Motivation: In 1000 tosses of a coin, 560 heads and 440 tails appear. The maximum likelihood estimation gives

\[\hat{\theta} = 0.56. \]

Is it reasonable to assume that the coin is fair?
A hypothesis is a statement about a population parameter.

The two complementary hypothesis in a hypothesis testing problem are
- the null hypothesis, denoted by H_0
- the alternative hypothesis, denoted by H_1

Example
- The population parameter is θ
- Null hypothesis: it is a fair coin $H_0 : \theta = \frac{1}{2}$
- Alternative hypothesis: it is not a fair coin $H_1 : \theta \neq \frac{1}{2}$
Example continued

Suppose $\theta_0 = \frac{1}{2}$ (if null hypothesis is true), then \overline{X}_n satisfies

$$
\frac{\overline{X}_n - \theta_0}{\sqrt{\theta_0(1 - \theta_0)/n}} \xrightarrow{d} \mathcal{N}(0, 1).
$$

In other words, with probability $1 - \alpha$, \overline{X}_n should fall into

$$
\left(\theta_0 - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\theta_0(1 - \theta_0)}{n}}, \theta_0 + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\theta_0(1 - \theta_0)}{n}} \right)
$$

If $\theta_0 = \frac{1}{2}$, $n = 1000$, $\alpha = 0.05$, and $z_{0.975} = 1.96$,

$$
(0.4690, 0.5310)
$$

In other words, 0.56 does not fall into this interval (it is not confidence interval)! We should reject the null hypothesis $H_0 : \theta_0 = \frac{1}{2}$!
How to decide which hypothesis we should accept/reject?

We reject H_0 if the observed value of $T(X)$ belongs to a region $R \subseteq \mathcal{X}$.

The statistics $T(X)$ is called the test statistics and R is called the rejection region or critical region.
Test statistics and rejection region

In the coin tossing example: $T(X) = \overline{X}_n$ and the rejection region is

$$R = \left(-\infty, \theta_0 - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\theta_0(1-\theta_0)}{n}} \right) \cup \left(\theta_0 + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\theta_0(1-\theta_0)}{n}}, \infty \right)$$

where $\theta_0 = \frac{1}{2}$ is the parameter in Θ_0.

Equivalently, we reject $H_0 : \theta = \theta_0$ if

$$\left| \frac{\overline{X}_n - \theta_0}{\sqrt{\frac{\theta_0(1-\theta_0)}{n}}} \right| > z_{1-\frac{\alpha}{2}}.$$

where \overline{X}_n is the observed value of \overline{X}_n.

However, is it possible that $T(X)$ and the choice of R give you a wrong answer?
Type I and II error

There are two types of errors:

- **Type I error**: we reject H_0 but H_0 is the truth.
- **Type II error**: we retain H_0 but H_1 is the truth.

Table: Summary of outcomes of hypothesis testing

<table>
<thead>
<tr>
<th></th>
<th>Retain Null H_0</th>
<th>Reject Null H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 true</td>
<td>✓</td>
<td>Type I error</td>
</tr>
<tr>
<td>H_1 true</td>
<td>Type II error</td>
<td>✓</td>
</tr>
</tbody>
</table>

It is important to note that reject H_0 does not mean accept H_1.
Power function

The power function of a test with rejection region R is defined by

$$
\beta(\theta) = \mathbb{P}_\theta(T(X) \in R)
$$

where $X \sim F(x; \theta)$.

Remark: The power function is the probability of rejecting θ.
Size of a test

The size of a test is defined to be

\[\alpha = \sup_{\theta \in \Theta_0} \beta(\theta) \]

where \(\Theta_0 \) consists of all parameters in the null hypothesis. A test is said to have level \(\alpha \) if its size is less than or equal to \(\alpha \).

- The size of a test is the maximal probability of rejecting the null hypothesis when the null hypothesis is true.
- If the level \(\alpha \) is small, it means type I error is small.
Example

Let $X_1, \cdots, X_n \sim N(\mu, \sigma^2)$ where σ is known. We want to test

$$H_0 : \mu < 0 \text{ versus } H_1 : \mu > 0$$

Hence

$$\Theta_0 = (-\infty, 0] \text{ versus } \Theta_1 = (0, \infty).$$

Note that

$$T(X) = \bar{X}_n$$

is the MLE of μ. We reject H_0 if $T(X) > c$ where c is a number.
We reject H_0 if $T(X) > c$. The power function is

$$
\beta(\mu) = \mathbb{P}_\mu(T(X) > c) = \mathbb{P}_\mu(\bar{X}_n > c) \\
= \mathbb{P}_\mu \left(\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} > \frac{\sqrt{n}(c - \mu)}{\sigma} \right) \\
= 1 - \Phi \left(\frac{\sqrt{n}(c - \mu)}{\sigma} \right)
$$

What is the size? Note that $\beta(\mu)$ is increasing!

$$
\sup_{\mu \leq 0} \beta(\mu) = \beta(0) = 1 - \Phi \left(\frac{\sqrt{nc}}{\sigma} \right).
$$

To have a size α test, we set $\beta(0) = \alpha$:

$$
c = \frac{\sigma \Phi^{-1}(1 - \alpha)}{\sqrt{n}} = \frac{\sigma z_{1-\alpha}}{\sqrt{n}}
$$
Here $\beta(0) = \alpha = 0.05$, i.e., the probability of rejecting the null hypothesis when H_0 is true is smaller than 0.05.
The Wald test

Consider testing

\[H_0 : \theta = \theta_0 \text{ versus } H_1 : \theta \neq \theta_0. \]

Assume that \(\hat{\theta} \) is asymptotically normal:

\[\frac{\hat{\theta} - \theta_0}{\hat{se}} \sim \mathcal{N}(0, 1) \]

if \(\theta_0 \) is the true parameter. Then the size \(\alpha \) Wald test is: reject \(H_0 \) when

\[|W| \geq z_{1 - \frac{\alpha}{2}} \]

where

\[W = \frac{\hat{\theta} - \theta_0}{\hat{se}} \]

is close to standard normal and \(\hat{se} \) is the estimated standard deviation of \(\hat{\theta} \).
For example, in the coin tossing example,

\[\hat{\theta} = \bar{X}_n \]

and

\[\hat{se} = \sqrt{\frac{\hat{\theta}(1 - \hat{\theta})}{n}}. \]

We reject \(H_0 : \theta_0 = \frac{1}{2} \) if

\[|\hat{\theta} - \theta_0| \geq z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{\theta}(1 - \hat{\theta})}{n}}. \]