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Outline

@ Applications in image deblurring and wireless communication
@ Mathematical models and convex approach

@ A nonconvex optimization approach towards blind deconvolution
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What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function y which consists of the convolution of two
unknown functions, the blurring function f and the signal of interest g,
plus noise w. How to reconstruct f and g from y?

y=Ffxg+w.

It is obviously a highly ill-posed bilinear inverse problem...

@ Much more difficult than ordinary deconvolution...but has important
applications in various fields.

@ Solvability? What conditions on f and g make this problem solvable?
@ How? What algorithms shall we use to recover f and g7
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Why do we care about blind deconvolution?

Image deblurring
Let f be the blurring kernel and g be the original image, then y = f x g is

the blurred image.
Question: how to reconstruct f and g from y?

= f * g + W
blurred blurring original noise

image kernel image
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Why do we care about blind deconvolution?

Joint channel and signal estimation in wireless communication

Suppose that a signal x, encoded by A, is transmitted through an
unknown channel f. How to reconstruct f and x from y?

y="Fx*xAx+ w.

y:received f.unknown  A:Encoding X:unknown w.noise
signal channel matrix signal

Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016



Subspace assumptions

We start from the original model

y=Ffxg+w.

As mentioned before, it is an ill-posed problem. Hence, this problem is
unsolvable without further assumptions...

Subspace assumption

Both f and g belong to known subspaces: there exist known tall matrices
B ¢ Ct*K and A € CH*N such that

f = Bho, g = AXo,

for some unknown vectors hy € CK and xo € CV.
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Model under subspace assumption

In the frequency domain,

y=Fog+w=dag(Fg+w,

where " ®" denotes entry-wise multiplication. We assume y and y are
both of length L.

Subspace assumption

Both f and g belong to known subspaces: there exist known tall matrices
B € CH*K and A € CL*N such that

,f\: ého, é’ = Z\Xo,

onr some unknown vectors hy € CK and xo € CN. Here B = FB and
A= FA.

v

The degree of freedom for unknowns: K + N; number of constraint: L. To
make the solution identifiable, we require L > K + N at least.
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Remarks on subspace assumption

y:LXx1 B: LXK h:Kx1  A:LXN x:NxX1 w:Lx1

| IOII+

Subspace assumption is flexible and useful in applications.
@ In imaging deblurring, B can be the support of the blurring kernel;
A is a wavelet basis.
@ In wireless communication, B corresponds to time-limitation of the
channel and A is an encoding matrix.
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Mathematical model

y = diag(Bhy)Axo + w,

where & ~ “5N(0,0%11) + 5N (0,0%11) and do = [|ho|l||xo .

Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016 10 / 31



Mathematical model

y = diag(Bhy)Axo + w,

w

where & ~ “5N(0,0%11) + 5N (0,0%11) and do = [|ho|l||xo .
One might want to solve the following nonlinear least squares problem,

min F(h, x) := | diag(Bh)Ax — y||°.

Difficulties:

© Nonconvexity: F is a nonconvex function; algorithms (such as
gradient descent) are likely to get trapped at local minima.
@ No performance guarantees.
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Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints

(b) Solving a SDP relaxation to recover hx*.
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Convex approach and lifting

Two-step convex approach
(a) Lifting: convert bilinear to linear constraints

(b) Solving a SDP relaxation to recover hx*.

Step 1: lifting

Let a; be the i-th column of A* and b; be the j-th column of B*.
yi = (Bho)ixga; + w; = bj hoxpa; + w;,

Let X := hox} and define the linear operator A : CK*N — CL as,
A(Z) = {b;Za;}, = {(Z, bia])} ;.

Then, there holds
y = A(Xp) + w.

In this way, A*(z) = Z,-Lzl zib;a’ : TE o oy
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Convex relaxation and state of the art

Step 2: nuclear norm minimization

Consider the convex envelop of rank(Z): nuclear norm || Z||, = > 0i(Z).
min||Z]|. st A(Z) = A(Xo).

Convex optimization can be solved within polynomial time.
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Convex relaxation and state of the art

Step 2: nuclear norm minimization

Consider the convex envelop of rank(Z): nuclear norm || Z||. = > 0i(Z).
min||Z]|. st A(Z) = A(Xo).

Convex optimization can be solved within polynomial time.

Theorem [Ahmed-Recht-Romberg 11]

Assume y = diag(Bhg)Axg, A: L x N is a complex Gaussian random
matrix,

2 K
B'B=lk, |biP <= 1]Bho|2 <,

the above convex relaxation recovers X = hgxg exactly with high
probability if

Co max(fimax K, i N) <

log® L’
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Pros and Cons of Convex Approach

Pros and Cons
@ Pros: Simple and comes with theoretic guarantees

@ Cons: Computationally too expensive to solve SDP

Our Goal: rapid, robust, reliable nonconvex approach
@ Rapid: linear convergence

@ Robust: stable to noise
@ Reliable: provable and comes with theoretical guarantees; number of
measurements close to information-theoretic limits.
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A nonconvex optimization approach?

An increasing list of nonconvex approach to various problems:
@ Phase retrieval: by Candés, Li, Soltanolkotabi, Chen, Wright, etc...
@ Matrix completion: by Sun, Luo, Montanari, etc...

@ Various problems: by Recht, Wainwright, Constantine, etc...

Two-step philosophy for provable nonconvex optimization

(a) Use spectral initialization to construct a starting point inside “the
basin of attraction”;

(b) Simple gradient descent method.

The key is to build up “the basin of attraction”.
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Building “the basin of attraction”

The basin of attraction relies on the following three observations.

Observation 1: Unboundedness of solution

o If the pair (hg, xg) is a solution to y = diag(Bhg)Axg, then so is the
pair (ahg, o 'xg) for any a # 0.

@ Thus the blind deconvolution problem always has infinitely many
solutions of this type. We can recover (hg, xo) only up to a scalar.

@ It is possible that ||h|| > ||x|| (vice versa) while ||h|| - ||x|| = db.
Hence we define Ay, to balance ||h|| and ||x|:

No == {(h, x) - [[h]] < 2/do, ||x]| < 2+/do}.
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Building “the basin of attraction”

Observation 2: Incoherence

Our numerical experiments have shown that the algorithm’s performance
depends on how much b; and hg are correlated.

, . LIBhol2, _ maxi b hoP

Ly = = the smaller 1), the better.
TN lholZ :

Therefore, we introduce the N,L to control the incoherence:

Ny = {h: VL|Bh||w < 4p+/do}.

v

“Incoherence” is not a new idea. In matrix completion, we also require the
left and right singular vectors of the ground truth cannot be too “aligned”
with those of measurement matrices {b;a’}1<j<;. The same philosophy
applies here.
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Building “the basin of attraction”

Observation 3: “Close” to the ground truth

We define N; to quantify closeness of (h, x) to true solution, i.e.,
Nz :={(h,x) : ||hx™ — hoxg||r < edo}.

We want to find an initial guess close to (hg, xo).

Basin of Attraction
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Building “the basin of attraction”

Based on the three observations above, we define the e
three neighborhoods (denoting dy = || hol|||xo|| and

1.
0<e< )

Ng = {(hx): [lh] < 2/do, |Ix]| < 2+/do}
Ny = {h: VI|Bh|w < 4/}
N = {(h,x):||hx* — hoxg||F < edp}.

We first obtain a good initial guess (ug, vo) € Ny, NN, NN, which is
followed by regularized gradient descent.
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Objective function: a variant of projected gradient descent

The objective function F consists of two parts: F and G:

min  F(h,x):= F(h,x) + G(hx)
(h.x) S—— SN——

least squares term  regularization term

where F(h, x) := || A(hx*) — y||* = || diag(Bh)Ax — y||* and

L
b2 [1x]1? L|b}h}?
h = .
G(h,x) p[G‘)( 2d ) T\ 2d +;G° 812 }

Ney: balance [h]| and x| Ny impos;rincoherence

Here Go(z) = max{z —1,0}2, p~ d?, d ~ dy and 1 > up.
Regularization forces iterates (u¢, v;) inside Ng, NN, NN
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Algorithm: Wirtinger Gradient Descent

Step 1: Initialization via spectral method and projection:
1: Compute A*(y), (since E(A*(y)) = hox{);
2: Find the leading singular value, left and right singular vec-
tors of A*(y), denoted by (d, ho, Xo) respectively;
3 ug = PNH(\FdiIO) and v := VdXo;
4: Output: (uo, vo).

Step 2: Gradient descent with constant stepsize 7:

1. Initialization: obtain (uo, vo) via Algorithm 1.
2. for t=1,2,...,do_

3 Ur=ui_1 — UVEh(Ut—la Vio1)

4 Ve = Vi1 —NVFx(Ur1,vi 1)

5: end for
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Theorem: [Li-Ling-Strohmer-Wei, 2016]

Let B be a tall partial DFT matrix and A be a complex Gaussian random
matrix. If the number of measurements satisfies

L > C(ph + 0®)(K + N)log?(L)/?,
(i) then the initialization (uo, vo) € =N M 5N NNz,

(i) the regularized gradient descent algorithm creates a sequence (uy, v¢)
in Ng, NN, NN satisfying

luevi = hoxgllF < (1 — a)*edo + ol A™(w)]

with high probability where o = O ((1+02)(K1+N) |og2L)
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(a) If w=0, (u¢, v;) converges to (hg, xg) linearly.
|usvi — hox{l|lF < (1 — a)fedy — 0, as t — o

(b) If w#0, (uy, ve) converges to a small neighborhood of (hg, xo)
linearly.
|lusvi — hoxpllF — ol A*(w)]|, as t — oo

where

(K+ N)logL

[A*(w)|| = O (Udo i

>—>0, if L — oo.

As L is becoming larger and larger, the effect of noise diminishes.
(Recall linear least squares.)
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Numerical experiments

Nonconvex approach v.s. convex approach:
(r}:in) F(h,x) v.s. min||Z|. s.t.]]A(Z)—y| <n.
3 X
Nonconvex method requires fewer measurements to achieve exact recovery
than convex method. Moreover, if A is a partial Hadamard matrix, our
algorithm still gives satisfactory performance.

Transition curve i Transition curve (Hada

Prob. of Succ. Rec.

Prob. of Succ. Rec.

25
L(K+N)

K = N =50, B is a low-frequency DFT matrix.
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L v.s. Incoherence 17 and stability

@ The number of measurements L does depend linearly on ,u%.

@ Our algorithm yields stable recovery if the observation is noisy.

Lvs. %, K=N=100

2000

g

1600

1400

1200

1000

Number of measurements: L, from 200 to 2000

215 18
#2:31030

Here K = N = 100.
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MRI Image deblurring:

Here B is a partial DFT matrix and A is a partial wavelet matrix.

When the subspace B, (K = 65) or support of blurring kernel is known:
g ~ Ax : image of 512 x 512; A : wavelet subspace corresponding to the

N = 20000 largest Haar wavelet coefficients of g.
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MRI Imaging deblurring:

When the subspace B or support of blurring kernel is unknown:

we assume the support of blurring kernel is contained in a small box;
N = 35000.

Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico

Oct.18th, 2016 26 / 31



Important ingredients of proof

The first three conditions hold over “the basin of attraction”

Nagy "N, NN
Condition 1: Local Regularity Condition

Guarantee sufficient decrease in each iterate and linear convergence of F:
IVF(h,x)|* > wF(h, x)

where w > 0 and (h, x) € Ny, NN, NN

Condition 2: Local Smoothness Condition

Governs rate of convergence. Let z = (h, x). There exists a constant C;
(Lipschitz constant of gradient) such that

IVF(z + tAz) — VF(z)| < Cit||Az||, VO<t<1,

for all {(z,Az):z+ tAz € Ngy "N, NN, V0 <t <1}
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Important ingredients of proof

Condition 3: Local Restricted Isometry Property
Transfer convergence of objective function to convergence of iterates.

3 * * * * 5 * *
Zllhx" — hox3 < [lA(X" — hox5)|? < 2 [lhx — hoxg|[2

holds uniformly for all (h, x) € Ny, NN, N A-.

Condition 4: Robustness Condition

Provide stability against noise.

€d0
10v/2°

where A*(w) = Zf‘zl w;bjaj is a sum of L rank-1 random matrices. It
concentrates around 0.

A" (w)]| <
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Two-page proof

Condition 1 + 2 = Linear convergence of F

Proof.

Let z¢41 = 2z — nVF(zt) with n < CLL By using modified descent lemma,

F(ze+nVF(z:)) < E(zt) — (21 + CoP)IVF(ze)|P
< F(z¢) — nwF(z:)
which gives F(z¢11) < (1 — nw)tF(zo). O
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Two-page proof: continued

Condition 3 = Linear convergence of ||u;v; — hox{||F.

It follows from F(z¢) > F(z¢) > 2||usvi — hox(||%. Hence, linear
convergence of objective function also implies linear convergence of
iterates.

Condition 4 = Proof of stability theory
If L is sufficiently large, A*(w) is small since || A*(w)|| — 0. There holds

IM(hx* — hoxg) — w|* ~ |l A(hx" — hoxg)||* + o*d§.

Hence, the objective function behaves “almost like” [A(hx* — hox})|?,
the noiseless version of F if the sample size is sufficiently large.
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Outlook and Conclusion

Conclusion: The proposed algorithm is the first blind deconvolution

algorithm that is numerically efficient, robust against noise and comes with
rigorous recovery guarantees under subspace conditions.
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Outlook and Conclusion

Conclusion: The proposed algorithm is the first blind deconvolution
algorithm that is numerically efficient, robust against noise and comes with
rigorous recovery guarantees under subspace conditions.

e Can we remove the regularizers G(h, x) in the blind deconvolution?
@ Can we generalize it to blind-deconvolution-blind-demixing problem,
e, y=>._,diag(B;ih)Aix;?

Can we show if similar result holds for other types of A?

What if x or h is sparse/both of them are sparse?

Better choice of B in image deblurring?

See details: Rapid, Robust, and Reliable Blind Deconvolution via
Nonconvex Optimization, arXiv:1606.04933.
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