Simultaneous Blind Deconvolution and Blind Demixing via Convex Programming

Shuyang Ling

Department of Mathematics, UC Davis

Nov.8th, 2016
Acknowledgements

Research in collaboration with:

Prof. Thomas Strohmer (UC Davis)

This work is sponsored by NSF-DMS and DARPA.
Outline

- Setup: blind deconvolution and demixing
- Convex relaxation and main result
- Numerics and idea of proof
What is blind deconvolution?

Suppose we observe a function \(y \) which is the convolution of two unknown functions, the blurring function \(f \) and the signal of interest \(g \), plus noise \(w \). How to reconstruct \(f \) and \(g \) from \(y \)?

\[
y = f * g + w.
\]

It is obviously a highly ill-posed bilinear inverse problem... but important in signal processing.
Suppose that a signal x, encoded by A, is transmitted through an unknown channel f. How to reconstruct f and x from y?

$$y = f \ast Ax + w.$$
Blind deconvolution meets demixing?

\[
y = \sum_{i=1}^{r} f_i \ast g_i + w
\]

User 1
- \(f_1 \): channel
- \(g_1 \): signal

User \(i \)
- \(f_i \): channel
- \(g_i \): signal

User \(r \)
- \(f_r \): channel
- \(g_r \): signal

Decoder

Estimate \((f_1, g_1)\)
Estimate \((f_i, g_i)\)
Estimate \((f_r, g_r)\)
Blind deconvolution and blind demixing

We start from the original model

\[y = \sum_{i=1}^{r} f_i * g_i + w. \]

This is even more difficult than blind deconvolution, since this is a “mixture” of blind deconvolution problem.

More assumptions

- Each impulse responses \(f_i \) has maximum delay spread \(K \).
 \[f_i(n) = 0, \quad \text{for } n > K. \]
- \(g_i := \tilde{A}_i x_i \) is the signal \(x_i \in \mathbb{C}^N \) encoded by matrix \(\tilde{A}_i \in \mathbb{C}^{L \times N} \) with \(L > N \).
Model under subspace assumption

In the frequency domain,

\[
\hat{y} = \sum_{i=1}^{r} \hat{f}_i \odot \hat{g}_i + w = \sum_{i=1}^{r} \text{diag}(\hat{f}_i)\hat{g}_i + w,
\]

where “\(\odot\)” denotes entry-wise multiplication. We assume \(y\) and \(\hat{y}\) are both of length \(L\).

Subspace assumption

Denote \(F\) as the \(L \times L\) DFT matrix.

- Let \(h_i \in \mathbb{C}^K\) be the first \(K\) nonzero entries of \(f_i\) and \(B_i\) be a low-frequency DFT matrix. There holds,
 \[
 \hat{f}_i = Ff_i = B_i h_i.
 \]

- \(\hat{g}_i := A_i x_i\) where \(A_i := F \tilde{A}_i\) and \(x_i \in \mathbb{C}^N\).
Mathematical model

Finally, we end up with the following model,

Model with subspace constraint

\[y = \sum_{i=1}^{r} \text{diag}(B_i h_i) A_i x_i + w, \]

Goal: We want to recover \((h_i, x_i)_{i=1}^{r}\) from \((y, B_i, A_i)_{i=1}^{r}\).

Remark: The degree of freedom for unknowns: \(r(K + N)\); number of constraint: \(L\). To make the solution identifiable, we require \(L \geq r(K + N)\) at least.

Special case if \(r = 1\)

In particular, if \(r = 1\), it is a blind deconvolution problem.

\[y = \text{diag}(B h) A x + w. \]
Nonconvex optimization?

Naive approach?

We may want to try nonlinear least squares approach:

\[
\min_{(u_i, v_i)} \left\| \sum_{i=1}^{r} \text{diag}(B_i u_i) A_i v_i - y \right\|^2.
\]

This gives a nonconvex objective function.

- May get stuck at local minima and no guarantees for recoverability.
- For \(r = 1 \), we have recovery guarantees by adding regularizers but not for \(r > 1 \).
Nonconvex optimization?

Naive approach?

We may want to try nonlinear least squares approach:

\[
\min_{(u_i, v_i)} \left\| \sum_{i=1}^{r} \text{diag}(B_i u_i) A_i v_i - y \right\|^2.
\]

This gives a nonconvex objective function.

- May get stuck at local minima and no guarantees for recoverability.
- For \(r = 1 \), we have recovery guarantees by adding regularizers but not for \(r > 1 \).

Two-step convex approach

(a) Lifting: convert nonconvex constraints to linear

(b) Solving a SDP relaxation and hope to recover \(\{h_i x_i^*\}_{i=1}^{r} \)
Convex approach of demixing problem

Step 1: lifting

Let $a_{i,l}$ be the l-th column of A_i^* and $b_{i,l}$ be the l-th column of B_i^*.

$$ y_l = \sum_{i=1}^{r} (B_i h_i) x_i^* a_{i,l} + w_l = \sum_{i=1}^{r} b_{i,l}^* h_i x_i^* a_{i,l} + w_l, $$

Let $X_i := h_i x_i^*$ and define the linear operator $A_i : \mathbb{C}^{K \times N} \rightarrow \mathbb{C}^L$ as,

$$ A_i(Z) := \{b_{i,l}^* Z a_{i,l}\}_{l=1}^{L} = \{\langle Z, b_{i,l} a_{i,l}^* \rangle\}_{l=1}^{L}. $$

Then, there holds

$$ y = \sum_{i=1}^{r} A_i(X_i) + w. $$

- **Advantage:** linear constraints (convex constraints)
- **Disadvantage:** dimension increases
Recast as rank-\(r\) matrix recovery

We rewrite \(y = \sum_{i=1}^{r} \text{diag}(B_i h_i) A_i x_i\) as

\[
y_l = \left\langle \begin{bmatrix} h_1 x_1^* & 0 & \cdots & 0 \\ 0 & h_2 x_2^* & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & h_r x_r^* \end{bmatrix}, \begin{bmatrix} b_{1,l} a_{1,l}^* & 0 & \cdots & 0 \\ 0 & b_{2,l} a_{2,l}^* & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{r,l} a_{r,l}^* \end{bmatrix} \right\rangle
\]

- Find a rank-\(r\) block diagonal matrix satisfying the linear constraints above.
- Finding such a rank-\(r\) matrix is also an NP-hard problem.
Convex relaxation

Nuclear norm minimization

Since this system is highly underdetermined, we hope to recover all \(\{Z_i\}_{i=1}^{r} \) from

\[
\min \sum_{i=1}^{r} \|Z_i\|_* \quad \text{subject to} \quad \sum_{i=1}^{r} A_i(Z_i) = y.
\]

Once we obtain \(\{\hat{Z}_i\}_{i=1}^{r} \), we can easily extract the leading left and right singular vectors from \(Z_i \) as the estimation of \((h_i, x_i) \).

Key question: does the solution to the SDP above really give \(\{h_i x_i^*\}_{i=1}^{r} \)? What conditions are needed?
State-of-the-art: blind deconvolution ($r = 1$)

Nuclear norm minimization

Consider the convex envelop of rank(Z): nuclear norm $\|Z\|_* = \sum \sigma_i(Z)$.

$$\min \|Z\|_* \quad \text{s.t.} \quad A(Z) = A(X).$$

Convex optimization can be solved within polynomial time.

Theorem [Ahmed-Recht-Romberg 14]

Assume $y = \text{diag}(Bh)Ax$, $A : L \times N$ is a Gaussian random matrix, and $B \in \mathbb{C}^{L \times K}$ is a partial DFT matrix,

$$B^*B = I_K, \quad L\|Bh\|_\infty^2 \leq \mu_h^2,$$

the above convex relaxation recovers $X = hx^*$ exactly with high probability if

$$C_0 \max(K, \mu_h^2N) \leq \frac{L}{\log^3 L}.$$
Main results

Theorem [Ling-Strohmer 15]

Each $B_i \in \mathbb{C}^{L \times K}$ partial DFT matrix with $B_i^* B_i = I_K$ and each A_i is a Gaussian random matrix, i.e., each entry in A_i i.i.d $\sim \mathcal{N}(0, 1)$. Let μ_h^2 be as defined in $\mu_h^2 = L \max_{1 \leq i \leq r} \left\| \frac{B_i h_i}{h_i} \right\|^2$. If

$$L \geq C_\alpha + \log r^2 \max\{K, \mu_h^2 N\} \log^3 L,$$

then the solution to convex relaxation satisfies

$$\hat{X}_i = X_i, \quad \text{for all } i = 1, \ldots, r,$$

with probability at least $1 - \mathcal{O}(L^{-\alpha+1})$.
Remark

- Our result is a generalization of Ahmed-Romberg-Recht’s result to $r > 1$.
- B_i have other choices other than DFT matrix.
- Incoherence μ_h^2 does affect the result.
Remark

- Our result is a generalization of Ahmed-Romberg-Recht’s result to $r > 1$.
- B_i have other choices other than DFT matrix.
- Incoherence μ_h^2 does affect the result.
- r^2 is not optimal. One group has claimed to reduce the sampling complexity from r^2 to r.
- Empirically, A_i can be other matrices besides Gaussian. However, no theories exist so far.
Numerics: does L really scales linearly with r?

A_i is chosen as Gaussian matrix. Here $K = 30$ and $N = 25$ are fixed. Black: failure; White: success.
Numerics: does L really scales linearly with r?

Choose $A_i = D_i H$ where H is a partial Hadamard matrix (± 1 orthogonal matrix). D_i is a random ± 1 diagonal matrix.

Number of unknowns $r(K + N) = 16 \cdot 30 = 480$ is slightly smaller than the number of constraints 512.
Numerics: L scales linearly with $K + N$.

Numerical simulations verify our theory that $L \approx O(r(K + N))$ gives exact recovery. Here $r = 2$ and $L \approx 1.5r(K + N)$.

![Fixed L = 128, A: a Gaussian random matrix](image1)

![Fixed L = 128, A: a partial Hadamard matrix](image2)
We observe strong linear correlation between minimal required L and μ_h^2:

$$L \propto \max_{1 \leq i \leq r} \frac{\|B_i h_i\|_\infty^2}{\|h_i\|_2^2}.$$
Stability theorem

In reality measurements are noisy. Hence, suppose that \(\hat{y} = y + w \) where \(w \) is noise with \(\| w \| \leq \eta \).

\[
\min \sum_{i=1}^{r} \| Z_i \|_* \quad \text{subject to} \quad \| \sum_{i=1}^{r} A_i(Z_i) - \hat{y} \| \leq \eta. \quad (1)
\]

Theorem

Assume we observe \(\hat{y} = y + w = \sum_{i=1}^{r} A_i(X_i) + w \) with \(\| w \| \leq \eta \). Then, the minimizer \(\{ \hat{X}_i \}_{i=1}^{r} \) satisfies

\[
\sqrt{\sum_{i=1}^{r} \| \hat{X}_i - X_i \|_F^2} \leq Cr \sqrt{\max\{K, N\}} \eta.
\]

with probability at least \(1 - O(L^{-\alpha+1}) \).
Stability

We see that the relative error is \textit{linearly} correlated with the noise in dB. Approximately, 10 units of increase in SNR leads to the \textit{same} amount of decrease in relative error (in dB).

\[\text{SNR (dB)} \]
\[\text{Average Relative Error of 10 Samples (dB)} \]

L = 256, r = 15, A: Partial Hadamard matrix

L = 256, r = 3, A: Gaussian
Sketch of proof

Let’s consider the noiseless version,

\[
\min \sum_{i=1}^{r} \|Z_i\|_* \quad \text{subject to} \quad \sum_{i=1}^{r} A_i(Z_i) = y.
\]

Difficulties:
- \(X_i\) is asymmetric.
- How to deal with block diagonal structure?

Two-step proof
- Find a sufficient condition for exact recovery
- Construct an approximate dual certificate via golfing scheme
Sufficient condition

Three key ingredients to achieve exact recovery

1. **Local isometry property on** T_i

\[
\max_{1 \leq i \leq r} \| \mathcal{P}_{T_i} A_i^* A_i \mathcal{P}_{T_i} - \mathcal{P}_{T_i} \| \leq \frac{1}{4}
\]

where $T_i = \{ h_i h_i^* Z + (I - h_i h_i^*) Z x_i x_i^* \}$.

2. **Local incoherence property**

\[
\max_{i \neq j} \| \mathcal{P}_{T_i} A_i^* A_j \mathcal{P}_{T_j} \| \leq \frac{1}{4r}
\]

3. **Existence of an approximate dual certificate, which is achieved via the celebrated golfing scheme).** Find a $\lambda \in \mathbb{C}^L$ such that for all $1 \leq i \leq r$,

\[
\| \mathcal{P}_{T_i} (A_i^* \lambda) - h_i x_i^* \|_F \leq \frac{1}{5r \gamma}, \quad \| \mathcal{P}_{T_i}^\perp (A_i^* \lambda) \| \leq \frac{1}{2}
\]

where $\gamma := \max \{ \| A_i \| \}$.
Conclusion and future work

- Can we derive a theoretical bound that scales linearly in r, rather than quadratic in r as our current theory? (It may have been solved!)
- Is it possible to develop satisfactory theoretical bounds for deterministic matrices A_i?
- Fast algorithms: extend our nonconvex optimization framework to this blind-deconvolution-blind-demixing scenario.
- Can we develop a theoretical framework where the signals x_i belong to some non-linear subspace, e.g. for sparse x_i?