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1 High dimensional data

Assume we have n points, denoted by x;,--- ,x,, and each point is R?. In many appli-
cations, the dimension d of data is very high (not just in 2D or 3D).
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Figure 1: MNIST: Handwritten digits; each with size 28 x 28

COMMENT Coronovirus sequence assembly isolated from 2019/2020 Wuhan
outbreak patient.
FEATURES Location/Qualifiers
source 1..29872
/organism="Severe acute respiratory syndrome coronavirus
om
/mol_type="genomic RNA"
/db_xref="taxon:2697049"
/chromosome="whole_genome"
ORIGIN

1 tttcccaggt
61 tttaaaatct

aacaaaccaa ccaactttcg atctcttgta
gtgtggctgt cactcggetg catgcttagt

gatctgttct ctaaacgaac
gcactcacgc agtataatta

121 ataactaatt
181 acggtttcgt
241 gaaaggtaag
301 tttgcctgtt
361 ggtcttatca
421 aaaaggcgtt
481 aactgcacct
541 cggtcgtagt
601 ttaccgcaag
661 cgccgatcta
721 tcaagaaaac
781 taacggaggg
841 tcttgagtgc
901 acaactggac
961 aattgcttgg

actgtcgttg acaggacacg agtaactcgt
ccgtgttgca gecgatcatc agcacatcta
atggagagcc ttgtccctgg tttcaacgag
ttacaggttc gcgacgtgct cgtacgtggc
gaggcacgtc aacatcttaa agatggcact
ttgcctcaac ttgaacagcc ctatgtgttc
catggtcatg ttatggttga gctggtagca
ggtgagacac ttggtgtcct tgtccctcat
gttcttcttc gtaagaacgg taataaagga
aagtcatttg acttaggcga cgagcttgge
tggaacacta aacatagcag tggtgttacc
gcatacactc gctatgtcga taacaacttc
attaaagacc ttctagcacg tgctggtaaa
tttattgaca ctaagagggg tgtatactgc
tacacggaac gttctgaaaa gagctatgaa

ctatcttctg caggctgctt
ggtttcgtcc gggtgtgacc
aaaacacacg tccaactcag
tttggagact ccgtggagga
tgtggcttag tagaagttga
atcaaacgtt cggatgctcg
gaactcgaag gcattcagta
gtgggcgaaa taccagtggc
gctggtggcc atagttacgg
actgatcctt atgaagattt
cgtgaactca tgcgtgagct
tgtggccctg atggctaccce
gcttcatgca ctttgtccga
tgccgtgaac atgagcatga
ttgcagacac cttttgaaat

Figure 2: Whole genome of coronavirus found in Wuhan Seafood Market. Each sample is
a character sequence of length around 30000 consisting of A,C,T, and G, the four bases
in nucleic acid sequence.


http://yann.lecun.com/exdb/mnist/
https://www.ncbi.nlm.nih.gov/nuccore/LR757995

1.1 What can go wrong when data are high dimensional?
Example 1.1 (Integration in high dimension).

Suppose you have a function f(x) over the hypercube [0, 1]¢. Can you find the following
integration

I = f(x)dx?

[0,1)¢

We approximate the integration by Riemannian sum. Take samples of this function on a

uniform grid:
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Then

Question What is wrong with this approach?

The number of samples is n¢. As the dimension increases with n fixed, the sample number
grows exponentially fast! This is also referred to as the curse of dimensionality.

Example 1.2 (The geometry of high dimensional ball).

The geometry of £, norm becomes bizarre when the dimension increases. Define the ¢,
ball with radius r in R%:

=1

B,(r) := {w cRr?: Z |z P < rp} .

In particular, if » = 1, it is the unit ball:

B,(1) := {zc cr?: Zm]p < 1}.

i=1

All the 2D unit ¢, balls are illustrated in Figure
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Figure 3: ¢,-ball in 2D



Now we will characterize the “shape” of £; ball by studying the diameter, volume, and
the radius of inscribed ball of unit ¢;-norm ball. Here, diameter of a set is defined as the
maximal distance of two points in this set.

We first answer the first question:

d

Vol(Bi(1)) = =,

Diam(B(1)) = 2.

Proof: Let’s compute its volume. Note that the set {& € R? : 7 |z;] < 1} is
symmetric: multiplying each x; by either 1 or -1 still keeps @ in the ¢;-norm ball.
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For the diameter, we first pick &y = [1,0,0,---,0] € R? and yo = [~1,0,0,---,0] € R%

This implies that

On the other hand, for any « and y in B;(r), we have
[z —yll2 < llz -yl <zl + [lyll = 2

Therefore, Diam(B;(1)) = 2 holds. O

Now we proceed to compute the radius of />-norm inscribed ball in the unit /;-norm. The
radius equals
min ||z||2 such that ||z|; = 1.

R?

xTe

The minimum is 1/v/d which is achieved by & = 1[1,--- ,1]T € R?. Why?

Proof: We first get a lower bound of ||x||; and then show this lower bound is attainable.
By using Cauchy-Schwarz inequality,
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As a result, we get

1
(]2 > —=
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and the equality is tight if x = x =

What does it imply? The volume is very small for large d and goes to 0 as d — oo.
However, the diameter remains unchanged. Moreover, the radius of inscribed ball is also
small, i.e., of order 1/ vd. An illustration of unit ¢;-norm is given in Figure .
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Figure 4: An illustration of ¢;-ball in high dimension [?], V. Milman’s “hyperbolic”
drawings of high dimensional convex sets. It is not accurate in the sense that the ¢;-ball
is actually convex. The shape of #; ball is quite spiky: with small inscribed ball and most
volume contained in the spikes.

The volume of ¢5 ball in R? is

7d/2pd
Y0 = T

and the diameter is 2. Note that

lim Vy(r) =0, I'(a)= / 2 e da
0

d—00

for any fixed radius r. In particular, I'(n) = (n — 1)! and I'(1/2) = /7. You can find the
proof on most calculus books as well as [?, Chapter 2].

Example 1.3 (Volumes concentrate around the surface).

For any set A in R?, the volume of (1 — ¢€)A is
Vol((1 —€)A) = (1 — €)*Vol(A).
In other words, the volume between (1 — €)A and A is given by
Vol(A — (1 —€)A) = Vol(A) — Vol((1 — €)A) = (1 — (1 — €)*) Vol(A)

Now, we can see that if we shrink the set by e, the volume decreases by a factor of (1—¢)?.
For large d, the volume around the surface takes the majority of volume in A.



Proof: Let A be any set in R?. Now we shrink this set by e, i.e.,
(1—e)A={(1-€z:2z¢c AcCRr}.

Now we compute the volume of (1 — ¢)A:

Vol((1 —€)A) = / da = / dzy -+ -dxg
(1—e)A (1—e)A

We do a change of variable: z = ;*-. Then
€E(l-gA<=2zc A
and
de =dxy---drg = (1 — e)ddzl---dzd = (1—¢)%dz.
As a result, it holds

/u_e)A do= [ (1=odz = (1- " Vol(

2 Blessings of high dimensional data

However, not every aspect of high dimensional data is pessimistic. In fact, when data
become high dimensional, additional “structure” and phenomena show up.

2.1 Concentration of measure

In the analysis of high dimensional data, probability theory is one powerful tool. One
fundamental phenomena in high dimensional probability is called concentration of mea-
sure which has found numerous applications including learning theory, high dimensional
statistical inference, and signal processing. Informally speaking, concentration of mea-
sure refers to “a random variable that depends (in a “smooth” way) on the influence of
many independent variables (but not too much on any of them) is essentially constant”,
quoted from [?]. See [?, Chapter 2 and 3] and [?, Chapter 2 and 3| for more details on
concentration of measure.

Here we give an example. Let « be a vector in R? whose each coordinate is an i.i.d.
symmetric Bernoulli random variable P(x; = 1) = P(x; = —1) = 1/2. Now we consider
the sample average of its coordinates, i.e.,

o= 3= et = (o )

It is obvious that f() is the cosine of angle between  and a constant vector.

&.I>—‘

Note that the max/min of f(x) is 1 and -1 respectively. However, the probability of
attaining the maximum and minimum is rather small:

P(f(z) =1) = P(f(z) = —1) = 1/2

On the other hand, we will later show that with very large probability (close to 1),
f(x) ~ 0 holds by bounding the tail probability of P(|f(x)| > €). It means most of
vectors are almost perpendicular to a constant vector. Also, we can show that any
random vectors in high dimensional space are near-orthogonal!
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2.2 Data are not as “dense” as you think

Recall the MNIST dataset. In the training set, there are 60000 pictures of size 28 x 28.
Are these pictures saturated in the whole Euclidean space of 784 = 28 x 287 In fact, these
pictures are intrinsically low-dimensional. For example, we apply 2D Fourier transform
to each image by treat each image as a matrix. This is easily made possible by calling
fft2.

15 20 25

Figure 5: Two images from MNIST and their magnitude of Fourier transform.

From Figure 5, we can see that despite they are different images, most of their Fourier
coefficients are small and thus most of information is contained in those large coefficients.
In other words, these images could be well-approximated by a small amount of Fourier
coefficients, i.e., a low dimensional representation of images.

In fact, Fourier transform is one important approach to find a concise representation of
images. There are many other tools such as wavelets, curvelets, shearlets in computational
harmonic analysis, see [?] for details.

Even for data without structure, the data are not “dense” in the whole space. How many
vertices are there in £, unit ball, i.e., the hypercube in R%?

e d=1:1and —1
e d=2:(1,1), (—1,1), (1,-1), and (—1,-1)

o d=3 (1,1,1), (1,1,—1), (1,—1,1),(1,—1,—1), (=1,1,1), (=1,1, —1), (=1, —1, 1),
and (—1,—1,-1).



e For general d, 27 vertices!

Suppose n data points are given, they only occupy at most log,(n) vertices. Later, we will
talk about Johnson-Lindenstrauss Lemma [?, Chapter 5.3] and [?, Chapter 2.7]. It says
that there exists a mapping which maps any set of n points in R? to R* with k& = Q(logn)
and their pairwise ¢y distance is well preserved. This mapping could be constructed via
random projection.

References

[1] A. Blum, J. Hopcroft, and R. Kannan. Foundations of Data Science. Cambridge
University Press, 2020.

2] S. Mallat. A Wavelet Tour of Signal Processing. Elsevier, 1999.

[3] M. Talagrand. A new look at independence. The Annals of Probability, pages 1-34,
1996.

[4] R. Vershynin. Estimation in high dimensions: a geometric perspective. In Sampling
Theory, A Renaissance, pages 3—66. Springer, 2015.

[5] R. Vershynin. High-dimensional Probability: An introduction with Applications in
Data Science, volume 47. Cambridge university press, 2018.

[6] M. J. Wainwright. High-dimensional Statistics: A Non-asymptotic Viewpoint, vol-
ume 48. Cambridge University Press, 2019.



	High dimensional data
	What can go wrong when data are high dimensional? 

	Blessings of high dimensional data
	Concentration of measure
	Data are not as ``dense" as you think


