Simultaneous Blind Deconvolution and Blind Demixing via Convex Programming

Shuyang Ling
Department of Mathematics, UC Davis

Nov.8th, 2016

Acknowledgements

Research in collaboration with:
Prof.Thomas Strohmer (UC Davis)

This work is sponsored by NSF-DMS and DARPA.

Outline

- Setup: blind deconvolution and demixing
- Convex relaxation and main result
- Numerics and idea of proof

What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function \boldsymbol{y} which is the convolution of two unknown functions, the blurring function \boldsymbol{f} and the signal of interest \boldsymbol{g}, plus noise \boldsymbol{w}. How to reconstruct \boldsymbol{f} and \boldsymbol{g} from \boldsymbol{y} ?

$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{g}+\boldsymbol{w} .
$$

It is obviously a highly ill-posed bilinear inverse problem... but important in signal processing.

Blind deconvolution in wireless communication

Joint channel and signal estimation in wireless communication Suppose that a signal \boldsymbol{x}, encoded by \boldsymbol{A}, is transmitted through an unknown channel \boldsymbol{f}. How to reconstruct \boldsymbol{f} and \boldsymbol{x} from \boldsymbol{y} ?

$$
\boldsymbol{y}=\boldsymbol{f} * \boldsymbol{A} \boldsymbol{x}+\boldsymbol{w} .
$$

Blind deconvolution meets demixing?

Blind deconvolution and blind demixing

We start from the original model

$$
\boldsymbol{y}=\sum_{i=1}^{r} \boldsymbol{f}_{i} * \boldsymbol{g}_{i}+\boldsymbol{w}
$$

This is even more difficult than blind deconvolution, since this is a "mixture" of blind deconvolution problem

More assumptions

- Each impulse responses \boldsymbol{f}_{i} has maximum delay spread K.

$$
\boldsymbol{f}_{i}(n)=0, \quad \text { for } n>K
$$

- $\boldsymbol{g}_{i}:=\tilde{\boldsymbol{A}}_{i} \boldsymbol{x}_{i}$ is the signal $\boldsymbol{x}_{i} \in \mathbb{C}^{N}$ encoded by matrix $\tilde{\boldsymbol{A}}_{i} \in \mathbb{C}^{L \times N}$ with $L>N$.

Model under subspace assumption

In the frequency domain,

$$
\hat{\boldsymbol{y}}=\sum_{i=1}^{r} \hat{\boldsymbol{f}}_{i} \odot \hat{\mathbf{g}}_{i}+\boldsymbol{w}=\sum_{i=1}^{r} \operatorname{diag}\left(\hat{\boldsymbol{f}}_{i}\right) \hat{\boldsymbol{g}}_{i}+\boldsymbol{w}
$$

where " \odot " denotes entry-wise multiplication. We assume \boldsymbol{y} and $\hat{\boldsymbol{y}}$ are both of length L.

Subspace assumption

Denote \boldsymbol{F} as the $L \times L$ DFT matrix.

- Let $\boldsymbol{h}_{i} \in \mathbb{C}^{K}$ be the first K nonzero entries of \boldsymbol{f}_{i} and \boldsymbol{B}_{i} be a low-frequency DFT matrix. There holds,

$$
\hat{\boldsymbol{f}}_{i}=\boldsymbol{F} \boldsymbol{f}_{i}=\boldsymbol{B}_{i} \boldsymbol{h}_{i} .
$$

- $\hat{\boldsymbol{g}}_{i}:=\boldsymbol{A}_{i} \boldsymbol{x}_{i}$ where $\boldsymbol{A}_{i}:=\boldsymbol{\mathcal { F }} \tilde{\boldsymbol{A}}_{i}$ and $\boldsymbol{x}_{i} \in \mathbb{C}^{N}$.

Mathematical model

Finally, we end up with the following model,
Model with subspace constraint

$$
\boldsymbol{y}=\sum_{i=1}^{r} \operatorname{diag}\left(\boldsymbol{B}_{i} \boldsymbol{h}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i}+\boldsymbol{w}
$$

Goal: We want to recover $\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)_{i=1}^{r}$ from $\left(\boldsymbol{y}, \boldsymbol{B}_{i}, \boldsymbol{A}_{i}\right)_{i=1}^{r}$.
Remark: The degree of freedom for unknowns: $r(K+N)$; number of constraint: L. To make the solution identifiable, we require $L \geq r(K+N)$ at least.

Special case if $r=1$

In particular, if $r=1$, it is a blind deconvolution problem.

$$
\boldsymbol{y}=\operatorname{diag}(\boldsymbol{B} \boldsymbol{h}) \boldsymbol{A} \boldsymbol{x}+\boldsymbol{w}
$$

Nonconvex optimization?

Naive approach?

We may want to try nonlinear least squares approach:

$$
\min _{\left(\boldsymbol{u}_{i}, \boldsymbol{v}_{i}\right)}\left\|\sum_{i=1}^{r} \operatorname{diag}\left(\boldsymbol{B}_{i} \boldsymbol{u}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{v}_{i}-\boldsymbol{y}\right\|^{2}
$$

This gives a nonconvex objective function.

- May get stuck at local minima and no guarantees for recoverability.
- For $r=1$, we have recovery guarantees by adding regularizers but not for $r>1$.

Nonconvex optimization?

Naive approach?

We may want to try nonlinear least squares approach:

$$
\min _{\left(\boldsymbol{u}_{i}, \boldsymbol{v}_{i}\right)}\left\|\sum_{i=1}^{r} \operatorname{diag}\left(\boldsymbol{B}_{i} \boldsymbol{u}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{v}_{i}-\boldsymbol{y}\right\|^{2} .
$$

This gives a nonconvex objective function.

- May get stuck at local minima and no guarantees for recoverability.
- For $r=1$, we have recovery guarantees by adding regularizers but not for $r>1$.

Two-step convex approach
(a) Lifting: convert nonconvex constraints to linear
(b) Solving a SDP relaxation and hope to recover $\left\{\boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*}\right\}_{i=1}^{r}$

Convex approach of demixing problem

Step 1: lifting

Let $\boldsymbol{a}_{i, I}$ be the l-th column of \boldsymbol{A}_{i}^{*} and $\boldsymbol{b}_{i, I}$ be the I-th column of \boldsymbol{B}_{i}^{*}.

$$
y_{l}=\sum_{i=1}^{r}\left(\boldsymbol{B}_{i} \boldsymbol{h}_{i}\right)_{l} \boldsymbol{x}_{i}^{*} \boldsymbol{a}_{i, l}+w_{l}=\sum_{i=1}^{r} \boldsymbol{b}_{i, l}^{*} \boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*} \boldsymbol{a}_{i, l}+w_{l},
$$

Let $\quad \boldsymbol{X}_{i}:=\boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*}$ and define the linear operator $\mathcal{A}_{i}: \mathbb{C}^{K \times N} \rightarrow \mathbb{C}^{L}$ as,

$$
\mathcal{A}_{i}(\boldsymbol{Z}):=\left\{\boldsymbol{b}_{i, l}^{*} \boldsymbol{Z} \boldsymbol{a}_{i, l}\right\}_{l=1}^{L}=\left\{\left\langle\boldsymbol{Z}, \boldsymbol{b}_{i, l} \boldsymbol{a}_{i, l}^{*}\right\rangle\right\}_{l=1}^{L} .
$$

Then, there holds

$$
\boldsymbol{y}=\sum_{i=1}^{r} \mathcal{A}_{i}\left(\boldsymbol{X}_{i}\right)+\boldsymbol{w}
$$

- Advantage: linear constraints (convex constraints)
- Disadvantage: dimension increases

Rank-r matrix recovery

Recast as rank- r matrix recovery
We rewrite $\boldsymbol{y}=\sum_{i=1}^{r} \operatorname{diag}\left(\boldsymbol{B}_{i} \boldsymbol{h}_{i}\right) \boldsymbol{A}_{i} \boldsymbol{x}_{i}$ as

$$
y_{l}=\left\langle\left[\begin{array}{cccc}
\boldsymbol{h}_{1} \boldsymbol{x}_{1}^{*} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{h}_{2} \boldsymbol{x}_{2}^{*} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{h}_{r} \boldsymbol{x}_{r}^{*}
\end{array}\right],\left[\begin{array}{cccc}
\boldsymbol{b}_{1, /} / \mathbf{a}_{1, l}^{*} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{b}_{2, \boldsymbol{l}}^{*} \boldsymbol{a}_{2, l}^{*} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{b}_{r, I} \boldsymbol{a}_{r, l}^{*}
\end{array}\right]\right\rangle
$$

- Find a rank-r block diagonal matrix satisfying the linear constraints above.
- Finding such a rank- r matrix is also an NP-hard problem.

Convex relaxation

Nuclear norm minimization

Since this system is highly underdetermined, we hope to recover all $\left\{\boldsymbol{Z}_{i}\right\}_{i=1}^{r}$ from

$$
\min \sum_{i=1}^{r}\left\|\boldsymbol{Z}_{i}\right\|_{*} \quad \text { subject to } \quad \sum_{i=1}^{r} \mathcal{A}_{i}\left(\boldsymbol{Z}_{i}\right)=\boldsymbol{y}
$$

Once we obtain $\left\{\hat{\boldsymbol{Z}}_{i}\right\}_{i=1}^{r}$, we can easily extract the leading left and right singular vectors from \boldsymbol{Z}_{i} as the estimation of $\left(\boldsymbol{h}_{i}, \boldsymbol{x}_{i}\right)$.
Key question: does the solution to the SDP above really give $\left\{\boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*}\right\}_{i=1}^{r}$? What conditions are needed?

State-of-the-art: blind deconvolution $(r=1)$

Nuclear norm minimization

Consider the convex envelop of $\operatorname{rank}(\boldsymbol{Z})$: nuclear norm $\|\boldsymbol{Z}\|_{*}=\sum \sigma_{i}(\boldsymbol{Z})$.

$$
\min \|\boldsymbol{Z}\|_{*} \quad \text { s.t. } \quad \mathcal{A}(\boldsymbol{Z})=\mathcal{A}(\boldsymbol{X}) .
$$

Convex optimization can be solved within polynomial time.
Theorem [Ahmed-Recht-Romberg 14]
Assume $\boldsymbol{y}=\operatorname{diag}(\boldsymbol{B} \boldsymbol{h}) \boldsymbol{A} \boldsymbol{x}, \boldsymbol{A}: L \times N$ is a Gaussian random matrix, and $\boldsymbol{B} \in \mathbb{C}^{L \times K}$ is a partial DFT matrix,

$$
\boldsymbol{B}^{*} \boldsymbol{B}=\boldsymbol{I}_{K}, \quad L\|\boldsymbol{B} \boldsymbol{h}\|_{\infty}^{2} \leq \mu_{h}^{2}
$$

the above convex relaxation recovers $\boldsymbol{X}=\boldsymbol{h} \boldsymbol{x}^{*}$ exactly with high probability if

$$
C_{0} \max \left(K, \mu_{h}^{2} N\right) \leq \frac{L}{\log ^{3} L}
$$

Main results

Theorem [Ling-Strohmer 15]

Each $\boldsymbol{B}_{i} \in \mathbb{C}^{L \times K}$ partial DFT matrix with $\boldsymbol{B}_{\boldsymbol{i}}^{*} \boldsymbol{B}_{i}=\boldsymbol{I}_{K}$ and each $\boldsymbol{A}_{\boldsymbol{i}}$ is a Gaussian random matrix, i.e., each entry in $\boldsymbol{A}_{i} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}(0,1)$. Let μ_{h}^{2} be as defined in $\mu_{h}^{2}=L \max _{1 \leq i \leq r} \frac{\left\|\boldsymbol{B}_{\boldsymbol{B}} \boldsymbol{h}^{\boldsymbol{\|}}\right\|_{\infty}^{2}}{\| \boldsymbol{h}_{\boldsymbol{i}}}$. If

$$
L \geq C_{\alpha+\log } r^{2} \max \left\{K, \mu_{h}^{2} N\right\} \log ^{3} L,
$$

then the solution to convex relaxation satisfies

$$
\hat{\boldsymbol{X}}_{i}=\boldsymbol{X}_{i}, \quad \text { for all } i=1, \ldots, r
$$

with probability at least $1-\mathcal{O}\left(L^{-\alpha+1}\right)$.

Remark

- Our result is a generalization of Ahmed-Romberg-Recht's result to $r>1$.
- \boldsymbol{B}_{i} have other choices other than DFT matrix.
- Incoherence μ_{h}^{2} does affect the result.

Remark

- Our result is a generalization of Ahmed-Romberg-Recht's result to $r>1$.
- \boldsymbol{B}_{i} have other choices other than DFT matrix.
- Incoherence μ_{h}^{2} does affect the result.
- r^{2} is not optimal. One group has claimed to reduce the sampling complexity from r^{2} to r.
- Empirically, \boldsymbol{A}_{i} can be other matrices besides Gaussian. However, no theories exist so far.

Numerics: does L really scales linearly with r ?

$\boldsymbol{A}_{\boldsymbol{i}}$ is chosen as Gaussian matrix. Here $K=30$ and $N=25$ are fixed. Black: failure; White: success.

Numerics: does L really scales linearly with r ?

Choose $\boldsymbol{A}_{\boldsymbol{i}}=\boldsymbol{D}_{i} \boldsymbol{H}$ where \boldsymbol{H} is a partial Hadamard matrix (± 1 orthogonal matrix). \boldsymbol{D}_{i} is a random ± 1 diagonal matrix.

Plot: $\mathrm{K}=\mathrm{N}=15$; A:Hadamard matrix

Number of unknowns $r(K+N)=16 \cdot 30=480$ is slightly smaller than the number of constraints 512.

Numerics: L scales linearly with $K+N$.

Numerical simulations verify our theory that $L \approx \mathcal{O}(r(K+N))$ gives exact recovery. Here $r=2$ and $L \approx 1.5 r(K+N)$.

Fixed $\mathrm{L}=128, \mathrm{~A}$: a Gaussian random matrix

Fixed L $=128$, A: a partial Hadamard matrix

Numerics: L vs. μ_{h}^{2}

We observe strong linear correlation between minimal required L and μ_{h}^{2} :

$$
L \propto \max _{1 \leq i \leq r} \frac{\left\|\boldsymbol{B}_{i} \boldsymbol{h}_{i}\right\|_{\infty}^{2}}{\left\|\boldsymbol{h}_{i}\right\|^{2}}
$$

L vs. $\mu_{h}^{2}, K=N=30, r=1$

Stability theorem

In reality measurements are noisy. Hence, suppose that $\hat{\boldsymbol{y}}=\boldsymbol{y}+\boldsymbol{w}$ where \boldsymbol{w} is noise with $\|\boldsymbol{w}\| \leq \eta$.

$$
\begin{equation*}
\min \sum_{i=1}^{r}\left\|\boldsymbol{Z}_{i}\right\|_{*} \quad \text { subject to } \quad\left\|\sum_{i=1}^{r} \mathcal{A}_{i}\left(\boldsymbol{Z}_{i}\right)-\hat{\boldsymbol{y}}\right\| \leq \eta \tag{1}
\end{equation*}
$$

Theorem

Assume we observe $\hat{\boldsymbol{y}}=\boldsymbol{y}+\boldsymbol{w}=\sum_{i=1}^{r} \mathcal{A}_{i}\left(\boldsymbol{X}_{i}\right)+\boldsymbol{w}$ with $\|\boldsymbol{w}\| \leq \eta$. Then, the minimizer $\left\{\hat{\boldsymbol{X}}_{i}\right\}_{i=1}^{r}$ satisfies

$$
\sqrt{\sum_{i=1}^{r}\left\|\hat{\boldsymbol{X}}_{i}-\boldsymbol{X}_{i}\right\|_{F}^{2}} \leq \operatorname{Cr} \sqrt{\max \{K, N\}} \eta
$$

with probability at least $1-\mathcal{O}\left(L^{-\alpha+1}\right)$.

Stability

We see that the relative error is linearly correlated with the noise in dB . Approximately, 10 units of increase in SNR leads to the same amount of decrease in relative error (in dB).

Sketch of proof

Let's consider the noiseless version,

$$
\min \sum_{i=1}^{r}\left\|\boldsymbol{Z}_{i}\right\|_{*}, \quad \text { subject to } \sum_{i=1}^{r} \mathcal{A}_{i}\left(\boldsymbol{Z}_{i}\right)=\boldsymbol{y}
$$

Difficulties:

- \boldsymbol{X}_{i} is asymmetric.
- How to deal with block diagonal structure?

Two-step proof

- Find a sufficient condition for exact recovery
- Construct an approximate dual certificate via golfing scheme

Sufficient condition

Three key ingredients to achieve exact recovery
(1) Local isometry property on T_{i}

$$
\max _{1 \leq i \leq r}\left\|\mathcal{P}_{T_{i}} \mathcal{A}_{i}^{*} \mathcal{A}_{i} \mathcal{P}_{T_{i}}-\mathcal{P}_{T_{i}}\right\| \leq \frac{1}{4}
$$

where $T_{i}=\left\{\boldsymbol{h}_{i} \boldsymbol{h}_{i}^{*} \boldsymbol{Z}+\left(\boldsymbol{I}-\boldsymbol{h}_{i} \boldsymbol{h}_{i}^{*}\right) \boldsymbol{Z} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{*}\right\}$.
(2) Local incoherence property

$$
\max _{i \neq j}\left\|\mathcal{P}_{T_{i}} \mathcal{A}_{i}^{*} \mathcal{A}_{j} \mathcal{P}_{T_{j}}\right\| \leq \frac{1}{4 r}
$$

(3) Existence of an approximate dual certificate, which is achieved via the celebrated golfing scheme). Find a $\boldsymbol{\lambda} \in \mathbb{C}^{L}$ such that for all $1 \leq i \leq r$,

$$
\left\|\mathcal{P}_{T_{i}}\left(\mathcal{A}_{i}^{*} \boldsymbol{\lambda}\right)-\boldsymbol{h}_{i} \boldsymbol{x}_{i}^{*}\right\|_{F} \leq \frac{1}{5 r \gamma}, \quad\left\|\mathcal{P}_{T_{i}^{\perp}}\left(\mathcal{A}_{i}^{*} \boldsymbol{\lambda}\right)\right\| \leq \frac{1}{2}
$$

where $\gamma:=\max \left\{\left\|\mathcal{A}_{i}\right\|\right\}$.

Conclusion and future work

- Can we derive a theoretical bound that scales linearly in r, rather than quadratic in r as our current theory? (It may have been solved!)
- Is it possible to develop satisfactory theoretical bounds for deterministic matrices $\boldsymbol{A}_{\boldsymbol{i}}$?
- Fast algorithms: extend our nonconvex optimization framework to this blind-deconvolution-blind-demixing scenario.
- Can we develop a theoretical framework where the signals $\boldsymbol{x}_{\boldsymbol{i}}$ belong to some non-linear subspace, e.g. for sparse \boldsymbol{x}_{i} ?
- See details in our paper: Blind Deconvolution Meets Blind Demixing: Algorithms and Performance Bounds. arXiv:1512.07730.

