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Outline

Applications in image deblurring and wireless communication

Mathematical models and convex approach

A nonconvex optimization approach towards blind deconvolution

Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016 3 / 31



What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function y which consists of the convolution of two
unknown functions, the blurring function f and the signal of interest g ,
plus noise w . How to reconstruct f and g from y?

y = f ∗ g + w .

It is obviously a highly ill-posed bilinear inverse problem...

Much more difficult than ordinary deconvolution...but has important
applications in various fields.

Solvability? What conditions on f and g make this problem solvable?

How? What algorithms shall we use to recover f and g?
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Why do we care about blind deconvolution?

Image deblurring

Let f be the blurring kernel and g be the original image, then y = f ∗ g is
the blurred image.
Question: how to reconstruct f and g from y?

=  

y 
blurred  
image

f
blurring  
kernel

g
original  
image

 
= +

+

w
noise
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Why do we care about blind deconvolution?

Joint channel and signal estimation in wireless communication

Suppose that a signal x , encoded by A, is transmitted through an
unknown channel f . How to reconstruct f and x from y?

y = f ∗ Ax + w .

=

f:unknown  
channel

A:Encoding  
matrix

x:unknown  
signal

y:received  
signal

  +

w:noise
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Subspace assumptions

We start from the original model

y = f ∗ g + w .

As mentioned before, it is an ill-posed problem. Hence, this problem is
unsolvable without further assumptions...

Subspace assumption

Both f and g belong to known subspaces: there exist known tall matrices
B ∈ CL×K and A ∈ CL×N such that

f = Bh0, g = Ax0,

for some unknown vectors h0 ∈ CK and x0 ∈ CN .
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Model under subspace assumption

In the frequency domain,

ŷ = f̂ � ĝ + w = diag(f̂ )ĝ + w ,

where “� ” denotes entry-wise multiplication. We assume y and ŷ are
both of length L.

Subspace assumption

Both f̂ and ĝ belong to known subspaces: there exist known tall matrices
B̂ ∈ CL×K and Â ∈ CL×N such that

f̂ = B̂h0, ĝ = Âx0,

for some unknown vectors h0 ∈ CK and x0 ∈ CN . Here B̂ = FB and
Â = FA.

The degree of freedom for unknowns: K + N; number of constraint: L. To
make the solution identifiable, we require L ≥ K + N at least.
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Remarks on subspace assumption

+
= +

𝒚: 𝐿×1 𝑩: 𝐿×𝐾 𝒉:𝐾×1 𝐴: 𝐿×𝑁 𝑥:𝑁×1 𝒘: 𝐿×1

⊙

Subspace assumption is flexible and useful in applications.

In imaging deblurring, B can be the support of the blurring kernel;
A is a wavelet basis.

In wireless communication, B corresponds to time-limitation of the
channel and A is an encoding matrix.
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Mathematical model

y = diag(Bh0)Ax0 + w ,

where w
d0
∼ 1√

2
N (0, σ2I L) + i√

2
N (0, σ2I L) and d0 = ‖h0‖‖x0‖.

One might want to solve the following nonlinear least squares problem,

min F (h, x) := ‖ diag(Bh)Ax − y‖2.

Difficulties:

1 Nonconvexity: F is a nonconvex function; algorithms (such as
gradient descent) are likely to get trapped at local minima.

2 No performance guarantees.
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Convex approach and lifting

Two-step convex approach

(a) Lifting: convert bilinear to linear constraints

(b) Solving a SDP relaxation to recover hx∗.

Step 1: lifting

Let ai be the i-th column of A∗ and bi be the i-th column of B∗.

yi = (Bh0)ix∗0ai + wi = b∗i h0x∗0ai + wi ,

Let X 0 := h0x∗0 and define the linear operator A : CK×N → CL as,

A(Z ) := {b∗i Zai}Li=1 = {〈Z ,bia∗i 〉}Li=1.

Then, there holds
y = A(X 0) + w .

In this way, A∗(z) =
∑L

i=1 zibia∗i : CL → CK×N .
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Convex relaxation and state of the art

Step 2: nuclear norm minimization

Consider the convex envelop of rank(Z ): nuclear norm ‖Z‖∗ =
∑
σi (Z ).

min ‖Z‖∗ s.t. A(Z ) = A(X 0).

Convex optimization can be solved within polynomial time.

Theorem [Ahmed-Recht-Romberg 11]

Assume y = diag(Bh0)Ax0, A : L× N is a complex Gaussian random
matrix,

B∗B = IK , ‖bi‖2 ≤
µ2maxK

L
, L‖Bh0‖2∞ ≤ µ2h,

the above convex relaxation recovers X = h0x∗0 exactly with high
probability if

C0 max(µ2maxK , µ
2
hN) ≤ L

log3 L
.
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Pros and Cons of Convex Approach

Pros and Cons

Pros: Simple and comes with theoretic guarantees

Cons: Computationally too expensive to solve SDP

Our Goal: rapid, robust, reliable nonconvex approach

Rapid: linear convergence

Robust: stable to noise

Reliable: provable and comes with theoretical guarantees; number of
measurements close to information-theoretic limits.
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A nonconvex optimization approach?

An increasing list of nonconvex approach to various problems:

Phase retrieval: by Candés, Li, Soltanolkotabi, Chen, Wright, etc...

Matrix completion: by Sun, Luo, Montanari, etc...

Various problems: by Recht, Wainwright, Constantine, etc...

Two-step philosophy for provable nonconvex optimization

(a) Use spectral initialization to construct a starting point inside “the
basin of attraction”;

(b) Simple gradient descent method.

The key is to build up “the basin of attraction”.
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Building “the basin of attraction”

The basin of attraction relies on the following three observations.

Observation 1: Unboundedness of solution

If the pair (h0, x0) is a solution to y = diag(Bh0)Ax0, then so is the
pair (αh0, α

−1x0) for any α 6= 0.

Thus the blind deconvolution problem always has infinitely many
solutions of this type. We can recover (h0, x0) only up to a scalar.

It is possible that ‖h‖ � ‖x‖ (vice versa) while ‖h‖ · ‖x‖ = d0.
Hence we define Nd0 to balance ‖h‖ and ‖x‖:

Nd0 := {(h, x) : ‖h‖ ≤ 2
√

d0, ‖x‖ ≤ 2
√

d0}.
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Building “the basin of attraction”

Observation 2: Incoherence

Our numerical experiments have shown that the algorithm’s performance
depends on how much bl and h0 are correlated.

µ2h :=
L‖Bh0‖2∞
‖h0‖2

= L
maxi |b∗i h0|2

‖h0‖2
, the smaller µh, the better.

Therefore, we introduce the Nµ to control the incoherence:

Nµ := {h :
√
L‖Bh‖∞ ≤ 4µ

√
d0}.

“Incoherence” is not a new idea. In matrix completion, we also require the
left and right singular vectors of the ground truth cannot be too “aligned”
with those of measurement matrices {bia∗i }1≤i≤L. The same philosophy
applies here.
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Building “the basin of attraction”

Observation 3: “Close” to the ground truth

We define Nε to quantify closeness of (h, x) to true solution, i.e.,

Nε := {(h, x) : ‖hx∗ − h0x∗0‖F ≤ εd0}.

We want to find an initial guess close to (h0, x0).
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Building “the basin of attraction”

Based on the three observations above, we define the
three neighborhoods (denoting d0 = ‖h0‖‖x0‖ and
0 < ε ≤ 1

15):

Nd0 := {(h, x) : ‖h‖ ≤ 2
√

d0, ‖x‖ ≤ 2
√
d0}

Nµ := {h :
√
L‖Bh‖∞ ≤ 4µ

√
d0}

Nε := {(h, x) : ‖hx∗ − h0x∗0‖F ≤ εd0}.

We first obtain a good initial guess (u0, v0) ∈ Nd0 ∩Nµ ∩Nε, which is
followed by regularized gradient descent.
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Objective function: a variant of projected gradient descent

The objective function F̃ consists of two parts: F and G :

min
(h,x)

F̃ (h, x) := F (h, x)︸ ︷︷ ︸
least squares term

+ G (h, x)︸ ︷︷ ︸
regularization term

where F (h, x) := ‖A(hx∗)− y‖2 = ‖ diag(Bh)Ax − y‖2 and

G (h, x) := ρ
[
G0

(
‖h‖2

2d

)
+ G0

(
‖x‖2

2d

)
︸ ︷︷ ︸
Nd0

: balance ‖h‖ and ‖x‖

+
L∑

l=1

G0

(
L|b∗l h|2

8dµ2

)
︸ ︷︷ ︸
Nµ: impose incoherence

]
.

Here G0(z) = max{z − 1, 0}2, ρ ≈ d2, d ≈ d0 and µ ≥ µh.
Regularization forces iterates (ut , v t) inside Nd0 ∩Nµ ∩Nε.
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Algorithm: Wirtinger Gradient Descent

Step 1: Initialization via spectral method and projection:

1: Compute A∗(y), (since E(A∗(y)) = h0x∗0);
2: Find the leading singular value, left and right singular vec-

tors of A∗(y), denoted by (d , ĥ0, x̂0) respectively;
3: u0 := PNµ(

√
d ĥ0) and v0 :=

√
d x̂0;

4: Output: (u0, v0).

Step 2: Gradient descent with constant stepsize η:

1: Initialization: obtain (u0, v0) via Algorithm 1.
2: for t = 1, 2, . . . , do
3: ut = ut−1 − η∇F̃h(ut−1, v t−1)
4: v t = v t−1 − η∇F̃x(ut−1, v t−1)
5: end for
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Main theorem

Theorem: [Li-Ling-Strohmer-Wei, 2016]

Let B be a tall partial DFT matrix and A be a complex Gaussian random
matrix. If the number of measurements satisfies

L ≥ C (µ2h + σ2)(K + N) log2(L)/ε2,

(i) then the initialization (u0, v0) ∈ 1√
3
Nd0

⋂ 1√
3
Nµ
⋂
N 2

5
ε;

(ii) the regularized gradient descent algorithm creates a sequence (ut , v t)
in Nd0 ∩Nµ ∩Nε satisfying

‖utv∗t − h0x∗0‖F ≤ (1− α)tεd0 + c0‖A∗(w)‖

with high probability where α = O
(

1
(1+σ2)(K+N) log2 L

)
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Remarks

(a) If w = 0, (ut , v t) converges to (h0, x0) linearly.

‖utv∗t − h0x∗0‖F ≤ (1− α)tεd0 → 0, as t →∞

(b) If w 6= 0, (ut , v t) converges to a small neighborhood of (h0, x0)
linearly.

‖utv∗t − h0x∗0‖F → c0‖A∗(w)‖, as t →∞

where

‖A∗(w)‖ = O

(
σd0

√
(K + N) log L

L

)
→ 0, if L→∞.

As L is becoming larger and larger, the effect of noise diminishes.
(Recall linear least squares.)
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Numerical experiments

Nonconvex approach v.s. convex approach:

min
(h,x)

F̃ (h, x) v.s. min ‖Z‖∗ s.t.‖A(Z )− y‖ ≤ η.

Nonconvex method requires fewer measurements to achieve exact recovery
than convex method. Moreover, if A is a partial Hadamard matrix, our
algorithm still gives satisfactory performance.
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K = N = 50, B is a low-frequency DFT matrix.
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L v.s. Incoherence µ2
h and stability

The number of measurements L does depend linearly on µ2h.

Our algorithm yields stable recovery if the observation is noisy.
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Here K = N = 100.
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MRI Image deblurring:

Here B is a partial DFT matrix and A is a partial wavelet matrix.

When the subspace B, (K = 65) or support of blurring kernel is known:
g ≈ Ax : image of 512× 512; A : wavelet subspace corresponding to the
N = 20000 largest Haar wavelet coefficients of g .
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MRI Imaging deblurring:

When the subspace B or support of blurring kernel is unknown:
we assume the support of blurring kernel is contained in a small box;
N = 35000.
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Important ingredients of proof

The first three conditions hold over “the basin of attraction”
Nd0 ∩Nµ ∩Nε.

Condition 1: Local Regularity Condition

Guarantee sufficient decrease in each iterate and linear convergence of F̃ :

‖∇F̃ (h, x)‖2 ≥ ωF̃ (h, x)

where ω > 0 and (h, x) ∈ Nd0 ∩Nµ ∩Nε.

Condition 2: Local Smoothness Condition

Governs rate of convergence. Let z = (h, x). There exists a constant CL

(Lipschitz constant of gradient) such that

‖∇F̃ (z + t∆z)−∇F̃ (z)‖ ≤ CLt‖∆z‖, ∀ 0 ≤ t ≤ 1,

for all {(z ,∆z) : z + t∆z ∈ Nd0 ∩Nµ ∩Nε,∀0 ≤ t ≤ 1}.
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Important ingredients of proof

Condition 3: Local Restricted Isometry Property

Transfer convergence of objective function to convergence of iterates.

3

4
‖hx∗ − h0x∗0‖2F ≤ ‖A(hx∗ − h0x∗0)‖2 ≤ 5

4
‖hx∗ − h0x∗0‖2F

holds uniformly for all (h, x) ∈ Nd0 ∩Nµ ∩Nε.

Condition 4: Robustness Condition

Provide stability against noise.

‖A∗(w)‖ ≤ εd0

10
√

2
.

where A∗(w) =
∑L

l=1 wlbla∗l is a sum of L rank-1 random matrices. It
concentrates around 0.
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Two-page proof

Condition 1 + 2 =⇒ Linear convergence of F̃

Proof.

Let z t+1 = z t − η∇F̃ (z t) with η ≤ 1
CL

. By using modified descent lemma,

F̃ (z t + η∇F̃ (z t)) ≤ F̃ (z t)− (2η + CLη
2)‖∇F̃ (z t)‖2

≤ F̃ (z t)− ηωF̃ (z t)

which gives F̃ (z t+1) ≤ (1− ηω)t F̃ (z0).
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Two-page proof: continued

Condition 3 =⇒ Linear convergence of ‖utv ∗t − h0x∗0‖F .
It follows from F̃ (z t) ≥ F (z t) ≥ 3

4‖utv∗t − h0x∗0‖2F . Hence, linear
convergence of objective function also implies linear convergence of
iterates.

Condition 4 =⇒ Proof of stability theory

If L is sufficiently large, A∗(w) is small since ‖A∗(w)‖ → 0. There holds

‖A(hx∗ − h0x∗0)−w‖2 ≈ ‖A(hx∗ − h0x∗0)‖2 + σ2d2
0 .

Hence, the objective function behaves “almost like” ‖A(hx∗ − h0x∗0)‖2,
the noiseless version of F if the sample size is sufficiently large.
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Outlook and Conclusion

Conclusion: The proposed algorithm is the first blind deconvolution
algorithm that is numerically efficient, robust against noise and comes with
rigorous recovery guarantees under subspace conditions.

Can we remove the regularizers G (h, x) in the blind deconvolution?

Can we generalize it to blind-deconvolution-blind-demixing problem,
i.e., y =

∑r
i=1 diag(B ihi )Aix i?

Can we show if similar result holds for other types of A?

What if x or h is sparse/both of them are sparse?

Better choice of B in image deblurring?

See details: Rapid, Robust, and Reliable Blind Deconvolution via
Nonconvex Optimization, arXiv:1606.04933.
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