achieve high resolution, we usually have $L \leq N$.
- $\boldsymbol{x} \in \mathbb{C}^{N \times 1}$ is s-sparse. Its s nonzero entries correspond to the directions of signals. Moreover, we don't know the locations of nonzero entries.
- Subspace constraint: assume $D=\operatorname{diag}(B h)$ where B is a known $L \times K$ matrix and $K<L$.
- Number of constraints: L; number of unknowns: $K+s$.

How is it related to compressive sensing?

Discretize the manifold function $\boldsymbol{A}(\theta)$ over $[-\pi \leq \theta<\pi]$ on N grid points.

$$
y=D A x+w
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
\boldsymbol{A}\left(\theta_{1}\right) & \cdots & \boldsymbol{A}\left(\theta_{N}\right) \\
\mid & \cdots & \mid
\end{array}\right] \in \mathbb{C}^{L \times N}
$$

- To achieve high resolution, we usually have $L \leq N$.
- $\boldsymbol{x} \in \mathbb{C}^{N \times 1}$ is s-sparse. Its s nonzero entries correspond to the directions of signals. Moreover, we don't know the locations of nonzero entries.
- Subspace constraint: assume $\boldsymbol{D}=\operatorname{diag}(\boldsymbol{B h})$ where \boldsymbol{B} is a known $L \times K$ matrix and $K<L$.
- Number of constraints: L; number of unknowns: $K+s$.

Self-calibration and biconvex compressive sensing

Goal: Find $(\boldsymbol{h}, \boldsymbol{x})$ s.t. $\boldsymbol{y}=\operatorname{diag}(\boldsymbol{B h}) \boldsymbol{A} \boldsymbol{x}+\boldsymbol{w}$ and \boldsymbol{x} is sparse.

Biconvex compressive sensing

We are solving a biconvex (not convex) optimization problem to recover sparse signal \boldsymbol{x} and calibrating parameter \boldsymbol{h}.

$$
\min _{\boldsymbol{h}, \boldsymbol{x}}\|\operatorname{diag}(\boldsymbol{B} \boldsymbol{h}) \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|^{2}+\lambda\|\boldsymbol{x}\|_{1}
$$

$\boldsymbol{A} \in \mathbb{C}^{L \times N}$ and $\boldsymbol{B} \in \mathbb{C}^{L \times K}$ are known. $\boldsymbol{h} \in \mathbb{C}^{K \times 1}$ and $\boldsymbol{x} \in \mathbb{C}^{N \times 1}$ are unknown. \boldsymbol{x} is sparse.

Remark: If \boldsymbol{h} is known, \boldsymbol{x} can be recovered; if \boldsymbol{x} is known, we can find \boldsymbol{h} as well. Regarding identifiability issue, See [Lee, etc. 15].

Biconvex compressive sensing

Goal: we want to find \boldsymbol{h} and a sparse \boldsymbol{x} from $\boldsymbol{y}, \boldsymbol{B}$ and \boldsymbol{A}.

$\boldsymbol{y}: L \times 1 \quad \boldsymbol{B}: L \times K \boldsymbol{h}: K \times 1 \quad A: L \times N \quad x: N \times 1, \quad \boldsymbol{w}: L \times 1$

Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints

- Widely used in phase retrieval [Candès, etc, 11], blind deconvolution [Ahmed, etc, 11], etc...
(b) Solving a convex relaxation (semi-definite program) to recover $\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$.

Lifting: from bilinear to linear

Step 1: lifting

Let $\boldsymbol{a}_{\boldsymbol{i}}$ be the \boldsymbol{i}-th column of \boldsymbol{A}^{*} and $\boldsymbol{b}_{\boldsymbol{i}}$ be the i-th column of \boldsymbol{B}^{*}.

$$
y_{i}=\left(\boldsymbol{B} \boldsymbol{h}_{0}\right)_{i} \boldsymbol{x}_{0}^{*} \boldsymbol{a}_{i}+w_{i}=\boldsymbol{b}_{i}^{*} \boldsymbol{h}_{0} x_{0}^{*} \boldsymbol{a}_{i}+w_{i}
$$

Let $\quad \boldsymbol{X}_{0}:=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$ and define the linear operator $\mathcal{A}: \mathbb{C}^{K \times N} \rightarrow \mathbb{C}^{L}$ as,

$$
\mathcal{A}(\boldsymbol{Z}):=\left\{\boldsymbol{b}_{i}^{*} \boldsymbol{Z} \boldsymbol{a}_{i}\right\}_{i=1}^{L}=\left\{\left\langle\boldsymbol{Z}, \boldsymbol{b}_{i} \boldsymbol{a}_{i}^{*}\right\rangle\right\}_{i=1}^{L} .
$$

Then, there holds

$$
\boldsymbol{y}=\mathcal{A}\left(\boldsymbol{X}_{0}\right)+\boldsymbol{w}
$$

In this way, $\mathcal{A}^{*}(z)=\sum_{i=1}^{L} z_{i} \boldsymbol{b}_{i} \boldsymbol{a}_{i}^{*}: \mathbb{C}^{L} \rightarrow \mathbb{C}^{K \times N}$.

Rank-1 matrix recovery

Lifting: recovery of a rank - 1 and row-sparse matrix

Find \boldsymbol{Z} s.t. $\operatorname{rank}(\boldsymbol{Z})=1$
$\mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)$
\boldsymbol{Z} has sparse rows

- An NP-hard problem to find such a rank-1 and sparse matrix.

Rank-1 matrix recovery

Lifting: recovery of a rank - 1 and row-sparse matrix

Find \boldsymbol{Z} s.t. $\operatorname{rank}(\boldsymbol{Z})=1$

$$
\mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)
$$

\boldsymbol{Z} has sparse rows

- $\left\|\boldsymbol{X}_{0}\right\|_{0}=K s$ where $\boldsymbol{X}_{0}=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}, \boldsymbol{h}_{0} \in \mathbb{C}^{K}$ and $\boldsymbol{x}_{0} \in \mathbb{C}^{N}$ with $\left\|x_{0}\right\|_{0}=s$.

$$
\boldsymbol{Z}=\left[\begin{array}{cccccccccc}
0 & 0 & h_{1} x_{i_{1}} & 0 & \cdots & 0 & h_{1} x_{i_{s}} & 0 & \cdots & 0 \\
0 & 0 & h_{2} x_{i_{1}} & 0 & \cdots & 0 & h_{2} x_{i_{s}} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & h_{K} x_{i_{1}} & 0 & \cdots & 0 & h_{K} x_{i_{s}} & 0 & \cdots & 0
\end{array}\right]_{K \times N}
$$

- An NP-hard problem to find such a rank-1 and sparse matrix.

SparseLift

$\|\boldsymbol{Z}\|_{*}:$ nuclear norm and $\|\boldsymbol{Z}\|_{1}: \ell_{1}$-norm of vectorized \boldsymbol{Z}.
A popular way: nuclear norm $+\ell_{1}$ - minimization

$$
\min \|\boldsymbol{Z}\|_{1}+\lambda\|\boldsymbol{Z}\|_{*} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right), \quad \lambda \geq 0
$$

However, combination of multiple norms may not do any better [Oymak, etc. 12]

$$
\min \|\boldsymbol{Z}\|_{1} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right) .
$$

Idea: Lift the recovery problem of two unknown vectors to a matrix-valued problem and exploit sparsity through ℓ_{1}-minimization.

SparseLift

$\|\boldsymbol{Z}\|_{*}:$ nuclear norm and $\|\boldsymbol{Z}\|_{1}: \ell_{1}$-norm of vectorized \boldsymbol{Z}.
A popular way: nuclear norm $+\ell_{1}$ - minimization

$$
\min \|\boldsymbol{Z}\|_{1}+\lambda\|\boldsymbol{Z}\|_{*} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right), \quad \lambda \geq 0
$$

However, combination of multiple norms may not do any better. [Oymak, etc. 12].

SparseLift

$$
\min \|\boldsymbol{Z}\|_{1} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)
$$

Idea: Lift the recovery problem of two unknown vectors to a matrix-valued problem and exploit sparsity through ℓ_{1}-minimization.

Main theorem

Theorem: [Ling-Strohmer, 2015]

Recall the model:

$$
\boldsymbol{y}=\boldsymbol{D} \boldsymbol{A} \boldsymbol{x}, \quad \boldsymbol{D}=\operatorname{diag}(\boldsymbol{B} \boldsymbol{h})
$$

where
(a) \boldsymbol{B} is an $L \times K$ DFT tall matrix with $\boldsymbol{B}^{*} \boldsymbol{B}=\boldsymbol{I}_{K}$
(b) \boldsymbol{A} is an $L \times N$ real Gaussian random matrix or a random Fourier matrix.
Then SparseLift recovers \boldsymbol{X}_{0} exactly with high probability if

$$
L=\mathcal{O}(\underbrace{K}_{\text {dimension of } \boldsymbol{h}} \underbrace{s}_{\text {level of sparsity }} \log ^{2} L)
$$

where $K s=\left\|\boldsymbol{X}_{0}\right\|_{0}$.

Comments

- It is shown that ℓ_{1-2} minimization also works (exploit group sparsity) [Flinth, 17].
- $\min \|\boldsymbol{X}\|_{*}$ fails if $L<N$.

$\min \\|\boldsymbol{X}\\|_{*}$	$L=\mathcal{O}(K+N)$
$\min \\|\boldsymbol{X}\\|_{1}$	$L=\mathcal{O}($ Ks $\log K N)$

- Solving ℓ_{1}-minimization is easier and cheaper than solving SDP.
- Compared with Compressive Sensing

Compressive Sensing	$L=\mathcal{O}(\mathbf{s} \log N)$
Our Case	$L=\mathcal{O}(K \mathbf{s} \log K N)$

- Believed to be optimal if one uses the 'Lifting' technique. It is unknown whether any algorithm would work for $L=\mathcal{O}(K+s)$.

Phase transition: SparseLift vs. $\|\cdot\|_{1}+\lambda\|\cdot\|_{*}$

$\min \|\cdot\|_{1}+\lambda\|\cdot\|_{*}$ does not do any better than $\min \|\cdot\|_{1}$.
White: Success, Black: Failure

Figure: SparseLift

Figure: $\min \|\cdot\|_{1}+0.1\|\cdot\|_{*}$
$L=128, N=256$. \boldsymbol{A} : Gaussian and B : Non-random partial Fourier matrix. 10 experiments for each pair $(K, s), 1 \leq K, s \leq 15$.

Minimal L is nearly proportional to $K s$

$L: 10$ to 400; $N=512$; $\boldsymbol{A}:$ Gaussian random matrices;
B : first K columns of a DFT matrix.

Figure: Fix $K=5$

Figure: Fix $s=5$

Stability theory

Assume that \boldsymbol{y} is contaminated by noise, namely, $\boldsymbol{y}=\mathcal{A}\left(\boldsymbol{X}_{0}\right)+\boldsymbol{w}$ with $\|\boldsymbol{w}\| \leq \eta$, we solve the following program to recover \boldsymbol{X}_{0},

$$
\min \|\boldsymbol{Z}\|_{1} \quad \text { s.t. }\|\mathcal{A}(\boldsymbol{Z})-\boldsymbol{y}\| \leq \eta .
$$

Theorem
If \boldsymbol{A} is either a Gaussian random matrix or a random Fourier matrix,

$$
\left\|\hat{X}-X_{0}\right\|_{F} \leq\left(C_{0}+C_{1} \sqrt{K s}\right)_{\eta}
$$

with high probability. L satisfies the condition in the noiseless case. Both C_{0} and C_{1} are constants.

Stability theory

Assume that \boldsymbol{y} is contaminated by noise, namely, $\boldsymbol{y}=\mathcal{A}\left(\boldsymbol{X}_{0}\right)+\boldsymbol{w}$ with $\|\boldsymbol{w}\| \leq \eta$, we solve the following program to recover \boldsymbol{X}_{0},

$$
\min \|\boldsymbol{Z}\|_{1} \quad \text { s.t. }\|\mathcal{A}(\boldsymbol{Z})-\boldsymbol{y}\| \leq \eta
$$

Theorem

If \boldsymbol{A} is either a Gaussian random matrix or a random Fourier matrix,

$$
\left\|\hat{\boldsymbol{X}}-\boldsymbol{X}_{0}\right\|_{F} \leq\left(C_{0}+C_{1} \sqrt{K s}\right) \eta
$$

with high probability. L satisfies the condition in the noiseless case. Both C_{0} and C_{1} are constants.

Numerical example: relative error vs SNR

Figure: A: Gaussian matrix

Figure: A: random Fourier matrix

Remarks: $L=128, N=256, K=s=5$.

DOA with a single snapshot

Assume we have $L=64$ sensors on one circle (circular array) and the gain $\boldsymbol{d}=\boldsymbol{B} \boldsymbol{h}$ where $\boldsymbol{B} \in \mathbb{C}^{64 \times 4}$ and \boldsymbol{h} is complex Gaussian. The discretization of the angle consists of $N=180$ grid points over $\left[-89^{\circ}, 90^{\circ}\right]$ and SNR is 25 dB .

Self-calibration for DOA Estimaion

Outlook and Conclusion

Conclusion:

- Is it possible to recover $(\boldsymbol{h}, \boldsymbol{x})$ with $L=\mathcal{O}(K+s)$ measurements?
- Consider multiple snapshots instead of one single snapshots.
- See details:
(1) Self-calibration and biconvex compressive sensing. Inverse Problems 31 (11), 115002
(2) Blind deconvolution meets blind demixing: algorithms and performance bounds, IEEE Transactions on Information Theory 63 (7), 4497-4520
(3) Rapid, robust, and reliable blind deconvolution via nonconvex optimization, arXiv:1606.04933.
(9) Regularized gradient descent: a nonconvex recipe for fast joint blind deconvolution and demixing arXiv:1703.08642.

