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Outline

(a) Blind deconvolution meets blind demixing: applications in image
processing and wireless communication

(b) Mathematical models and convex approach

(c) A nonconvex optimization approach towards joint blind deconvolution
and blind demixing
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What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function y which consists of the convolution of two
unknown functions, the blurring function f and the signal of interest g ,
plus noise w . How to reconstruct f and g from y?

y = f ∗ g + w .

It is obviously a highly ill-posed bilinear inverse problem...

Much more difficult than ordinary deconvolution...but have important
applications in various fields.

Solvability? What conditions on f and g make this problem solvable?

How? What algorithms shall we use to recover f and g?
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Why do we care about blind deconvolution?

Image deblurring

Let f be the blurring kernel and g be the original image, then y = f ∗ g is
the blurred image.
Question: how to reconstruct f and g from y
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Blind deconvolution meets blind demixing

Suppose there are s users and each of them sends a message x i , which is
encoded by C i , to a common receiver. Each encoded message g i = C ix i

is convolved with an unknown impulse response function f i .

User	
1

User	
𝑖

User	
𝑠

𝑔$ = 𝐶$𝑥$: signal

⋮

⋮
𝑦 = ∑ 𝑓3 ∗ 𝑔3 + 𝑤7

38$
𝑓3: channel

𝑓$: channel

𝑓7: channel

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓$, 𝑥$)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓3, 𝑥3)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓7, 𝑥7)
Decoder

𝑓3 ∗ 𝑔3

𝑓$ ∗ 𝑔$

𝑓7 ∗ 𝑔7

𝑔3 = 𝐶3𝑥3: signal

𝑔7 = 𝐶7𝑥7: signal
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Blind deconvolution and blind demixing

Consider the model:

y =
s∑

i=1

f i ∗ g i + w .

This is even more difficult than blind deconvolution (s = 1), since this is a
“mixture” of blind deconvolution problems. It also includes phase retrieval
as a special case if s = 1 and ḡ i = f i .

More assumptions

Each impulse response f i has maximum delay spread K (compact
support):

f i (n) = 0, for n > K , f i =

[
hi

0

]
.

Let g i := C ix i be the signal x i ∈ CN encoded by C i ∈ CL×N with
L > N. We also require C i to be mutually incoherent by imposing
randomness.
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Mathematical model

Subspace assumption on the frequency domain

Denote F as the L× L DFT matrix.

Let hi ∈ CK be the first K nonzero entries of f i and B be a
low-frequency DFT matrix. There holds, f̂ i = Ff i = Bhi .

Let ĝ i := Aix i where Ai := FC i and x i ∈ CN .

Mathematical model

y =
s∑

i=1

diag(Bhi )Aix i + w .

Goal: We want to recover (hi , x i )
s
i=1 from (y ,B,Ai )

s
i=1.

Remark: The degree of freedom for unknowns: s(K + N); number of
constraints: L.
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Naive approach

Nonlinear least squares

We may want to try nonlinear least squares approach:

min
(hi ,x i )

∥∥∥∥∥
s∑

i=1

diag(Bhi )Aix i − y

∥∥∥∥∥
2

︸ ︷︷ ︸
F (hi ,x i )

.

The objective function is highly nonconvex and more complicated
than blind deconvolution (s = 1).

Gradient descent might get stuck at local minima.

No guarantees for recoverability.
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Convex relaxation and low-rank matrix recovery

Lifting

Let ai ,l be the l-th column of A∗i and bl be the l-th column of B∗.

yl =
s∑

i=1

(Bhi )l · (AIx i )l =
s∑

i=1

b∗l hix∗i︸︷︷︸
rank-1

ai ,l .

Let X i := hix∗i and define the linear operator Ai : CK×N → CL as,

Ai (Z ) := {b∗l Zai ,l}Ll=1 = {
〈
Z ,bla∗i ,l

〉
}Ll=1.

Then, there holds y =
∑s

i=1Ai (X i ) + w .

See [Candès-Strohmer-Voroninski 13], [Ahmed-Recht-Romberg, 14].
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Convex relaxation and low-rank matrix recovery

Rank-s matrix recovery

We rewrite y =
∑s

i=1 diag(Bhi )Aix i as

yl =

〈
h1x∗1 0 · · · 0
0 h2x∗2 · · · 0
...

...
. . .

...
0 0 · · · hsx∗s


︸ ︷︷ ︸

rank-s matrix

,


bla∗1,l 0 · · · 0

0 bla∗2,l · · · 0
...

...
. . .

...
0 0 · · · bla∗s,l


〉

Recover a rank-s block diagonal matrix satisfying convex constraints.

Finding such a rank-s matrix is generally an NP-hard problem.
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Low-rank matrix recovery

Nuclear norm minimization

The ground truth is a rank-s block-diagonal matrix. It is natural to
recover the solution via solving

min
s∑

i=1

‖Z i‖∗ subject to
s∑

i=1

Ai (Z i ) = y

where
∑s

i=1 ‖Z i‖∗ is the nuclear norm of blkdiag(Z 1, · · · ,Z s).

Question: Can we recover {hi0x∗i0}si=1 exactly?
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Convex approach

Theorem

Assume that

Let B ∈ CL×K be a partial DFT matrix with B∗B = IK ;

Each Ai is a Gaussian random matrix.

The SDP relaxation is able to recover {(hi0, x i0)}si=1 exactly with
probability at least 1−O(L−γ). Here the number of measurements L
satifies

[Ling-Strohmer 15] L ≥ Cγs
2(K + µ2hN) log3 L;

[Jung-Krahmer-Stöger 17] L ≥ Cγ(s(K + µ2hN)) log3 L

where µ2h = Lmax1≤i≤s
‖Bhi0‖2∞
‖hi0‖2

.

We can jointly estimate the channels and signals for s users with one
simple convex program.
SDP is able to recover {(hi , x i )}si=1 but it is computationally
expensive.
Can we solve this problem simply with gradient descent which also
comes with theoretic guarantees?
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A nonconvex optimization approach?

An increasing list of nonconvex approaches to various problems in machine
learning and signal processing:

Phase retrieval: Candès, Li, Soltanolkotabi, Chen, Wright, Sun, etc...

Matrix completion: Sun, Luo, Montanari, etc...

Various problems: Recht, Wainwright, Constantine, etc...

Two-step philosophy for provable nonconvex optimization

(a) Use spectral method to construct a starting point inside “the basin of
attraction”;

(b) Run gradient descent method.

The key is to build up “the basin of attraction”.
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Building “the basin of attraction”

The basin of attraction relies on the following three observations.

Observation 1: Unboundedness of solution

If the pair (hi0, x i0) is a solution to y =
∑s

i=1 diag(Bhi0)Aix i0, then
so is the pair (αihi0, α

−1
i x i0) for any αi 6= 0.

Thus the blind deconvolution problem always has infinitely many
solutions of this type. We can recover (hi0, x i0) only up to a scalar.

It is possible that ‖hi‖ � ‖x i‖ (vice versa) while ‖hi‖ · ‖x i‖ is fixed.
Hence we define Nd0 to balance ‖hi‖ and ‖x i‖:

Nd0 := {{(hi , x i )}si=1 : ‖hi‖ ≤ 2
√
di0, ‖x i‖ ≤ 2

√
di0}.

where di0 = ‖hi0‖‖x i0‖.
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Building “the basin of attraction”

Observation 2: Incoherence

Our numerical experiments have shown that the algorithm’s performance
depends on how much bl (the rows of B) and hi0 are correlated.

µ2h := max
1≤i≤s

L‖Bhi0‖2∞
‖hi0‖2

, the smaller µh, the better.

Therefore, we introduce the Nµ to control the incoherence:

Nµ := {{hi}si=1 :
√
L‖Bhi‖∞ ≤ 4µ

√
di0}.

“Incoherence” is not a new idea. In matrix completion, we also require the
left and right singular vectors of the ground truth cannot be too “aligned”
with those of measurement matrices {bla∗i ,l}1≤l≤L.
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Building “the basin of attraction”

Observation 3: “Close” to the ground truth

We define Nε to quantify closeness of {(hi , x i )}si=1 to true solution, i.e.,

Nε := {{(hi , x i )}si=1 : ‖hix∗i − hi0x∗i0‖F ≤ εdi0}.

We want to find an initial guess close to {(hi0, x i0)}si=1.
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Building “the basin of attraction”

Based on the three observations above, we define the
three neighborhoods:

The basin of attraction

The basin of attraction is the intersection of the following three sets
Nd0 ∩Nµ ∩Nε:

Nd0 := {{(hi , x i )}si=1 : ‖hi‖ ≤ 2
√

di0, ‖x i‖ ≤ 2
√
di0, 1 ≤ i ≤ s}

Nµ := { {hi}si=1 :
√
L‖Bhi‖∞ ≤ 4

√
di0µ, 1 ≤ i ≤ s}

Nε :=

{
{(hi , x i )}si=1 :

‖hix∗i − hi0x∗i0‖F
di0

≤ ε, 1 ≤ i ≤ s

}
where di0 = ‖hi0‖‖x i0‖, µ is a parameter and µ ≥ µh and ε is a
predetermined parameter in (0, 1

15 ].
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Objective function: a variant of projected gradient descent

The objective function F̃ consists of two parts: F and G :

min
(h,x)

F̃ (h, x) := F (h, x)︸ ︷︷ ︸
least squares term

+ G (h, x)︸ ︷︷ ︸
regularization term

where F (h, x) := ‖
∑s

i=1Ai (hix∗i )− y‖2 and

G (h, x) := ρ

s∑
i=1

[
G0

(
‖hi‖2

2di

)
+ G0

(
‖x i‖2

2di

)
︸ ︷︷ ︸
Nd0

: balance ‖hi‖ and ‖x i‖

+
L∑

l=1

G0

(
L|b∗l hi |2

8diµ2

)
︸ ︷︷ ︸
Nµ: impose incoherence

]
.

Here G0(z) = max{z − 1, 0}2, ρ ≈ d2, d ≈ d0, di ≈ di0 and µ ≥ µh.
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Algorithm: Initialization via spectral method

Note that

A∗i (y) = A∗i Ai (hi0x∗i0)︸ ︷︷ ︸
E(A∗i Ai (hi0x∗i0))=hi0x∗i0

+A∗i

∑
j 6=i

Aj(hj0x∗j0)


︸ ︷︷ ︸

with mean 0

The leading singular vectors of A∗i (y) can approximate (hi0, x i0).

Step 1: Initialization via spectral method and projection:

1: for i = 1, 2, . . . , s do
2: Compute A∗i (y), (since E(A∗i (y)) = hi0x∗i0);

3: (d , ĥi0, x̂ i0) = svds(A∗i (y));

4: u(0)
i := PNµ(

√
di ĥi0) and v (0)

i :=
√
di x̂ i0.

5: end for
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Algorithm: Wirtinger gradient descent

Step 2: Gradient descent with constant stepsize η:

1: Initialization: obtain (u(0)
i , v (0)

i ) via Algorithm 1.
2: for t = 1, 2, . . . , do
3: for i = 1, 2, . . . , s do

4: u(t)
i = u(t−1)

i − η∇F̃hi
(u(t−1), v (t−1))

5: v (t)
i = v (t−1)

i − η∇F̃x i (u
(t−1), v (t−1))

6: end for
7: end for

Shuyang Ling (UC Davis) FOCM, Barcelona, 2017 July 19, 2017 21 / 28



Main results

Theorem [Ling-Strohmer 17]

Assume w ∼ CN (0, σ2d2
0/L) and Ai as a complex Gaussian matrix.

There hold:

the initial guess (u(0), v (0)) ∈ 1√
3
Nd0

⋂ 1√
3
Nµ
⋂
N 2ε

5
√
sκ
,√∑s

i=1 ‖u
(t)
i (v (t)

i )∗ − hi0x∗i0‖2F ≤ (1− α)tεd0 + c0
√
s‖A∗(w)‖

with probability at least 1− L−γ+1 and α = O((s(K + N) log2 L)−1) if

L ≥ Cγ(µ2h + σ2)s2κ4(K + N) log2 L log s/ε2,

where κ = max di0
min di0

.
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Remark

The iterates (u(t)
i , v (t)

i ) converges linearly to (hi0, x i0):

‖u(∞)
i (v (∞)

i )∗ − hi0x∗i0‖F ≤ c0
√
s‖A∗(w)‖

‖A∗(w)‖ converges to 0 with the rate of O(L−1/2):

‖A∗(w)‖ ≤ C0σd0

√
s(K + N)(log2 L)

L

Therefore, (u(∞)
i , v (∞)

i ) is a consistent estimator of (hi0, x i0).

Challenges: s2 is not optimal. The optimal scaling should be
L = O(s(K + N)) instead of L = O(s2(K + N)).
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Numerics: Does L scale linearly with s?

Let each Ai be a complex Gaussian matrix. The number of measurement
scales linearly with the number of sources s if K and N are fixed.
Approximately, L ≈ 1.5s(K + N) yields exact recovery.
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Back to the communication example

A more practical and useful choice of encoding matrix C i : C i = D iH (i.e.,
Ai = FD iH) where D i is a diagonal random binary ±1 matrix and H is
an L× N deterministic partial Hadamard matrix. With this setting, our
approach can demix many users without performing channel estimation.
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L ≈ 1.5s(K + N) yields exact recovery.
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Numerics: robustness

We see that the relative error is linearly correlated with the noise in dB.
Approximately, 10 units of increase in SNR leads to the same amount of
decrease in relative error (in dB).
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Outlook and Conclusion

Conclusion: The proposed algorithm is arguably the first blind
deconvolution/blind demixing algorithm that is numerically efficient,
robust against noise and comes with rigorous recovery guarantees under
subspace conditions.

Open problem: Does similar result hold for other types of Ai?

Open problem: what if either hi or x i is sparse?

Major open problem in nonconvex optimization:

How to remove the s2-dependence for rank-s matrix recovery?
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