Shuyang Ling

New York University Shanghai

September 9, 2019
If $X \sim \mathcal{N}(0, \Sigma)$ where

$$
\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} = U\Lambda U^\top, \quad U = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}
$$

Then

$$U^\top X \sim \mathcal{N}(0, \tilde{\Sigma}), \quad \tilde{\Sigma} = \begin{bmatrix} 1.5 & 0 \\ 0 & 0.5 \end{bmatrix} = \Lambda, \quad U^\top = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
Marginal distribution of multivariate Gaussian

Let \(e_i = [0, \cdots, 0, 1, 0, \cdots, 0]^\top \in \mathbb{R}^d \), consider \(e_i^\top X \) where \(X \sim \mathcal{N}(\mu, \Sigma) \).

How about its center (mean) and spread (variance)?

\[
\mu_i = e_i^\top \mu, \quad \sigma_i^2 = e_i^\top \Sigma e_i = \sigma_{ii}
\]

where \(\mu_i \) is the \(i \)-th entry of \(\mu \) and \(\sigma_{ii} \) is the \(i \)-th diagonal entry of \(\Sigma \).

The marginal distribution of \(X_1 \) is \(X_1 \sim \mathcal{N}(\mu_i, \sigma_{ii}) \), where \(\sigma_{ii} \) is the \((i, i)\) entry of \(\Sigma \).

The marginal distribution:

\[
X \sim \mathcal{N}(0, \Sigma), \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}, \quad X_1 \sim \mathcal{N}(0, 1), \quad X_2 \sim \mathcal{N}(0, 1).
\]
Marginal distribution of Gaussian
When \(A\) is a vector

Let \(a \in \mathbb{R}^d\) be a vector and \(Z \sim \mathcal{N}(\mu, \Sigma) \in \mathbb{R}^d\), then

\[
a^\top Z = \sum_{i=1}^{d} a_i Z_i \sim \mathcal{N}(a^\top \mu, a^\top \Sigma a).
\]

(A special case: \(a_i = 1, \forall 1 \leq i \leq d\)).

If \(Z_i \sim \mathcal{N}(\mu_i, \sigma_i^2), 1 \leq i \leq d\) are independent (\(\Sigma\) is diagonal and \(\sigma_{ii} = \sigma_i^2\)), then

\[
\sum_{i=1}^{d} Z_i \sim \mathcal{N}\left(\sum_{i=1}^{d} \mu_i, \sum_{i=1}^{d} \sigma_i^2\right)
\]

where \(a_i\) is the \(i\)-th entry of \(a\).
Return to the previous example:

\[\mathbf{X} \sim \mathcal{N}(0, \Sigma), \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \]

What is distribution of \(X_1 + X_2 \)?

\[1^T \Sigma 1 = \sigma_{11} + \sigma_{22} + 2\sigma_{12} = 3. \]

Therefore, \(X_1 + X_2 \sim \mathcal{N}(0, 3) \).
Given a random vector \((X, Y)\). The marginal distributions are both Gaussian. Is the joint distribution Gaussian?

No, one example is in our homework.

Suppose \(a\) and \(b\) are two deterministic vectors in \(\mathbb{R}^d\).

Question: When are \(a^\top Z\) and \(b^\top Z\) independent where \(Z \sim \mathcal{N}(0, I_d)\)?

Independence

The independence holds if and only if

\[
a^\top b = \sum_{i=1}^{d} a_i b_i = 0,
\]

i.e., \(a\) and \(b\) are orthogonal to each other.
Given a random variable, we are interested in the average value of its outcome.

Expectation and mean

The **expectation** or mean of X is defined to be

- **Discrete**: let $f_X(x)$ be the pmf of X,

$$E(X) = \sum_{x \in \mathcal{X}} xf_X(x) = \sum_{x \in \mathcal{X}} x \cdot P(X = x).$$

- **Continuous**: let $f_X(x)$ be the pdf of X,

$$E(X) = \int_{\mathbb{R}} xf_X(x) \, dx$$
The mean is a deterministic quantity which describes the center of mass of the distribution.

As a unifying form, we denote

$$E(X) = \int_{\mathbb{R}} x \, dF_X(x), \quad F_X \text{ is the cdf of } X.$$

In particular, if X is continuous, $dF_X(x) = f_X(x) \, dx$.
Example

Suppose $X \sim \text{Bernoulli}(p)$. What is $\mathbb{E}(X)$?

$$\mathbb{E}(X) = \sum_{x \in \mathcal{X}} x \mathbb{P}(X = x)$$

$$= 0 \cdot \mathbb{P}(X = 0) + 1 \cdot \mathbb{P}(X = 1) = p.$$

Let $X \sim \text{Unif}(a, b)$:

$$\mathbb{E}(X) = \int_{a}^{b} \frac{x}{b-a} \, dx = \frac{1}{b-a} \cdot \frac{x^2}{2} \bigg|_{a}^{b}$$

$$= \frac{1}{2(b-a)} (b^2 - a^2) = \frac{a + b}{2}.$$
How about Gaussian distribution? Let $X \sim \mathcal{N}(\mu, \sigma^2)$

$$E(X) = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} xe^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx.$$

By letting $t = x - \mu$ and $x = t + \mu$, there holds

$$E(X) = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} te^{-\frac{t^2}{2\sigma^2}} \, dt + \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} \mu e^{-\frac{t^2}{2\sigma^2}} \, dt = \mu.$$

The first term vanishes since $te^{-\frac{t^2}{2\sigma^2}}$ is an odd function!
Mean of important random variables

<table>
<thead>
<tr>
<th>Random variable</th>
<th>Parameters</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Geometric</td>
<td>p</td>
<td>$\frac{1}{p}$</td>
</tr>
<tr>
<td>Binomial</td>
<td>n, p</td>
<td>np</td>
</tr>
<tr>
<td>Poisson</td>
<td>λ</td>
<td>λ</td>
</tr>
<tr>
<td>Uniform</td>
<td>a, b</td>
<td>$\frac{a+b}{2}$</td>
</tr>
<tr>
<td>Exponential</td>
<td>β</td>
<td>β</td>
</tr>
<tr>
<td>Gaussian</td>
<td>μ, σ</td>
<td>μ</td>
</tr>
</tbody>
</table>
Existence of expectation

Not every distribution has an expected value.

We say the expectation exists if

$$\mathbb{E}(|X|) = \int_{\mathbb{R}} |x| \, dF_X(x) < \infty.$$

In particular,

- If X is discrete,

 $$\sum_{x \in \mathcal{X}} |x| f_X(x) < \infty$$

- If X is continuous,

 $$\int_{\mathcal{X}} |x| f_X(x) \, dx < \infty$$
Example

One famous example is Cauchy distribution with pdf

\[f_X(x) = \frac{1}{\pi} \cdot \frac{1}{1 + x^2}. \]

We proceed to compute \(\mathbb{E}(|X|) \):

\[
\int_{\mathbb{R}} |x| \, dF(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|x|}{1 + x^2} \, dx \\
= \frac{2}{\pi} \int_{0}^{\infty} x \, dx \\
= \frac{1}{\pi} \int_{0}^{\infty} \frac{d(x^2)}{1 + x^2} \\
= \frac{1}{\pi} \ln(1 + x^2) \bigg|_0^\infty = \infty.
\]
A gambling game: toss a fair die and win/lose money depending on the outcome

<table>
<thead>
<tr>
<th>Outcome X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit $r(X)$</td>
<td>-5</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

The average profits after one toss would be

$$\text{Average profits} = \sum_{x=1}^{6} \mathbb{P}(X = x) \cdot r(x) = \frac{1}{6} \sum_{x=1}^{6} r(x)$$

$$= \frac{1}{6} \cdot (-5 - 2 - 1 + 1 + 3 + 4)$$

$$= 0.$$

The expected return should be the sum of the return $r(x)$ times the chance that $X = x$ over all values of x.
Expectation of $r(X)$

- **Discrete scenario:** $f_X(x)$ is a pmf and
 \[
 \mathbb{E}(r(X)) = \sum_{x \in \mathcal{X}} r(x)f_X(x).
 \]

- **Continuous scenario:** $f_X(x)$ is a pdf and
 \[
 \mathbb{E}(r(X)) = \int_{x \in \mathcal{X}} r(x)f_X(x) \, dx.
 \]
Expectation of $r(X, Y)$

This can be easily extended to multivariate case.

- Suppose we have two random variables (X, Y) with joint pmf/pdf $f_{X,Y}(x, y)$.
- What’s the expectation of $r(X, Y)$ where r is a function on \mathbb{R}^2?

Expectation of $r(X)$

- Discrete scenario: $f_X(x, y)$ is a pmf and

$$\mathbb{E}(r(X, Y)) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} r(x, y) f_{X,Y}(x, y).$$

- Continuous scenario: $f_X(x)$ is a pdf and

$$\mathbb{E}(r(X, Y)) = \int_{x \in \mathcal{X}, y \in \mathcal{Y}} r(X, Y) f_{X,Y}(x, y) \, dx \, dy.$$

This can be generalized to n variables.
Suppose we have two random variables. What is the expectation of $X + Y$?

Linearity

Let X and Y be two random variables (not necessarily independent).

\[
\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)
\]

\[
\mathbb{E}(cX) = c \mathbb{E}(X)
\]

where c is a scalar.
Linearity of expectation

We show that for discrete random variables,

\[E(X + Y) = \sum_{x \in X, y \in Y} (x + y) f_{X,Y}(x, y) \]

\[= \sum_{x \in X} \sum_{y \in Y} xf_{X,Y}(x, y) + \sum_{y \in Y} \sum_{x \in X} yf_{X,Y}(x, y) \]

\[= \sum_{x \in X} xf_{X}(x) + \sum_{y \in Y} yf_{Y}(y) \]

\[= E(X) + E(Y). \]

The derivation does NOT require independence.
Suppose $X \sim \text{Binomial}(n, p)$. What is $\mathbb{E}(X)$?

$$\mathbb{E}(X) = \sum_{k=0}^{n} k \cdot \mathbb{P}(X = k) = \sum_{k=0}^{n} k \binom{n}{k} p^k (1 - p)^{n-k}.$$

Note that $X = \sum_{i=1}^{n} X_i$ where each $X_i \sim \text{Bernoulli}(p)$. Thus

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(X_i) = \sum_{i=1}^{n} p = np.$$
Let A be a set and define

$$1_A(X) = \begin{cases} 1, & \text{if } X \in A \\ 0, & \text{otherwise} \end{cases}$$

This function is called the indicator function of A.

$$\mathbb{E} 1_A(X) = \int_{x \in \mathcal{X}} 1_A(x) \, dF_X(x) = \int_A dF_X(x) = \mathbb{P}(X \in A).$$

In other words, the probability of an event occurring is a special case of expectation.
X and Y are independent if and only if for any set A and B,

$$
\mathbb{E} 1_A(X)1_B(Y) = \mathbb{E} 1_A(X) \mathbb{E} 1_B(Y)
$$

since $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \mathbb{P}(Y \in B)$.

- If X and Y are independent, then

$$
\mathbb{E}(XY) = \mathbb{E}(X) \mathbb{E}(Y).
$$

- If X and Y are independent, then

$$
\mathbb{E} g_1(X)g_2(Y) = \mathbb{E} g_1(X) \mathbb{E} g_2(Y)
$$

for any piecewise continuous functions g_1 and g_2.
An important example of $r(x)$ is $r(x) = (x - a)^2$ for some number a.

Variance

Let X be a random variable with mean μ. The variance, denoted by σ^2 or σ_X^2 or $\text{Var}(X)$, is defined by

$$\sigma^2 = \mathbb{E}(X - \mu)^2 = \int_X (x - \mu)^2 \, dF(x)$$

provided this expectation exists. The standard deviation is σ.

- Variance, the expectation of the squared deviation of a random variable from its mean, is a way to mean the spread of a distribution (uncertainty) from its mean.
- σ^2 is always nonnegative. In particular, if $\sigma = 0$, then $X = \mu$.