Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Shuyang Ling
Department of Mathematics, UC Davis

Oct.18th, 2016

Acknowledgements

Research in collaboration with:

- Prof.Xiaodong Li (UC Davis)
- Prof.Thomas Strohmer (UC Davis)
- Dr.Ke Wei (UC Davis)

This work is sponsored by NSF-DMS and DARPA.

Outline

- Applications in image deblurring and wireless communication
- Mathematical models and convex approach
- A nonconvex optimization approach towards blind deconvolution

What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function \boldsymbol{y} which consists of the convolution of two unknown functions, the blurring function \boldsymbol{f} and the signal of interest \boldsymbol{g}, plus noise \boldsymbol{w}. How to reconstruct \boldsymbol{f} and \boldsymbol{g} from \boldsymbol{y} ?

$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}+\boldsymbol{w}
$$

It is obviously a highly ill-posed bilinear inverse problem...

- Much more difficult than ordinary deconvolution...but has important applications in various fields.
- Solvability? What conditions on \boldsymbol{f} and \boldsymbol{g} make this problem solvable?
- How? What algorithms shall we use to recover \boldsymbol{f} and \boldsymbol{g} ?

Why do we care about blind deconvolution?

Image deblurring

Let \boldsymbol{f} be the blurring kernel and \boldsymbol{g} be the original image, then $\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}$ is the blurred image.
Question: how to reconstruct \boldsymbol{f} and \boldsymbol{g} from \boldsymbol{y} ?

Why do we care about blind deconvolution?

Joint channel and signal estimation in wireless communication

 Suppose that a signal \boldsymbol{x}, encoded by \boldsymbol{A}, is transmitted through an unknown channel \boldsymbol{f}. How to reconstruct \boldsymbol{f} and \boldsymbol{x} from \boldsymbol{y} ?$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{A x}+\boldsymbol{w} .
$$

Subspace assumptions

We start from the original model

$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}+\boldsymbol{w}
$$

As mentioned before, it is an ill-posed problem. Hence, this problem is unsolvable without further assumptions...

Subspace assumption

Both \boldsymbol{f} and \boldsymbol{g} belong to known subspaces: there exist known tall matrices $\boldsymbol{B} \in \mathbb{C}^{L \times K}$ and $\boldsymbol{A} \in \mathbb{C}^{L \times N}$ such that

$$
\boldsymbol{f}=\boldsymbol{B} \boldsymbol{h}_{0}, \quad \boldsymbol{g}=\boldsymbol{A} \boldsymbol{x}_{0}
$$

for some unknown vectors $\boldsymbol{h}_{0} \in \mathbb{C}^{K}$ and $\boldsymbol{x}_{0} \in \mathbb{C}^{N}$.

Model under subspace assumption

In the frequency domain,

$$
\hat{\boldsymbol{y}}=\hat{\boldsymbol{f}} \odot \hat{\boldsymbol{g}}+\boldsymbol{w}=\operatorname{diag}(\hat{\boldsymbol{f}}) \hat{\boldsymbol{g}}+\boldsymbol{w}
$$

where " \odot " denotes entry-wise multiplication. We assume \boldsymbol{y} and $\hat{\boldsymbol{y}}$ are both of length L.

Subspace assumption

Both $\hat{\boldsymbol{f}}$ and $\hat{\boldsymbol{g}}$ belong to known subspaces: there exist known tall matrices $\hat{\boldsymbol{B}} \in \mathbb{C}^{L \times K}$ and $\hat{\boldsymbol{A}} \in \mathbb{C}^{L \times N}$ such that

$$
\hat{\boldsymbol{f}}=\hat{\boldsymbol{B}} \boldsymbol{h}_{0}, \quad \hat{\boldsymbol{g}}=\hat{\boldsymbol{A}} \boldsymbol{x}_{0},
$$

for some unknown vectors $\boldsymbol{h}_{0} \in \mathbb{C}^{K}$ and $\boldsymbol{x}_{0} \in \mathbb{C}^{N}$. Here $\hat{\boldsymbol{B}}=\boldsymbol{F} \boldsymbol{B}$ and $\hat{\boldsymbol{A}}=\boldsymbol{F} \boldsymbol{A}$.

The degree of freedom for unknowns: $K+N$; number of constraint: L. To make the solution identifiable, we require $L \geq K+N$ at least.

Remarks on subspace assumption

Subspace assumption is flexible and useful in applications.

- In imaging deblurring, \boldsymbol{B} can be the support of the blurring kernel; \boldsymbol{A} is a wavelet basis.
- In wireless communication, \boldsymbol{B} corresponds to time-limitation of the channel and \boldsymbol{A} is an encoding matrix.

Mathematical model

$$
\boldsymbol{y}=\operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{0}\right) \boldsymbol{A} \boldsymbol{x}_{0}+\boldsymbol{w}
$$

where $\frac{\boldsymbol{w}}{d_{0}} \sim \frac{1}{\sqrt{2}} \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{L}\right)+\frac{i}{\sqrt{2}} \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{L}\right)$ and $d_{0}=\left\|\boldsymbol{h}_{0}\right\|\left\|\boldsymbol{x}_{0}\right\|$.

Mathematical model

$$
\boldsymbol{y}=\operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{0}\right) \boldsymbol{A} \boldsymbol{x}_{0}+\boldsymbol{w}
$$

where $\frac{\boldsymbol{w}}{d_{0}} \sim \frac{1}{\sqrt{2}} \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{L}\right)+\frac{i}{\sqrt{2}} \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{L}\right)$ and $d_{0}=\left\|\boldsymbol{h}_{0}\right\|\left\|\boldsymbol{x}_{0}\right\|$.
One might want to solve the following nonlinear least squares problem,

$$
\min F(\boldsymbol{h}, \boldsymbol{x}):=\|\operatorname{diag}(\boldsymbol{B} \boldsymbol{h}) \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|^{2} .
$$

Difficulties:

(1) Nonconvexity: F is a nonconvex function; algorithms (such as gradient descent) are likely to get trapped at local minima.
(2) No performance guarantees.

Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints
(b) Solving a SDP relaxation to recover $\boldsymbol{h} \boldsymbol{x}^{*}$.

Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints
(b) Solving a SDP relaxation to recover $\boldsymbol{h} \boldsymbol{x}^{*}$.

Step 1: lifting

Let $\boldsymbol{a}_{\boldsymbol{i}}$ be the \boldsymbol{i}-th column of \boldsymbol{A}^{*} and $\boldsymbol{b}_{\boldsymbol{i}}$ be the i-th column of \boldsymbol{B}^{*}.

$$
y_{i}=\left(\boldsymbol{B} \boldsymbol{h}_{0}\right)_{i} \boldsymbol{x}_{0}^{*} \boldsymbol{a}_{i}+w_{i}=\boldsymbol{b}_{i}^{*} \boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*} \boldsymbol{a}_{i}+w_{i}
$$

Let $\quad \boldsymbol{x}_{0}:=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$ and define the linear operator $\mathcal{A}: \mathbb{C}^{K \times N} \rightarrow \mathbb{C}^{L}$ as,

$$
\mathcal{A}(\boldsymbol{Z}):=\left\{\boldsymbol{b}_{i}^{*} \boldsymbol{Z} \boldsymbol{a}_{i}\right\}_{i=1}^{L}=\left\{\left\langle\boldsymbol{Z}, \boldsymbol{b}_{i} \boldsymbol{a}_{i}^{*}\right\rangle\right\}_{i=1}^{L} .
$$

Then, there holds

$$
\boldsymbol{y}=\mathcal{A}\left(\boldsymbol{X}_{0}\right)+\boldsymbol{w}
$$

In this way, $\mathcal{A}^{*}(z)=\sum_{i=1}^{L} z_{i} \boldsymbol{b}_{i} \boldsymbol{a}_{i}^{*}: \mathbb{C}^{L} \rightarrow \mathbb{C}^{K \times N}$.

Convex relaxation and state of the art

Step 2: nuclear norm minimization
Consider the convex envelop of $\operatorname{rank}(\boldsymbol{Z})$: nuclear norm $\|\boldsymbol{Z}\|_{*}=\sum \sigma_{i}(\boldsymbol{Z})$.

$$
\min \|\boldsymbol{Z}\|_{*} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right)
$$

Convex optimization can be solved within polynomial time.

Convex relaxation and state of the art

Step 2: nuclear norm minimization

Consider the convex envelop of $\operatorname{rank}(\boldsymbol{Z})$: nuclear norm $\|\boldsymbol{Z}\|_{*}=\sum \sigma_{i}(\boldsymbol{Z})$.

$$
\min \|\boldsymbol{Z}\|_{*} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}\left(\boldsymbol{X}_{0}\right) .
$$

Convex optimization can be solved within polynomial time.

Theorem [Ahmed-Recht-Romberg 11]

Assume $\boldsymbol{y}=\operatorname{diag}\left(B \boldsymbol{h}_{0}\right) \boldsymbol{A} \boldsymbol{x}_{0}, \boldsymbol{A}: L \times N$ is a complex Gaussian random matrix,

$$
\boldsymbol{B}^{*} \boldsymbol{B}=\boldsymbol{I}_{K}, \quad\left\|\boldsymbol{b}_{i}\right\|^{2} \leq \frac{\mu_{\max }^{2} K}{L}, \quad L\left\|\boldsymbol{B} \boldsymbol{h}_{0}\right\|_{\infty}^{2} \leq \mu_{h}^{2},
$$

the above convex relaxation recovers $\boldsymbol{X}=\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}$ exactly with high probability if

$$
C_{0} \max \left(\mu_{\max }^{2} K, \mu_{h}^{2} N\right) \leq \frac{L}{\log ^{3} L} .
$$

Pros and Cons of Convex Approach

Pros and Cons

- Pros: Simple and comes with theoretic guarantees
- Cons: Computationally too expensive to solve SDP

Our Goal: rapid, robust, reliable nonconvex approach

- Rapid: linear convergence
- Robust: stable to noise
- Reliable: provable and comes with theoretical guarantees; number of measurements close to information-theoretic limits.

A nonconvex optimization approach?

An increasing list of nonconvex approach to various problems:

- Phase retrieval: by Candés, Li, Soltanolkotabi, Chen, Wright, etc...
- Matrix completion: by Sun, Luo, Montanari, etc...
- Various problems: by Recht, Wainwright, Constantine, etc...

Two-step philosophy for provable nonconvex optimization
(a) Use spectral initialization to construct a starting point inside "the basin of attraction";
(b) Simple gradient descent method.

The key is to build up "the basin of attraction".

Building "the basin of attraction"

The basin of attraction relies on the following three observations.
Observation 1: Unboundedness of solution

- If the pair $\left(\boldsymbol{h}_{0}, \boldsymbol{x}_{0}\right)$ is a solution to $\boldsymbol{y}=\operatorname{diag}\left(\boldsymbol{B} \boldsymbol{h}_{0}\right) \boldsymbol{A} \boldsymbol{x}_{0}$, then so is the pair $\left(\alpha \boldsymbol{h}_{0}, \alpha^{-1} \boldsymbol{x}_{0}\right)$ for any $\alpha \neq 0$.
- Thus the blind deconvolution problem always has infinitely many solutions of this type. We can recover $\left(\boldsymbol{h}_{0}, \boldsymbol{x}_{0}\right)$ only up to a scalar.
- It is possible that $\|\boldsymbol{h}\| \gg\|\boldsymbol{x}\|$ (vice versa) while $\|\boldsymbol{h}\| \cdot\|\boldsymbol{x}\|=d_{0}$. Hence we define $\mathcal{N}_{d_{0}}$ to balance $\|\boldsymbol{h}\|$ and $\|\boldsymbol{x}\|$:

$$
\mathcal{N}_{d_{0}}:=\left\{(\boldsymbol{h}, \boldsymbol{x}):\|\boldsymbol{h}\| \leq 2 \sqrt{d_{0}},\|\boldsymbol{x}\| \leq 2 \sqrt{d_{0}}\right\}
$$

Building "the basin of attraction"

Observation 2: Incoherence

Our numerical experiments have shown that the algorithm's performance depends on how much \boldsymbol{b}_{l} and \boldsymbol{h}_{0} are correlated.

$$
\mu_{h}^{2}:=\frac{L\left\|\boldsymbol{B} \boldsymbol{h}_{0}\right\|_{\infty}^{2}}{\left\|\boldsymbol{h}_{0}\right\|^{2}}=L \frac{\max _{i}\left|\boldsymbol{b}_{i}^{*} \boldsymbol{h}_{0}\right|^{2}}{\left\|\boldsymbol{h}_{0}\right\|^{2}}, \quad \text { the smaller } \mu_{h} \text {, the better. }
$$

Therefore, we introduce the \mathcal{N}_{μ} to control the incoherence:

$$
\mathcal{N}_{\mu}:=\left\{\boldsymbol{h}: \sqrt{L}\|\boldsymbol{B} \boldsymbol{h}\|_{\infty} \leq 4 \mu \sqrt{d_{0}}\right\} .
$$

"Incoherence" is not a new idea. In matrix completion, we also require the left and right singular vectors of the ground truth cannot be too "aligned" with those of measurement matrices $\left\{\boldsymbol{b}_{i} \boldsymbol{a}_{i}^{*}\right\}_{1 \leq i \leq L}$. The same philosophy applies here.

Building "the basin of attraction"

Observation 3: "Close" to the ground truth
We define $\mathcal{N}_{\varepsilon}$ to quantify closeness of $(\boldsymbol{h}, \boldsymbol{x})$ to true solution, i.e.,

$$
\mathcal{N}_{\varepsilon}:=\left\{(\boldsymbol{h}, \boldsymbol{x}):\left\|\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F} \leq \varepsilon d_{0}\right\} .
$$

We want to find an initial guess close to ($\boldsymbol{h}_{0}, \boldsymbol{x}_{0}$).

Building "the basin of attraction"

Based on the three observations above, we define the three neighborhoods (denoting $d_{0}=\left\|h_{0}\right\|\left\|x_{0}\right\|$ and $0<\varepsilon \leq \frac{1}{15}$):

$$
\begin{aligned}
\mathcal{N}_{d_{0}} & :=\left\{(\boldsymbol{h}, \boldsymbol{x}):\|\boldsymbol{h}\| \leq 2 \sqrt{d_{0}},\|\boldsymbol{x}\| \leq 2 \sqrt{d_{0}}\right\} \\
\mathcal{N}_{\mu} & :=\left\{\boldsymbol{h}: \sqrt{L}\|\boldsymbol{B} \boldsymbol{h}\|_{\infty} \leq 4 \mu \sqrt{d_{0}}\right\} \\
\mathcal{N}_{\varepsilon} & :=\left\{(\boldsymbol{h}, \boldsymbol{x}):\left\|\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} x_{0}^{*}\right\|_{F} \leq \varepsilon d_{0}\right\} .
\end{aligned}
$$

We first obtain a good initial guess $\left(\boldsymbol{u}_{0}, \boldsymbol{v}_{0}\right) \in \mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$, which is followed by regularized gradient descent.

Objective function: a variant of projected gradient descent

The objective function \widetilde{F} consists of two parts: F and G :

$$
\min _{(\boldsymbol{h}, \boldsymbol{x})} \tilde{F}(\boldsymbol{h}, \boldsymbol{x}):=\underbrace{F(\boldsymbol{h}, \boldsymbol{x})}_{\text {least squares term }}+\underbrace{G(\boldsymbol{h}, \boldsymbol{x})}_{\text {regularization term }}
$$

where $F(\boldsymbol{h}, \boldsymbol{x}):=\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}\right)-\boldsymbol{y}\right\|^{2}=\|\operatorname{diag}(\boldsymbol{B} \boldsymbol{h}) \boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|^{2}$ and

$$
G(\boldsymbol{h}, \boldsymbol{x}):=\rho[\underbrace{G_{0}\left(\frac{\|\boldsymbol{h}\|^{2}}{2 d}\right)+G_{0}\left(\frac{\|\boldsymbol{x}\|^{2}}{2 d}\right)}_{\mathcal{N}_{d_{0}}: \text { balance }\|\boldsymbol{h}\| \text { and }\|\boldsymbol{x}\|}+\underbrace{\sum_{l=1}^{L} G_{0}\left(\frac{L\left|\boldsymbol{b}_{l}^{*} \boldsymbol{h}\right|^{2}}{8 d \mu^{2}}\right)}_{\mathcal{N}_{\mu}: \text { impose incoherence }}] .
$$

Here $G_{0}(z)=\max \{z-1,0\}^{2}, \rho \approx d^{2}, d \approx d_{0}$ and $\mu \geq \mu_{h}$. Regularization forces iterates ($\boldsymbol{u}_{t}, \boldsymbol{v}_{t}$) inside $\mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Algorithm: Wirtinger Gradient Descent

Step 1: Initialization via spectral method and projection:

1: Compute $\mathcal{A}^{*}(\boldsymbol{y})$, (since $\left.\mathbb{E}\left(\mathcal{A}^{*}(\boldsymbol{y})\right)=\boldsymbol{h}_{0} x_{0}^{*}\right)$;
2: Find the leading singular value, left and right singular vectors of $\mathcal{A}^{*}(\boldsymbol{y})$, denoted by $\left(d, \hat{\boldsymbol{h}}_{0}, \hat{\boldsymbol{x}}_{0}\right)$ respectively;
3: $\boldsymbol{u}_{0}:=\mathcal{P}_{\mathcal{N}_{\mu}}\left(\sqrt{d} \hat{\boldsymbol{h}}_{0}\right)$ and $\boldsymbol{v}_{0}:=\sqrt{d} \hat{\boldsymbol{x}}_{0}$;
4: Output: $\left(\boldsymbol{u}_{0}, \boldsymbol{v}_{0}\right)$.

Step 2: Gradient descent with constant stepsize η :
1: Initialization: obtain ($\boldsymbol{u}_{0}, \boldsymbol{v}_{0}$) via Algorithm 1.
2: for $t=1,2, \ldots$, do
3: $\quad \boldsymbol{u}_{t}=\boldsymbol{u}_{t-1}-\eta \nabla \widetilde{F}_{\boldsymbol{h}}\left(\boldsymbol{u}_{t-1}, \boldsymbol{v}_{t-1}\right)$
4: $\quad \boldsymbol{v}_{t}=\boldsymbol{v}_{t-1}-\eta \nabla \widetilde{F}_{\boldsymbol{x}}\left(\boldsymbol{u}_{t-1}, \boldsymbol{v}_{t-1}\right)$
5: end for

Main theorem

Theorem: [Li-Ling-Strohmer-Wei, 2016]

Let \boldsymbol{B} be a tall partial DFT matrix and \boldsymbol{A} be a complex Gaussian random matrix. If the number of measurements satisfies

$$
L \geq C\left(\mu_{h}^{2}+\sigma^{2}\right)(K+N) \log ^{2}(L) / \varepsilon^{2}
$$

(i) then the initialization $\left(\boldsymbol{u}_{0}, \boldsymbol{v}_{0}\right) \in \frac{1}{\sqrt{3}} \mathcal{N}_{d_{0}} \bigcap \frac{1}{\sqrt{3}} \mathcal{N}_{\mu} \bigcap \mathcal{N}_{\frac{2}{5}} \varepsilon$;
(ii) the regularized gradient descent algorithm creates a sequence $\left(\boldsymbol{u}_{t}, \boldsymbol{v}_{t}\right)$ in $\mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$ satisfying

$$
\left\|\boldsymbol{u}_{t} \boldsymbol{v}_{t}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F} \leq(1-\alpha)^{t} \varepsilon d_{0}+c_{0}\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|
$$

with high probability where $\alpha=\mathcal{O}\left(\frac{1}{\left(1+\sigma^{2}\right)(K+N) \log ^{2} L}\right)$

Remarks

(a) If $\boldsymbol{w}=\mathbf{0},\left(\boldsymbol{u}_{t}, \boldsymbol{v}_{t}\right)$ converges to $\left(\boldsymbol{h}_{0}, \boldsymbol{x}_{0}\right)$ linearly.

$$
\left\|\boldsymbol{u}_{t} \boldsymbol{v}_{t}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F} \leq(1-\alpha)^{t} \varepsilon d_{0} \rightarrow 0, \text { as } t \rightarrow \infty
$$

(b) If $\boldsymbol{w} \neq \mathbf{0},\left(\boldsymbol{u}_{t}, \boldsymbol{v}_{t}\right)$ converges to a small neighborhood of $\left(\boldsymbol{h}_{0}, \boldsymbol{x}_{0}\right)$ linearly.

$$
\left\|\boldsymbol{u}_{t} \boldsymbol{v}_{t}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F} \rightarrow c_{0}\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|, \text { as } t \rightarrow \infty
$$

where

$$
\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\|=\mathcal{O}\left(\sigma d_{0} \sqrt{\frac{(K+N) \log L}{L}}\right) \rightarrow 0, \text { if } L \rightarrow \infty
$$

As L is becoming larger and larger, the effect of noise diminishes. (Recall linear least squares.)

Numerical experiments

Nonconvex approach v.s. convex approach:

$$
\min _{(\boldsymbol{h}, \boldsymbol{x})} \widetilde{F}(\boldsymbol{h}, \boldsymbol{x}) \quad \text { v.s. } \quad \min \|\boldsymbol{Z}\|_{*} \quad \text { s.t. }\|\mathcal{A}(\boldsymbol{Z})-\boldsymbol{y}\| \leq \eta .
$$

Nonconvex method requires fewer measurements to achieve exact recovery than convex method. Moreover, if \boldsymbol{A} is a partial Hadamard matrix, our algorithm still gives satisfactory performance.

$K=N=50, \boldsymbol{B}$ is a low-frequency DFT matrix.

L v.s. Incoherence μ_{h}^{2} and stability

- The number of measurements L does depend linearly on μ_{h}^{2}.
- Our algorithm yields stable recovery if the observation is noisy.

Here $K=N=100$.

MRI Image deblurring:

Here \boldsymbol{B} is a partial DFT matrix and \boldsymbol{A} is a partial wavelet matrix.
When the subspace $\boldsymbol{B},(K=65)$ or support of blurring kernel is known: $\boldsymbol{g} \approx \boldsymbol{A x}$: image of $512 \times 512 ; \boldsymbol{A}$: wavelet subspace corresponding to the $N=20000$ largest Haar wavelet coefficients of \boldsymbol{g}.

MRI Imaging deblurring:

When the subspace \boldsymbol{B} or support of blurring kernel is unknown: we assume the support of blurring kernel is contained in a small box; $N=35000$.

Important ingredients of proof

The first three conditions hold over "the basin of attraction" $\mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Condition 1: Local Regularity Condition

Guarantee sufficient decrease in each iterate and linear convergence of \widetilde{F} :

$$
\|\nabla \widetilde{F}(\boldsymbol{h}, \boldsymbol{x})\|^{2} \geq \omega \widetilde{F}(\boldsymbol{h}, \boldsymbol{x})
$$

where $\omega>0$ and $(\boldsymbol{h}, \boldsymbol{x}) \in \mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Condition 2: Local Smoothness Condition

Governs rate of convergence. Let $\boldsymbol{z}=(\boldsymbol{h}, \boldsymbol{x})$. There exists a constant C_{L} (Lipschitz constant of gradient) such that

$$
\|\nabla \widetilde{F}(z+t \Delta z)-\nabla \widetilde{F}(z)\| \leq C_{L} t\|\Delta z\|, \quad \forall 0 \leq t \leq 1
$$

for all $\left\{(\boldsymbol{z}, \Delta \boldsymbol{z}): \boldsymbol{z}+t \Delta \boldsymbol{z} \in \mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}, \forall 0 \leq t \leq 1\right\}$.

Important ingredients of proof

Condition 3: Local Restricted Isometry Property

Transfer convergence of objective function to convergence of iterates.

$$
\frac{3}{4}\left\|\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} x_{0}^{*}\right\|_{F}^{2} \leq\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} x_{0}^{*}\right)\right\|^{2} \leq \frac{5}{4}\left\|\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} x_{0}^{*}\right\|_{F}^{2}
$$

holds uniformly for all $(\boldsymbol{h}, \boldsymbol{x}) \in \mathcal{N}_{d_{0}} \cap \mathcal{N}_{\mu} \cap \mathcal{N}_{\varepsilon}$.

Condition 4: Robustness Condition

Provide stability against noise.

$$
\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\| \leq \frac{\varepsilon d_{0}}{10 \sqrt{2}}
$$

where $\mathcal{A}^{*}(\boldsymbol{w})=\sum_{l=1}^{L} w_{l} \boldsymbol{b}_{l} \boldsymbol{a}_{l}^{*}$ is a sum of L rank- 1 random matrices. It concentrates around $\mathbf{0}$.

Two-page proof

Condition $1+2 \Longrightarrow$ Linear convergence of \widetilde{F}

Proof.

Let $\boldsymbol{z}_{t+1}=\boldsymbol{z}_{t}-\eta \nabla \widetilde{F}\left(\boldsymbol{z}_{t}\right)$ with $\eta \leq \frac{1}{C_{L}}$. By using modified descent lemma,

$$
\begin{aligned}
\tilde{F}\left(z_{t}+\eta \nabla \tilde{F}\left(z_{t}\right)\right) & \leq \tilde{F}\left(z_{t}\right)-\left(2 \eta+C_{L \eta^{2}}\right)\left\|\nabla \tilde{F}\left(z_{t}\right)\right\|^{2} \\
& \leq \widetilde{F}\left(z_{t}\right)-\eta \omega \widetilde{F}\left(z_{t}\right)
\end{aligned}
$$

which gives $\widetilde{F}\left(z_{t+1}\right) \leq(1-\eta \omega)^{t} \widetilde{F}\left(z_{0}\right)$.

Two-page proof: continued

Condition $3 \Longrightarrow$ Linear convergence of $\left\|\boldsymbol{u}_{t} \boldsymbol{v}_{t}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F}$.

It follows from $\widetilde{F}\left(z_{t}\right) \geq F\left(z_{t}\right) \geq \frac{3}{4}\left\|\boldsymbol{u}_{t} \boldsymbol{v}_{t}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right\|_{F}^{2}$. Hence, linear convergence of objective function also implies linear convergence of iterates.

Condition $4 \Longrightarrow$ Proof of stability theory

If L is sufficiently large, $\mathcal{A}^{*}(\boldsymbol{w})$ is small since $\left\|\mathcal{A}^{*}(\boldsymbol{w})\right\| \rightarrow 0$. There holds

$$
\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right)-\boldsymbol{w}\right\|^{2} \approx\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right)\right\|^{2}+\sigma^{2} d_{0}^{2} .
$$

Hence, the objective function behaves "almost like" $\left\|\mathcal{A}\left(\boldsymbol{h} \boldsymbol{x}^{*}-\boldsymbol{h}_{0} \boldsymbol{x}_{0}^{*}\right)\right\|^{2}$, the noiseless version of F if the sample size is sufficiently large.

Outlook and Conclusion

Conclusion: The proposed algorithm is the first blind deconvolution algorithm that is numerically efficient, robust against noise and comes with rigorous recovery guarantees under subspace conditions.

Outlook and Conclusion

Conclusion: The proposed algorithm is the first blind deconvolution algorithm that is numerically efficient, robust against noise and comes with rigorous recovery guarantees under subspace conditions.

- Can we remove the regularizers $G(\boldsymbol{h}, \boldsymbol{x})$ in the blind deconvolution?
- Can we generalize it to blind-deconvolution-blind-demixing problem, i.e., $\boldsymbol{y}=\sum_{i=1}^{r} \operatorname{diag}\left(\boldsymbol{B}_{i} \boldsymbol{h}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i}$?
- Can we show if similar result holds for other types of \boldsymbol{A} ?
- What if \boldsymbol{x} or \boldsymbol{h} is sparse/both of them are sparse?
- Better choice of \boldsymbol{B} in image deblurring?
- See details: Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization, arXiv:1606.04933.

