Joint Blind Deconvolution and Blind Demixing via Nonconvex Optimization

Shuyang Ling
Department of Mathematics, UC Davis

July 19, 2017

Acknowledgements

Research in collaboration with:

- Prof.Xiaodong Li (UC Davis)
- Prof.Thomas Strohmer (UC Davis)
- Dr.Ke Wei (UC Davis)

This work is sponsored by NSF-DMS and DARPA.

Outline

(a) Blind deconvolution meets blind demixing: applications in image processing and wireless communication
(b) Mathematical models and convex approach
(c) A nonconvex optimization approach towards joint blind deconvolution and blind demixing

What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function \boldsymbol{y} which consists of the convolution of two unknown functions, the blurring function \boldsymbol{f} and the signal of interest \boldsymbol{g}, plus noise \boldsymbol{w}. How to reconstruct \boldsymbol{f} and \boldsymbol{g} from \boldsymbol{y} ?

$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}+\boldsymbol{w}
$$

It is obviously a highly ill-posed bilinear inverse problem...

- Much more difficult than ordinary deconvolution...but have important applications in various fields.
- Solvability? What conditions on \boldsymbol{f} and \boldsymbol{g} make this problem solvable?
- How? What algorithms shall we use to recover \boldsymbol{f} and \boldsymbol{g} ?

Why do we care about blind deconvolution?

Image deblurring

Let \boldsymbol{f} be the blurring kernel and \boldsymbol{g} be the original image, then $\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}$ is the blurred image.
Question: how to reconstruct \boldsymbol{f} and \boldsymbol{g} from \boldsymbol{y}

Blind deconvolution meets blind demixing

Suppose there are s users and each of them sends a message \boldsymbol{x}_{i}, which is encoded by \boldsymbol{C}_{i}, to a common receiver. Each encoded message $\boldsymbol{g}_{i}=\boldsymbol{C}_{i} \boldsymbol{x}_{i}$ is convolved with an unknown impulse response function \boldsymbol{f}_{i}.

Blind deconvolution and blind demixing

Consider the model:

$$
\boldsymbol{y}=\sum_{i=1}^{s} \boldsymbol{f}_{i} * \boldsymbol{g}_{i}+\boldsymbol{w}
$$

This is even more difficult than blind deconvolution $(s=1)$, since this is a "mixture" of blind deconvolution problems. It also includes phase retrieval as a special case if $s=1$ and $\overline{\boldsymbol{g}}_{i}=\boldsymbol{f}_{i}$.

More assumptions

- Each impulse response \boldsymbol{f}_{i} has maximum delay spread K (compact support):

$$
\boldsymbol{f}_{i}(n)=0, \quad \text { for } n>K, \quad \boldsymbol{f}_{i}=\left[\begin{array}{c}
\boldsymbol{h}_{i} \\
0
\end{array}\right]
$$

- Let $\boldsymbol{g}_{i}:=\boldsymbol{C}_{i} \boldsymbol{x}_{i}$ be the signal $\boldsymbol{x}_{i} \in \mathbb{C}^{N}$ encoded by $\boldsymbol{C}_{i} \in \mathbb{C}^{L \times N}$ with $L>N$. We also require \boldsymbol{C}_{i} to be mutually incoherent by imposing randomness.

Mathematical model

Subspace assumption on the frequency domain
Denote \boldsymbol{F} as the $L \times L$ DFT matrix.

- Let $\boldsymbol{h}_{i} \in \mathbb{C}^{K}$ be the first K nonzero entries of \boldsymbol{f}_{i} and \boldsymbol{B} be a low-frequency DFT matrix. There holds, $\hat{\boldsymbol{f}}_{i}=\boldsymbol{F} \boldsymbol{f}_{i}=\boldsymbol{B} \boldsymbol{h}_{i}$.
- Let $\hat{\boldsymbol{g}}_{i}:=\boldsymbol{A}_{i} \boldsymbol{x}_{i}$ where $\boldsymbol{A}_{i}:=\boldsymbol{F} \boldsymbol{C}_{i}$ and $\boldsymbol{x}_{i} \in \mathbb{C}^{N}$.

Mathematical model

Subspace assumption on the frequency domain
Denote F as the $L \times L$ DFT matrix.

- Let $\boldsymbol{h}_{i} \in \mathbb{C}^{K}$ be the first K nonzero entries of \boldsymbol{f}_{i} and \boldsymbol{B} be a low-frequency DFT matrix. There holds, $\hat{\boldsymbol{f}}_{i}=\boldsymbol{F} \boldsymbol{f}_{i}=\boldsymbol{B} \boldsymbol{h}_{i}$.
- Let $\hat{\boldsymbol{g}}_{i}:=\boldsymbol{A}_{i} \boldsymbol{x}_{i}$ where $\boldsymbol{A}_{i}:=\boldsymbol{F} \boldsymbol{C}_{i}$ and $\boldsymbol{x}_{i} \in \mathbb{C}^{N}$.

Mathematical model

$$
\boldsymbol{y}=\sum_{i=1}^{s} \operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i}+\boldsymbol{w} .
$$

Goal: We want to recover $\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)_{i=1}^{s}$ from $\left(\boldsymbol{y}, \boldsymbol{B}, \boldsymbol{A}_{i}\right)_{i=1}^{s}$.
Remark: The degree of freedom for unknowns: $s(K+N)$; number of constraints: L.

Naive approach

Nonlinear least squares

We may want to try nonlinear least squares approach:

$$
\min _{\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)} \underbrace{\left\|\sum_{i=1}^{s} \operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i}-\boldsymbol{y}\right\|^{2}}_{F\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)} .
$$

- The objective function is highly nonconvex and more complicated than blind deconvolution $(s=1)$
- Gradient descent might get stuck at local minima.
- No guarantees for recoverability.

Naive approach

Nonlinear least squares

We may want to try nonlinear least squares approach:

$$
\min _{\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)} \underbrace{\left\|\sum_{i=1}^{s} \operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i}-\boldsymbol{y}\right\|^{2}}_{F\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)} .
$$

- The objective function is highly nonconvex and more complicated than blind deconvolution $(s=1)$.
- Gradient descent might get stuck at local minima.
- No guarantees for recoverability.

Convex relaxation and low-rank matrix recovery

Lifting

Let $\boldsymbol{a}_{i, l}$ be the l-th column of \boldsymbol{A}_{i}^{*} and \boldsymbol{b}_{l} be the l-th column of \boldsymbol{B}^{*}.

$$
y_{l}=\sum_{i=1}^{s}\left(\boldsymbol{B} \boldsymbol{h}_{i}\right)_{I} \cdot\left(\boldsymbol{A}_{l} \boldsymbol{x}_{i}\right)_{I}=\sum_{i=1}^{s} \boldsymbol{b}_{l}^{*} \underbrace{\boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*}}_{\text {rank-1 }} \boldsymbol{a}_{i, l} .
$$

Let $\boldsymbol{X}_{i}:=\boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*}$ and define the linear operator $\mathcal{A}_{i}: \mathbb{C}^{K \times N} \rightarrow \mathbb{C}^{L}$ as,

$$
\mathcal{A}_{i}(\boldsymbol{Z}):=\left\{\boldsymbol{b}_{l}^{*} \boldsymbol{Z} \boldsymbol{a}_{i, l}\right\}_{l=1}^{L}=\left\{\left\langle\boldsymbol{Z}, \boldsymbol{b}_{l} \boldsymbol{a}_{i, l}^{*}\right\rangle\right\}_{l=1}^{L} .
$$

Then, there holds $\boldsymbol{y}=\sum_{i=1}^{s} \mathcal{A}_{i}\left(\boldsymbol{X}_{i}\right)+\boldsymbol{w}$.
See [Candès-Strohmer-Voroninski 13], [Ahmed-Recht-Romberg, 14].

Convex relaxation and low-rank matrix recovery

Rank-s matrix recovery
We rewrite $\boldsymbol{y}=\sum_{i=1}^{s} \operatorname{diag}\left(B \boldsymbol{B}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i}$ as

$$
y_{l}=\underbrace{\left\langle\begin{array}{cccc}
\boldsymbol{h}_{1} \boldsymbol{x}_{1}^{*} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{h}_{2} \boldsymbol{x}_{2}^{*} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{h}_{s} \boldsymbol{x}_{s}^{*}
\end{array}\right]}_{\text {rank-s matrix }},\left[\begin{array}{cccc}
\boldsymbol{b}_{\mathbf{l}}^{\mathbf{a}} \mathbf{1 , l / l} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{b}_{\mathbf{a}}^{\boldsymbol{a}} \boldsymbol{a}_{2, l} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{b}_{l} \mathbf{a}_{s, l}^{*}
\end{array}\right]\rangle
$$

- Recover a rank-s block diagonal matrix satisfying convex constraints.
- Finding such a rank-s matrix is generally an NP-hard problem.

Low-rank matrix recovery

Nuclear norm minimization

The ground truth is a rank-s block-diagonal matrix. It is natural to recover the solution via solving

$$
\min \sum_{i=1}^{s}\left\|\boldsymbol{Z}_{i}\right\|_{*} \quad \text { subject to } \quad \sum_{i=1}^{s} \mathcal{A}_{i}\left(\boldsymbol{Z}_{i}\right)=\boldsymbol{y}
$$

where $\sum_{i=1}^{s}\left\|\boldsymbol{Z}_{i}\right\|_{*}$ is the nuclear norm of $\operatorname{blkdiag}\left(\boldsymbol{Z}_{1}, \cdots, \boldsymbol{Z}_{s}\right)$.
Question: Can we recover $\left\{\boldsymbol{h}_{i 0} \boldsymbol{x}_{i 0}^{*}\right\}_{i=1}^{s}$ exactly?

Convex approach

Theorem

Assume that

- Let $\boldsymbol{B} \in \mathbb{C}^{L \times K}$ be a partial DFT matrix with $\boldsymbol{B}^{*} \boldsymbol{B}=\boldsymbol{I}_{K}$;
- Each \boldsymbol{A}_{i} is a Gaussian random matrix.

The SDP relaxation is able to recover $\left\{\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)\right\}_{i=1}^{s}$ exactly with probability at least $1-\mathcal{O}\left(L^{-\gamma}\right)$. Here the number of measurements L satifies

- [Ling-Strohmer 15] $L \geq C_{\gamma} s^{2}\left(K+\mu_{h}^{2} N\right) \log ^{3} L$;
- [Jung-Krahmer-Stöger 17] $L \geq C_{\gamma}\left(s\left(K+\mu_{h}^{2} N\right)\right) \log ^{3} L$ where $\mu_{h}^{2}=L \max _{1 \leq i \leq s} \frac{\left\|\boldsymbol{B} \boldsymbol{h}_{i}\right\|_{\infty}^{2}}{\left\|\boldsymbol{h}_{i}\right\|^{2}}$.

Convex approach

Theorem

Assume that

- Let $\boldsymbol{B} \in \mathbb{C}^{L \times K}$ be a partial DFT matrix with $\boldsymbol{B}^{*} \boldsymbol{B}=\boldsymbol{I}_{K}$;
- Each \boldsymbol{A}_{i} is a Gaussian random matrix.

The SDP relaxation is able to recover $\left\{\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)\right\}_{i=1}^{s}$ exactly with probability at least $1-\mathcal{O}\left(L^{-\gamma}\right)$. Here the number of measurements L satifies

- [Ling-Strohmer 15] $L \geq C_{\gamma} s^{2}\left(K+\mu_{h}^{2} N\right) \log ^{3} L$;
- [Jung-Krahmer-Stöger 17] $L \geq C_{\gamma}\left(s\left(K+\mu_{h}^{2} N\right)\right) \log ^{3} L$ where $\mu_{h}^{2}=L \max _{1 \leq i \leq s} \frac{\left\|\boldsymbol{B} \boldsymbol{h}_{i_{i}}\right\|_{\infty}^{2}}{\left\|\boldsymbol{h}_{i}\right\|^{2}}$.
- We can jointly estimate the channels and signals for s users with one simple convex program.
- SDP is able to recover $\left\{\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)\right\}_{i=1}^{s}$ but it is computationally expensive.

A nonconvex optimization approach?

An increasing list of nonconvex approaches to various problems in machine learning and signal processing:

- Phase retrieval: Candès, Li, Soltanolkotabi, Chen, Wright, Sun, etc...
- Matrix completion: Sun, Luo, Montanari, etc...
- Various problems: Recht, Wainwright, Constantine, etc...

Two-step philosophy for provable nonconvex optimization
(a) Use spectral method to construct a starting point inside "the basin of attraction";
(b) Run gradient descent method.

The key is to build up "the basin of attraction".

Building "the basin of attraction"

The basin of attraction relies on the following three observations.

Observation 1: Unboundedness of solution

- If the pair $\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)$ is a solution to $\boldsymbol{y}=\sum_{i=1}^{s} \operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{i 0}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i 0}$, then so is the pair $\left(\alpha_{i} \boldsymbol{h}_{i 0}, \alpha_{i}^{-1} \boldsymbol{x}_{i 0}\right)$ for any $\alpha_{i} \neq 0$.
- Thus the blind deconvolution problem always has infinitely many solutions of this type. We can recover $\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)$ only up to a scalar.
- It is possible that $\left\|\boldsymbol{h}_{i}\right\| \gg\left\|\boldsymbol{x}_{i}\right\|$ (vice versa) while $\left\|\boldsymbol{h}_{i}\right\| \cdot\left\|\boldsymbol{x}_{i}\right\|$ is fixed. Hence we define $\mathcal{N}_{d_{0}}$ to balance $\left\|\boldsymbol{h}_{i}\right\|$ and $\left\|\boldsymbol{x}_{i}\right\|$:

$$
\mathcal{N}_{d_{0}}:=\left\{\left\{\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)\right\}_{i=1}^{s}:\left\|\boldsymbol{h}_{i}\right\| \leq 2 \sqrt{d_{i 0}},\left\|\boldsymbol{x}_{i}\right\| \leq 2 \sqrt{d_{i 0}}\right\}
$$

where $d_{i 0}=\left\|\boldsymbol{h}_{i 0}\right\|\left\|\boldsymbol{x}_{i 0}\right\|$.

Building "the basin of attraction"

Observation 2: Incoherence

Our numerical experiments have shown that the algorithm's performance depends on how much \boldsymbol{b}_{l} (the rows of \boldsymbol{B}) and $\boldsymbol{h}_{i 0}$ are correlated.

$$
\mu_{h}^{2}:=\max _{1 \leq i \leq s} \frac{L\left\|\boldsymbol{B} \boldsymbol{h}_{i 0}\right\|_{\infty}^{2}}{\left\|\boldsymbol{h}_{i 0}\right\|^{2}}, \quad \text { the smaller } \mu_{h}, \text { the better. }
$$

Therefore, we introduce the \mathcal{N}_{μ} to control the incoherence:

$$
\mathcal{N}_{\mu}:=\left\{\left\{\boldsymbol{h}_{i}\right\}_{i=1}^{s}: \sqrt{L}\left\|\boldsymbol{B} \boldsymbol{h}_{i}\right\|_{\infty} \leq 4 \mu \sqrt{d_{i 0}}\right\} .
$$

"Incoherence" is not a new idea. In matrix completion, we also require the left and right singular vectors of the ground truth cannot be too "aligned" with those of measurement matrices $\left\{\boldsymbol{b}_{l} \boldsymbol{a}_{i, l}^{*}\right\}_{1 \leq I \leq L}$.

Building "the basin of attraction"

Observation 3: "Close" to the ground truth
We define $\mathcal{N}_{\varepsilon}$ to quantify closeness of $\left\{\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)\right\}_{i=1}^{s}$ to true solution, i.e.,

$$
\mathcal{N}_{\varepsilon}:=\left\{\left\{\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)\right\}_{i=1}^{s}:\left\|\boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*}-\boldsymbol{h}_{i 0} \boldsymbol{x}_{i 0}^{*}\right\|_{F} \leq \varepsilon d_{i 0}\right\} .
$$

We want to find an initial guess close to $\left\{\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)\right\}_{i=1}^{s}$.

Building "the basin of attraction"

Based on the three observations above, we define the three neighborhoods:

The basin of attraction

The basin of attraction is the intersection of the following three sets $\mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}:$

$$
\begin{aligned}
\mathcal{N}_{d_{0}} & :=\left\{\left\{\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)\right\}_{i=1}^{s}:\left\|\boldsymbol{h}_{i}\right\| \leq 2 \sqrt{d_{i 0}},\left\|\boldsymbol{x}_{i}\right\| \leq 2 \sqrt{d_{i 0}}, 1 \leq i \leq s\right\} \\
\mathcal{N}_{\mu} & :=\left\{\quad\left\{\boldsymbol{h}_{i}\right\}_{i=1}^{s}: \quad \sqrt{L}\left\|\boldsymbol{B} \boldsymbol{h}_{i}\right\|_{\infty} \leq 4 \sqrt{d_{i 0}} \mu, 1 \leq i \leq s\right\} \\
\mathcal{N}_{\varepsilon} & :=\left\{\left\{\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)\right\}_{i=1}^{s}: \frac{\left\|\boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*}-\boldsymbol{h}_{i 0} \boldsymbol{x}_{i 0}^{*}\right\|_{F}}{d_{i 0}} \leq \varepsilon, 1 \leq i \leq s\right\}
\end{aligned}
$$

where $d_{i 0}=\left\|\boldsymbol{h}_{i 0}\right\|\left\|\boldsymbol{x}_{i 0}\right\|, \mu$ is a parameter and $\mu \geq \mu_{h}$ and ε is a predetermined parameter in ($0, \frac{1}{15}$].

Objective function: a variant of projected gradient descent

The objective function \widetilde{F} consists of two parts: F and G :

$$
\min _{(\boldsymbol{h}, \boldsymbol{x})} \widetilde{F}(\boldsymbol{h}, \boldsymbol{x}):=\underbrace{F(\boldsymbol{h}, \boldsymbol{x})}_{\text {least squares term }}+\underbrace{G(\boldsymbol{h}, \boldsymbol{x})}_{\text {regularization term }}
$$

where $F(\boldsymbol{h}, \boldsymbol{x}):=\left\|\sum_{i=1}^{s} \mathcal{A}_{i}\left(\boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*}\right)-\boldsymbol{y}\right\|^{2}$ and
$G(\boldsymbol{h}, \boldsymbol{x}):=\rho \sum_{i=1}^{s}[\underbrace{G_{0}\left(\frac{\left\|\boldsymbol{h}_{i}\right\|^{2}}{2 d_{i}}\right)+G_{0}\left(\frac{\left\|\boldsymbol{x}_{i}\right\|^{2}}{2 d_{i}}\right)}_{\mathcal{N}_{d_{0}}: \text { balance }\left\|\boldsymbol{h}_{i}\right\| \text { and }\left\|\boldsymbol{x}_{i}\right\|}+\underbrace{\sum_{l=1}^{L} G_{0}\left(\frac{L\left|\boldsymbol{b}_{l}^{*} \boldsymbol{h}_{\boldsymbol{i}}\right|^{2}}{8 d_{i} \mu^{2}}\right)}_{\mathcal{N}_{\mu}: \text { impose incoherence }}]$.
Here $G_{0}(z)=\max \{z-1,0\}^{2}, \rho \approx d^{2}, d \approx d_{0}, d_{i} \approx d_{i 0}$ and $\mu \geq \mu_{h}$.

Algorithm: Initialization via spectral method

Note that

$$
\mathcal{A}_{i}^{*}(\boldsymbol{y})=\underbrace{\mathcal{A}_{i}^{*} \mathcal{A}_{i}\left(\boldsymbol{h}_{i 0} \boldsymbol{x}_{i 0}^{*}\right)}_{\mathbb{E}\left(\mathcal{A}_{i}^{*} \mathcal{A}_{i}\left(\boldsymbol{h}_{i 0} x_{i 0}^{*}\right)\right)=\boldsymbol{h}_{i 0} x_{i 0}^{*}}+\underbrace{\mathcal{A}_{i}^{*}\left(\sum_{j \neq i} \mathcal{A}_{j}\left(\boldsymbol{h}_{j 0} \boldsymbol{x}_{j 0}^{*}\right)\right)}_{\text {with mean } 0}
$$

The leading singular vectors of $\mathcal{A}_{i}^{*}(\boldsymbol{y})$ can approximate $\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)$.
Step 1: Initialization via spectral method and projection:
1: for $i=1,2, \ldots, s$ do
2: \quad Compute $\mathcal{A}_{i}^{*}(\boldsymbol{y})$, (since $\left.\mathbb{E}\left(\mathcal{A}_{i}^{*}(\boldsymbol{y})\right)=\boldsymbol{h}_{i 0} \boldsymbol{x}_{i 0}^{*}\right)$;
3: $\quad\left(d, \hat{\boldsymbol{h}}_{i 0}, \hat{\boldsymbol{x}}_{i 0}\right)=\operatorname{svds}\left(\mathcal{A}_{i}^{*}(\boldsymbol{y})\right)$;
4: $\quad \boldsymbol{u}_{i}^{(0)}:=\mathcal{P}_{\mathcal{N}_{\mu}}\left(\sqrt{d_{i}} \hat{\boldsymbol{h}}_{i 0}\right)$ and $\boldsymbol{v}_{i}^{(0)}:=\sqrt{d_{i}} \hat{\boldsymbol{x}}_{i 0}$.
5: end for

Algorithm: Wirtinger gradient descent

Step 2: Gradient descent with constant stepsize η :

1: Initialization: obtain $\left(\boldsymbol{u}_{i}^{(0)}, \boldsymbol{v}_{i}^{(0)}\right)$ via Algorithm 1.
2: for $t=1,2, \ldots$, do
3: \quad for $i=1,2, \ldots, s$ do
4: $\quad \boldsymbol{u}_{i}^{(t)}=\boldsymbol{u}_{i}^{(t-1)}-\eta \nabla \widetilde{F}_{\boldsymbol{h}_{i}}\left(\boldsymbol{u}^{(t-1)}, \boldsymbol{v}^{(t-1)}\right)$
5: $\quad \boldsymbol{v}_{i}^{(t)}=\boldsymbol{v}_{i}^{(t-1)}-\eta \nabla \widetilde{F}_{\boldsymbol{x}_{i}}\left(\boldsymbol{u}^{(t-1)}, \boldsymbol{v}^{(t-1)}\right)$
6: end for
7: end for

Main results

Theorem [Ling-Strohmer 17]

Assume $\boldsymbol{w} \sim \mathcal{C N}\left(0, \sigma^{2} d_{0}^{2} / L\right)$ and \boldsymbol{A}_{i} as a complex Gaussian matrix. There hold:

- the initial guess $\left(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)}\right) \in \frac{1}{\sqrt{3}} \mathcal{N}_{d_{0}} \cap \frac{1}{\sqrt{3}} \mathcal{N}_{\mu} \cap \mathcal{N}_{\frac{2 \varepsilon}{5 \sqrt{s k}}}$,
- $\sqrt{\sum_{i=1}^{s}\left\|\boldsymbol{u}_{i}^{(t)}\left(\boldsymbol{v}_{i}^{(t)}\right)^{*}-\boldsymbol{h}_{i 0} \boldsymbol{x}_{i 0}^{*}\right\|_{F}^{2}} \leq(1-\alpha)^{t} \varepsilon d_{0}+c_{0} \sqrt{s}\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|$
with probability at least $1-L^{-\gamma+1}$ and $\alpha=\mathcal{O}\left(\left(s(K+N) \log ^{2} L\right)^{-1}\right)$ if

$$
L \geq C_{\gamma}\left(\mu_{h}^{2}+\sigma^{2}\right) s^{2} \kappa^{4}(K+N) \log ^{2} L \log s / \varepsilon^{2},
$$

where $\kappa=\frac{\max d_{i 0}}{\min d_{i 0}}$.

Main results

Theorem [Ling-Strohmer 17]

Assume $\boldsymbol{w} \sim \mathcal{C N}\left(0, \sigma^{2} d_{0}^{2} / L\right)$ and \boldsymbol{A}_{i} as a complex Gaussian matrix.
There hold:

- the initial guess $\left(\boldsymbol{u}^{(0)}, \boldsymbol{v}^{(0)}\right) \in \frac{1}{\sqrt{3}} \mathcal{N}_{d_{0}} \bigcap \frac{1}{\sqrt{3}} \mathcal{N}_{\mu} \bigcap \mathcal{N}_{\frac{2 \varepsilon}{5 \sqrt{5 \kappa}}}$,
- $\sqrt{\sum_{i=1}^{s}\left\|\boldsymbol{u}_{i}^{(t)}\left(\boldsymbol{v}_{i}^{(t)}\right)^{*}-\boldsymbol{h}_{i 0} \boldsymbol{x}_{i 0}^{*}\right\|_{F}^{2}} \leq \underbrace{(1-\alpha)^{t} \varepsilon d_{0}}_{\text {linear convergence }}+\underbrace{c_{0} \sqrt{s}\left\|\mathcal{A}^{*}(w)\right\|}_{\text {error term }}$
with probability at least $1-L^{-\gamma+1}$ and $\alpha=\mathcal{O}\left(\left(s(K+N) \log ^{2} L\right)^{-1}\right)$ if

$$
L \geq C_{\gamma}\left(\mu_{h}^{2}+\sigma^{2}\right) s^{2} \kappa^{4}(K+N) \log ^{2} L \log s / \varepsilon^{2}
$$

where $\kappa=\frac{\max d_{i 0}}{\min d_{i 0}}$.

Remark

- The iterates $\left(\boldsymbol{u}_{i}^{(t)}, \boldsymbol{v}_{i}^{(t)}\right)$ converges linearly to $\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)$:

$$
\left\|\boldsymbol{u}_{i}^{(\infty)}\left(\boldsymbol{v}_{i}^{(\infty)}\right)^{*}-\boldsymbol{h}_{i 0} \boldsymbol{x}_{i 0}^{*}\right\|_{F} \leq c_{0} \sqrt{s}\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|
$$

- $\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|$ converges to 0 with the rate of $\mathcal{O}\left(L^{-1 / 2}\right)$:

$$
\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\| \leq C_{0} \sigma d_{0} \sqrt{\frac{s(K+N)\left(\log ^{2} L\right)}{L}}
$$

Therefore, $\left(\boldsymbol{u}_{i}^{(\infty)}, \boldsymbol{v}_{i}^{(\infty)}\right)$ is a consistent estimator of $\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)$.

- Challenges: s^{2} is not optimal. The optimal scaling should be $L=\mathcal{O}(s(K+N))$ instead of $L=\mathcal{O}\left(s^{2}(K+N)\right)$.

Remark

- The iterates $\left(\boldsymbol{u}_{i}^{(t)}, \boldsymbol{v}_{i}^{(t)}\right)$ converges linearly to $\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)$:

$$
\left\|\boldsymbol{u}_{i}^{(\infty)}\left(\boldsymbol{v}_{i}^{(\infty)}\right)^{*}-\boldsymbol{h}_{i 0} x_{i 0}^{*}\right\|_{F} \leq c_{0} \sqrt{s}\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|
$$

- $\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|$ converges to 0 with the rate of $\mathcal{O}\left(L^{-1 / 2}\right)$:

$$
\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\| \leq C_{0} \sigma d_{0} \sqrt{\frac{s(K+N)\left(\log ^{2} L\right)}{L}}
$$

Therefore, $\left(\boldsymbol{u}_{i}^{(\infty)}, \boldsymbol{v}_{i}^{(\infty)}\right)$ is a consistent estimator of $\left(\boldsymbol{h}_{i 0}, \boldsymbol{x}_{i 0}\right)$.

- Challenges: s^{2} is not optimal. The optimal scaling should be $L=\mathcal{O}(s(K+N))$ instead of $L=\mathcal{O}\left(s^{2}(K+N)\right)$.

Numerics: Does L scale linearly with s?

Let each $\boldsymbol{A}_{\boldsymbol{i}}$ be a complex Gaussian matrix. The number of measurement scales linearly with the number of sources s if K and N are fixed. Approximately, $L \approx 1.5 s(K+N)$ yields exact recovery.

Figure: Black: failure; white: success

Back to the communication example

A more practical and useful choice of encoding matrix $\boldsymbol{C}_{i}: \boldsymbol{C}_{\boldsymbol{i}}=\boldsymbol{D}_{i} \boldsymbol{H}$ (i.e., $\left.\boldsymbol{A}_{i}=\boldsymbol{F} \boldsymbol{D}_{i} \boldsymbol{H}\right)$ where \boldsymbol{D}_{i} is a diagonal random binary ± 1 matrix and \boldsymbol{H} is an $L \times N$ deterministic partial Hadamard matrix. With this setting, our approach can demix many users without performing channel estimation.

$L \approx 1.5 s(K+N)$ yields exact recovery.

Numerics: robustness

We see that the relative error is linearly correlated with the noise in dB . Approximately, 10 units of increase in SNR leads to the same amount of decrease in relative error (in dB).

Outlook and Conclusion

Conclusion: The proposed algorithm is arguably the first blind deconvolution/blind demixing algorithm that is numerically efficient, robust against noise and comes with rigorous recovery guarantees under subspace conditions.

- Open problem: Does similar result hold for other types of \boldsymbol{A}_{i} ?
- Open problem: what if either \boldsymbol{h}_{i} or \boldsymbol{x}_{i} is sparse?
- Major onen nroblem in nonconvex ontimization:

How to remove the s^{2}-dependence for rank-s matrix recovery?

Outlook and Conclusion

Conclusion: The proposed algorithm is arguably the first blind deconvolution/blind demixing algorithm that is numerically efficient, robust against noise and comes with rigorous recovery guarantees under subspace conditions.

- Open problem: Does similar result hold for other types of $\boldsymbol{A}_{\boldsymbol{i}}$?
- Open problem: what if either $\boldsymbol{h}_{\boldsymbol{i}}$ or $\boldsymbol{x}_{\boldsymbol{i}}$ is sparse?
- Major open problem in nonconvex optimization:

How to remove the s^{2}-dependence for rank-s matrix recovery?

