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What is blind deconvolution?

What is blind deconvolution?

Suppose we observe a function y which is the convolution of two unknown
functions, the blurring function f and the signal of interest g , plus noise
w . How to reconstruct f and g from y?

y = f ∗ g + w .

It is obviously a highly ill-posed bilinear inverse problem... but important
in signal processing.
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Blind deconvolution in wireless communication

Joint channel and signal estimation in wireless communication

Suppose that a signal x , encoded by A, is transmitted through an
unknown channel f . How to reconstruct f and x from y?

y = f ∗ Ax + w .

=

f:unknown  
channel

A:Encoding  
matrix

x:unknown  
signal

y:received  
signal

  +

w:noise
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Blind deconvolution meets demixing?

User	
1

User	
𝑖

User	
𝑟

𝑔$: signal

⋮

⋮
𝑦 = ∑ 𝑓1 ∗ 𝑔1 + 𝑤5

16$
𝑔1: signal

𝑔5: signal

𝑓1: channel

𝑓$: channel

𝑓5: channel

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓$, 𝑔$)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓1, 𝑔1)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	(𝑓5, 𝑔5)
Decoder

𝑓1 ∗ 𝑔1

𝑓$ ∗ 𝑔$

𝑓5 ∗ 𝑔5
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Blind deconvolution and blind demixing

We start from the original model

y =
r∑

i=1

f i ∗ g i + w .

This is even more difficult than blind deconvolution, since this is a
“mixture” of blind deconvolution problem

More assumptions

Each impulse responses f i has maximum delay spread K .

f i (n) = 0, for n > K .

g i := Ãix i is the signal x i ∈ CN encoded by matrix Ãi ∈ CL×N with
L > N.
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Model under subspace assumption

In the frequency domain,

ŷ =
r∑

i=1

f̂ i � ĝ i + w =
r∑

i=1

diag(f̂ i )ĝ i + w ,

where “� ” denotes entry-wise multiplication. We assume y and ŷ are
both of length L.

Subspace assumption

Denote F as the L× L DFT matrix.

Let hi ∈ CK be the first K nonzero entries of f i and B i be a
low-frequency DFT matrix. There holds,

f̂ i = Ff i = B ihi .

ĝ i := Aix i where Ai := FÃi and x i ∈ CN .
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Mathematical model

Finally, we end up with the following model,

Model with subspace constraint

y =
r∑

i=1

diag(B ihi )Aix i + w ,

Goal: We want to recover (hi , x i )
r
i=1 from (y ,B i ,Ai )

r
i=1.

Remark: The degree of freedom for unknowns: r(K + N); number of
constraint: L. To make the solution identifiable, we require L ≥ r(K + N)
at least.

Special case if r = 1

In particular, if r = 1, it is a blind deconvolution problem.

y = diag(Bh)Ax + w .
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Nonconvex optimization?

Naive approach?

We may want to try nonlinear least squares approach:

min
(u i ,v i )

∥∥∥∥∥
r∑

i=1

diag(B iu i )Aiv i − y

∥∥∥∥∥
2

.

This gives a nonconvex objective function.

May get stuck at local minima and no guarantees for recoverability.

For r = 1, we have recovery guarantees by adding regularizers but not
for r > 1.

Two-step convex approach

(a) Lifting: convert nonconvex constraints to linear

(b) Solving a SDP relaxation and hope to recover {hix∗i }ri=1
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Convex approach of demixing problem

Step 1: lifting

Let ai ,l be the l-th column of A∗i and bi ,l be the l-th column of B∗i .

yl =
r∑

i=1

(B ihi )lx∗i ai ,l + wl =
r∑

i=1

b∗i ,lhix∗i ai ,l + wl ,

Let X i := hix∗i and define the linear operator Ai : CK×N → CL as,

Ai (Z ) := {b∗i ,lZai ,l}Ll=1 = {
〈
Z ,bi ,la∗i ,l

〉
}Ll=1.

Then, there holds

y =
r∑

i=1

Ai (X i ) + w .

Advantage: linear constraints (convex constraints)

Disadvantage: dimension increases
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Rank-r matrix recovery

Recast as rank-r matrix recovery

We rewrite y =
∑r

i=1 diag(B ihi )Aix i as

yl =

〈
h1x∗1 0 · · · 0
0 h2x∗2 · · · 0
...

...
. . .

...
0 0 · · · hrx∗r

 ,

b1,la∗1,l 0 · · · 0

0 b2,la∗2,l · · · 0
...

...
. . .

...
0 0 · · · br ,la∗r ,l


〉

Find a rank-r block diagonal matrix satisfying the linear constraints
above.

Finding such a rank-r matrix is also an NP-hard problem.
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Convex relaxation

Nuclear norm minimization

Since this system is highly underdetermined, we hope to recover all
{Z i}ri=1 from

min
r∑

i=1

‖Z i‖∗ subject to
r∑

i=1

Ai (Z i ) = y .

Once we obtain {Ẑ i}ri=1, we can easily extract the leading left and right
singular vectors from Z i as the estimation of (hi , x i ).

Key question: does the solution to the SDP above really give {hix∗i }ri=1?
What conditions are needed?
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State-of-the-art: blind deconvolution (r = 1)

Nuclear norm minimization

Consider the convex envelop of rank(Z ): nuclear norm ‖Z‖∗ =
∑
σi (Z ).

min ‖Z‖∗ s.t. A(Z ) = A(X ).

Convex optimization can be solved within polynomial time.

Theorem [Ahmed-Recht-Romberg 14]

Assume y = diag(Bh)Ax , A : L× N is a Gaussian random matrix, and
B ∈ CL×K is a partial DFT matrix,

B∗B = IK , L‖Bh‖2∞ ≤ µ2h,

the above convex relaxation recovers X = hx∗ exactly with high
probability if

C0 max(K , µ2hN) ≤ L

log3 L
.
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Main results

Theorem [Ling-Strohmer 15]

Each B i ∈ CL×K partial DFT matrix with B∗i B i = IK and each Ai is a

Gaussian random matrix, i.e., each entry in Ai
i.i.d∼ N (0, 1). Let µ2h be as

defined in µ2h = Lmax1≤i≤r
‖B ihi‖2∞
‖hi‖2

. If

L ≥ Cα+log r r
2 max{K , µ2hN} log3 L,

then the solution to convex relaxation satisfies

X̂ i = X i , for all i = 1, . . . , r ,

with probability at least 1−O(L−α+1).
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Remark

Our result is a generalization of Ahmed-Romberg-Recht’s result to
r > 1.

B i have other choices other than DFT matrix.

Incoherence µ2h does affect the result.

r2 is not optimal. One group has claimed to reduce the sampling
complexity from r2 to r .

Empirically, Ai can be other matrices besides Gaussian. However, no
theories exist so far.
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Numerics: does L really scales linearly with r?

Ai is chosen as Gaussian matrix. Here K = 30 and N = 25 are fixed.
Black: failure; White: success.
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Numerics: does L really scales linearly with r?

Choose Ai = D iH where H is a partial Hadamard matrix (±1 orthogonal
matrix). D i is a random ±1 diagonal matrix.
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Plot: K = N = 15; A:Hadamard matrix

 

 

L = 64

L = 128

L = 256

L = 512

Number of unknowns r(K + N) = 16 · 30 = 480 is slightly smaller than the
number of constraints 512.
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Numerics: L scales linearly with K + N .

Numerical simulations verify our theory that L ≈ O(r(K + N)) gives exact
recovery. Here r = 2 and L ≈ 1.5r(K + N).
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Numerics: L vs. µ2
h

We observe strong linear correlation between minimal required L and µ2h:

L ∝ max
1≤i≤r

‖B ihi‖2∞
‖hi‖2

.
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Stability theorem

In reality measurements are noisy. Hence, suppose that ŷ = y + w where
w is noise with ‖w‖ ≤ η.

min
r∑

i=1

‖Z i‖∗ subject to ‖
r∑

i=1

Ai (Z i )− ŷ‖ ≤ η. (1)

Theorem

Assume we observe ŷ = y + w =
∑r

i=1Ai (X i ) + w with ‖w‖ ≤ η. Then,
the minimizer {X̂ i}ri=1 satisfies√√√√ r∑

i=1

‖X̂ i − X i‖2F ≤ Cr
√

max{K ,N}η.

with probability at least 1−O(L−α+1).
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Stability

We see that the relative error is linearly correlated with the noise in dB.
Approximately, 10 units of increase in SNR leads to the same amount of
decrease in relative error (in dB).
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Sketch of proof

Let’s consider the noiseless version,

min
r∑

i=1

‖Z i‖∗, subject to
r∑

i=1

Ai (Z i ) = y .

Difficulties:

X i is asymmetric.

How to deal with block diagonal structure?

Two-step proof

Find a sufficient condition for exact recovery

Construct an approximate dual certificate via golfing scheme
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Sufficient condition

Three key ingredients to achieve exact recovery

1 Local isometry property on Ti

max
1≤i≤r

‖PTi
A∗i AiPTi

− PTi
‖ ≤ 1

4

where Ti = {hih∗i Z + (I − hih∗i )Zx ix∗i }.
2 Local incoherence property

max
i 6=j
‖PTi

A∗i AjPTj
‖ ≤ 1

4r

3 Existence of an approximate dual certificate, which is achieved via the
celebrated golfing scheme). Find a λ ∈ CL such that for all 1 ≤ i ≤ r ,

‖PTi
(A∗i λ)− hix∗i ‖F ≤

1

5rγ
, ‖PT⊥

i
(A∗i λ)‖ ≤ 1

2

where γ := max{‖Ai‖}.
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Conclusion and future work

Can we derive a theoretical bound that scales linearly in r , rather than
quadratic in r as our current theory? (It may have been solved!)

Is it possible to develop satisfactory theoretical bounds for
deterministic matrices Ai?

Fast algorithms: extend our nonconvex optimization framework to
this blind-deconvolution-blind-demixing scenario.

Can we develop a theoretical framework where the signals x i belong
to some non-linear subspace, e.g. for sparse x i?

See details in our paper: Blind Deconvolution Meets Blind
Demixing: Algorithms and Performance Bounds. arXiv:1512.07730.
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