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1 High dimensional data

Assume we have n points, denoted by x1, · · · ,xn, and each point is Rd. In many appli-
cations, the dimension d of data is very high (not just in 2D or 3D).

Figure 1: MNIST: Handwritten digits; each with size 28× 28

Figure 2: Whole genome of coronavirus found in Wuhan Seafood Market. Each sample is
a character sequence of length around 30000 consisting of A,C,T, and G, the four bases
in nucleic acid sequence.
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http://yann.lecun.com/exdb/mnist/
https://www.ncbi.nlm.nih.gov/nuccore/LR757995


1.1 What can go wrong when data are high dimensional?

Example 1.1 (Integration in high dimension).

Suppose you have a function f(x) over the hypercube [0, 1]d. Can you find the following
integration

I =

ˆ
[0,1]d

f(x) dx?

We approximate the integration by Riemannian sum. Take samples of this function on a
uniform grid:

Udn =

{
z ∈ Rd : zi ∈

{
0,

1

n− 1
, · · · , n− 2

n− 1
, 1

}}
Then

I ≈
∑
z∈Ud

n

f(z) · 1

(n− 1)d
.

Question What is wrong with this approach?

The number of samples is nd. As the dimension increases with n fixed, the sample number
grows exponentially fast! This is also referred to as the curse of dimensionality.

Example 1.2 (The geometry of high dimensional ball).

The geometry of `p norm becomes bizarre when the dimension increases. Define the `p
ball with radius r in Rd:

Bp(r) :=

{
x ∈ Rd :

d∑
i=1

|xi|p ≤ rp

}
.

In particular, if r = 1, it is the unit ball:

Bp(1) :=

{
x ∈ Rd :

d∑
i=1

|xi|p ≤ 1

}
.

All the 2D unit `p balls are illustrated in Figure 3.

Figure 3: `p-ball in 2D
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Now we will characterize the “shape” of `1 ball by studying the diameter, volume, and
the radius of inscribed ball of unit `1-norm ball. Here, diameter of a set is defined as the
maximal distance of two points in this set.

We first answer the first question:

Vol(B1(1)) =
2d

d!
, Diam(B1(1)) = 2.

Proof: Let’s compute its volume. Note that the set {x ∈ Rd :
∑d

i=1 |xi| ≤ 1} is
symmetric: multiplying each xi by either 1 or -1 still keeps x in the `1-norm ball.

ˆ
∑d

i=1 |xi|≤1
dx = 2d

ˆ
∑d

i=1 xi=1, xi≥0
dx

= 2d
ˆ
0≤

∑d−1
i=1 xi≤1,xi≥0

dx1 · · · dxd−1
ˆ 1−

∑d−1
i=1 xi

0

dxd

= 2d
ˆ
0≤

∑d−1
i=1 xi≤1,xi≥0

(
1−

d−1∑
i=1

xi

)
dx1 · · · dxd−1

= 2d
ˆ
0≤

∑d−2
i=1 xi≤1,xi≥0

dx1 · · · dxd−2
ˆ 1−

∑d−2
i=1 xi

0

(
1−

d−1∑
i=1

xi

)
dxd−1

=
2d

2

ˆ
0≤

∑d−2
i=1 xi≤1,xi≥0

(
1−

d−2∑
i=1

xi

)2

dx1 · · · dxd−2

= · · ·

=
2d

(d− 1)!

ˆ
0≤x1≤1

(1− x1)d−1 dx1 =
2d

d!

For the diameter, we first pick x0 = [1, 0, 0, · · · , 0] ∈ Rd and y0 = [−1, 0, 0, · · · , 0] ∈ Rd.
This implies that

‖x0 − y0‖ = 2, Diam(B1(1)) ≥ 2.

On the other hand, for any x and y in B1(r), we have

‖x− y‖2 ≤ ‖x− y‖1 ≤ ‖x‖1 + ‖y‖1 = 2.

Therefore, Diam(B1(1)) = 2 holds.

Now we proceed to compute the radius of `2-norm inscribed ball in the unit `1-norm. The
radius equals

min
x∈Rd

‖x‖2 such that ‖x‖1 = 1.

The minimum is 1/
√
d which is achieved by x = 1

d
[1, · · · , 1]> ∈ Rd. Why?

Proof: We first get a lower bound of ‖x‖2 and then show this lower bound is attainable.
By using Cauchy-Schwarz inequality,

1 = ‖x‖1 =
d∑
i=1

|xi| ≤

√√√√ d∑
i=1

1 ·

√√√√ d∑
i=1

x2i =
√
d‖x‖2.
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As a result, we get

‖x‖2 ≥
1√
d

and the equality is tight if x = x = 1
d
[1, · · · , 1]>.

What does it imply? The volume is very small for large d and goes to 0 as d → ∞.
However, the diameter remains unchanged. Moreover, the radius of inscribed ball is also
small, i.e., of order 1/

√
d. An illustration of unit `1-norm is given in Figure 4.

Figure 4: An illustration of `1-ball in high dimension [?], V. Milman’s “hyperbolic”
drawings of high dimensional convex sets. It is not accurate in the sense that the `1-ball
is actually convex. The shape of `1 ball is quite spiky: with small inscribed ball and most
volume contained in the spikes.

The volume of `2 ball in Rd is

Vd(r) =
πd/2rd

Γ(d/2 + 1)

and the diameter is 2. Note that

lim
d→∞

Vd(r) = 0, Γ(α) =

ˆ ∞
0

xα−1e−x dx

for any fixed radius r. In particular, Γ(n) = (n− 1)! and Γ(1/2) =
√
π. You can find the

proof on most calculus books as well as [?, Chapter 2].

Example 1.3 (Volumes concentrate around the surface).

For any set A in Rd, the volume of (1− ε)A is

Vol((1− ε)A) = (1− ε)d Vol(A).

In other words, the volume between (1− ε)A and A is given by

Vol(A− (1− ε)A) = Vol(A)− Vol((1− ε)A) = (1− (1− ε)d) Vol(A)

Now, we can see that if we shrink the set by ε, the volume decreases by a factor of (1−ε)d.
For large d, the volume around the surface takes the majority of volume in A.
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Proof: Let A be any set in Rd. Now we shrink this set by ε, i.e.,

(1− ε)A = {(1− ε)z : z ∈ A ⊂ Rd}.

Now we compute the volume of (1− ε)A:

Vol((1− ε)A) =

ˆ
(1−ε)A

dx =

ˆ
(1−ε)A

dx1 · · · dxd

We do a change of variable: z = x
1−ε . Then

x ∈ (1− ε)A⇐⇒ z ∈ A

and
dx = dx1 · · · dxd = (1− ε)d dz1 · · · dzd = (1− ε)d dz.

As a result, it holds ˆ
(1−ε)A

dx =

ˆ
z∈A

(1− ε)d dz = (1− ε)d Vol(A)

2 Blessings of high dimensional data

However, not every aspect of high dimensional data is pessimistic. In fact, when data
become high dimensional, additional “structure” and phenomena show up.

2.1 Concentration of measure

In the analysis of high dimensional data, probability theory is one powerful tool. One
fundamental phenomena in high dimensional probability is called concentration of mea-
sure which has found numerous applications including learning theory, high dimensional
statistical inference, and signal processing. Informally speaking, concentration of mea-
sure refers to “a random variable that depends (in a “smooth” way) on the influence of
many independent variables (but not too much on any of them) is essentially constant”,
quoted from [?]. See [?, Chapter 2 and 3] and [?, Chapter 2 and 3] for more details on
concentration of measure.

Here we give an example. Let x be a vector in Rd whose each coordinate is an i.i.d.
symmetric Bernoulli random variable P(xi = 1) = P(xi = −1) = 1/2. Now we consider
the sample average of its coordinates, i.e.,

f(x) :=
1

d

d∑
i=1

xi =
1

d
〈x,1d〉 =

〈
1√
d
x,

1√
d
1d

〉
.

It is obvious that f(x) is the cosine of angle between x and a constant vector.

Note that the max/min of f(x) is 1 and -1 respectively. However, the probability of
attaining the maximum and minimum is rather small:

P(f(x) = 1) = P(f(x) = −1) = 1/2d

On the other hand, we will later show that with very large probability (close to 1),
f(x) ≈ 0 holds by bounding the tail probability of P(|f(x)| ≥ ε). It means most of
vectors are almost perpendicular to a constant vector. Also, we can show that any
random vectors in high dimensional space are near-orthogonal!
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2.2 Data are not as “dense” as you think

Recall the MNIST dataset. In the training set, there are 60000 pictures of size 28× 28.
Are these pictures saturated in the whole Euclidean space of 784 = 28×28? In fact, these
pictures are intrinsically low-dimensional. For example, we apply 2D Fourier transform
to each image by treat each image as a matrix. This is easily made possible by calling
fft2.
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Figure 5: Two images from MNIST and their magnitude of Fourier transform.

From Figure 5, we can see that despite they are different images, most of their Fourier
coefficients are small and thus most of information is contained in those large coefficients.
In other words, these images could be well-approximated by a small amount of Fourier
coefficients, i.e., a low dimensional representation of images.

In fact, Fourier transform is one important approach to find a concise representation of
images. There are many other tools such as wavelets, curvelets, shearlets in computational
harmonic analysis, see [?] for details.

Even for data without structure, the data are not “dense” in the whole space. How many
vertices are there in `∞ unit ball, i.e., the hypercube in Rd?

• d = 1: 1 and −1

• d = 2: (1, 1), (−1, 1), (1,−1), and (−1,−1)

• d = 3: (1, 1, 1), (1, 1,−1), (1,−1, 1),(1,−1,−1), (−1, 1, 1), (−1, 1,−1), (−1,−1, 1),
and (−1,−1,−1).
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• For general d, 2d vertices!

Suppose n data points are given, they only occupy at most log2(n) vertices. Later, we will
talk about Johnson-Lindenstrauss Lemma [?, Chapter 5.3] and [?, Chapter 2.7]. It says
that there exists a mapping which maps any set of n points in Rd to Rk with k = Ω(log n)
and their pairwise `2 distance is well preserved. This mapping could be constructed via
random projection.
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