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1. INTRODUCTION

Eddying flow in the ocean develops as a result
of baroclinic instability, and the environment in
which the flow develops is vertically and horizon-
tally inhomogeneous. A theory that takes into
account the vertical inhomogeneities and predicts
the magnitude and structure of the eddy potential
vorticity flux for strongly baroclinically unstable
mean shears is reviewed and extended to include
the full range of supercriticalities. The theory ap-
plies equally to systems with uniform and non-
uniform stratification and utilizes the neutral strat-
ification modes and the projection of the mean
shear onto these modes. For both strongly and
weakly unstable shears, the predicted eddy poten-
tial vorticity flux automatically conserves momen-
tum. In the weakly unstable case this result is
non-trivial; because β contributes non-negligibly
to the mean potential vorticity gradient, the po-
tential vorticity flux can no longer be simply pro-
portional, at each level, to the vortex-stretching
part of the potential vorticity gradient and still
conserve momentum.

2. FLOW SCALES

In the weakly unstable limit (WUL), the flow is un-
stable, yet there is little scale separation between
the first deformation scale and the barotropic halt-
ing scale, hence not much of an inverse cascade.
In this case we might estimate the mixing length,
or “halting scale” of the cascade as the deforma-
tion scale, i.e.,

kmix ' λ1. (1)

The feedback that exists between the halting
scale and the generation rate noted by Held and
Larichev (1996) in the strongly unstable case is
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now avoided. One should not confuse the above
statement with the theory of Stone (1972), who
posed the same mixing scale for all eddies gener-
ated by baroclinic instability.

The results of Smith et al. (2002, hereafter
SB) suggest that when both linear drag and β

are present, the mixing scale and the largest
barotropic energy scale may not be the same.
They present simulations of two-dimensional tur-
bulence forced at small scale, and modified by lin-
ear drag and β. In addition, a tracer, with a fixed
large-scale mean gradient, is stirred by this flow.
In those simulations, jets form at strengths and
widths which are combined functions of drag and
β. In contrast, the mixing of the tracer occurred
at a scale which depended only on β, not on drag.

We can extend the argument of SB to the baro-
clinic case. The spatially averaged energy budget
for the barotropic mode in the presence of linear
drag can be written

dE0

dt
= −2rE0 + G0(t) (2)

where Γ0(t) represents all the non-zero baroclinic-
barotropic transfer terms (which act to force the
barotropic mode) less the small-scale dissipation.
Since there is no net barotropic eddy generation,
the transfer term must equal the baroclinic en-
ergy generation rate. SB found that the stirring
of tracer, forced by a large scale mean meridional
gradient (hence analogous to baroclinic potential
vorticity at large scale), occurred at the scale
kβ ' (β3/5/ε)1/5, termed the “inviscid Rhines”
scale, despite that jets formed at a larger scale
that depends on a combination of drag and β.

We assume that the stirring of the baroclinic
potential vorticity, or the baroclinic energy gener-
ation rate, occurs at kβ, and is largely unaffected
by drag, and we write the generation, dissipation



and barotropic energy such that

G0(t) = g0 + γ(t), 〈G0〉 = g0 (3)
E0(t) = e0 +ε(t), 〈E0〉 = e0, (4)

with a time average defined as

〈 f (t)〉 ≡ 1
τ

∫ t+τ

t

df
dt′

dt′.

Then

〈dE0

dt
〉 =

ε(t + τ)−ε(t)
τ

= −2re0 + g0.

If the flow is in statistically steady state, then
[ε(t + τ)−ε(t)]/τ → 0, for all sufficiently large
τ (say, larger than an eddy turn-around time), and

e0 '
g0

2r
. (5)

If the drag is small enough that anisotropy is al-
lowed to develop, yet the cascade is halted by β,
then the barotropic energy will consist of large-
scale zonal jets, and e0 ' U2

0/2, so that U0 '
(g0/r)1/2.

SB (and references) find that the anisotropic
cascade occurs among the meridional wavenum-
bers, and forms a k−5 spectrum. Setting the inte-
gral of the energy spectrum considered by SB to
the total energy found in (5),∫ ∞

kβ,r

Cββ2k−5 dk ' g0

2r
(6)

leads to

kβ,r '
(
Cββ2r

2g0

)1/4

. (7)

Smith and Vallis (2002, hereafter SV) find, in a
series of five-layer runs in which the first baroclinic
mode was forced and bottom drag was varied, that
the generation had a weak dependence on drag,
ε ∼ r−1/4. Substituting this dependence in (7)
alters the dependence of kβ,r from r1/4 to r5/16 —
likely an undetectable difference.

The inviscid β scale is the scale discussed by
Maltrud and Vallis (1991),

kβ = β3/5ε−1/5, (8)

and it is at this scale that we expect baroclinic
eddy generation to occur. In the weakly unsta-
ble limit, this scale is nearly coincident with the
deformation.

Barotropic energy accumulates at ky = ±kβ,r in
the two-dimensional spectral plane, with phases
that are no longer randomized by strong turbu-
lence, but that are approximately set by the Rossby
wave dispersion relation. These sharp peaks also
cover a very limited ‘area’ in the wavenumber
plane, and correspond to zonal jets. Thus it is
not surprising that, despite its large amplitude, en-
ergy at the viscous β scale contributes negligibly
to the variance-generating correlation between the
meridional eddy velocity and the baroclinic PV.

3. FLOW ENERGIES

Assuming a weak, but existant, inverse barotropic
cascade, most of the arguments in SV can be car-
ried over to the present case. Using their estimate
equation (B.3) for the baroclinic eddy energy gen-
eration rate for N modes,

g0 '
N

∑
m=1

Ūmλ2
mV′

mΨ′
0, (9)

and their estimate the baroclinic eddy velocities at
the mixing scale,

〈Vm〉kmix ' Ūm, (10)

we can express the generation rate as

g0 ' V0k−1
mixµ

2 (11)

where

µ2 ≡ T−2
e =

N

∑
m=1

Ū2
mλ2

m. (12)

A departure from the theory presented in SV
must be made in relating the generation rate to
the barotropic velocity. The previous section im-
plies that the relevant barotropic velocity is the
isotropic meridional eddy velocity at the mixing
scale kmix, which is not necessarily coincident with
the drag-sensitive, anisotropic peak. Following
equation (7.17) of SB, we estimate the isotropic



mixing velocity (the isotropic barotropic merid-
ional velocity magnitude at the mixing scale kmix)
as

Vmix '
[∫ λ

kmix

Cε2/3k−5/3 dk
]1/2

=
[

3
2
Cε2/3(k−2/3

mix − λ
−2/3
1 )

]1/2

, (13)

where ε is the energy transfer rate, equal to the
baroclinic generation g0. In the WUL, if we truly
take kmix = λ1, then Vmix = 0. In the formal
sense, this is reasonable if we expect no mixing or
generation without baroclinic instability, and we
will make this assumption1. Eliminating g0 be-
tween (13) and (11) yields

Vmix ' (3C/2)3/4µk−1
mix[1− (kmix/λ1)2/3]3, (14)

g0 ' (3C/2)3/4µ3k−2
mix[1− (kmix/λ1)2/3]3. (15)

If we use (8) as an estimate for kmix, then a feed-
back between the generation rate and the stopping
scale will be introduced. The resulting equations
cannot be solved directly, so we take an iterative
solution. Taking the limit kmix/λ1 → 0 in (15)
and setting kmix = kβ and ε = g0 in (8), we get
the solution valid in the strongly unstable limit,
kmix ' α1/4µ−1β, where α = 3C/2. Substitut-
ing this directly into (15) then gives the iterated
solution for the barotropic mixing velocity

Vmix ' αµ2β−1(1− ∆2/3)3. (16)

where ∆ = α1/4β(µλ1)−1 is nearly equal to the
inverse of the two-layer supercriticality.

4. POTENTIAL VORTICITY FLUX

Following SV we can expand the horizontally av-
eraged potential vorticity flux in vertical modes

v′q′ =
N

∑
m,n=0

amnφm(z)φm(z) (17)

1One should note the following caveats. First, linear
drag can induce baroclinic generation, even in the inviscid
stable limit, and further, linear dynamics with drag can mix
a tracer in much the same way Brownian motion leads to
net particle displacements. Second, when the mean shear
and/or stratification are surface intensified, the system may
be baroclinically unstable at significantly smaller scale than
the first deformation scale.

where

amn = V′
mQ′

n (18)

Estimating the modal coefficients in the summa-
tion is useful for two reasons. First, because cas-
cade processes occur in scale rather than space,
turbulence phenomenology leads us to estimates
of the coefficients more directly than to direct es-
timates of v′q′ at each level. Second, because
we know that amm = 0 for all m (see SV), and
because the vertical modes φm(z) are orthonor-
mal, estimates of the modal coefficients amn will
leave us with an estimate for the vertical structure
of the flux whose vertical integral vanishes. This
constraint is necessary for momentum conserva-
tion in the TEM.

Potential vorticity in the neighborhood of the
mixing scale can be estimated as

〈Q′
m〉 ' −(k2

mix + λ2
m)Vmk−1

mix, (19)

where Vm is an estimate of the relevant velocity
scale for mode m. For m = 0, (16) is our estimate,
and for m > 0, we use (10). Combining the above
results, we propose the estimate

amn ' −Vm(k2
mix + λ2

n)k−1
mixVn(1− δmn), (20)

with

Vm =
{

αµ2β−1(1− ∆2/3)3, m = 0,
|Ūm|, m > 0.

(21)

A key part of this formulation is that, in the
WUL, the rms barotropic eddy velocity is not
necessarily large in comparison to the rms baro-
clinic velocities, so we cannot neglect terms like
am0 = V′

mQ′
0 (baroclinic advection of barotropic

PV). The present form does reduce to the form
suggested by SV when ∆ is small.

5. NUMERICAL TEST

Figure 1 shows comparisons of the theory for the
northward eddy potential vorticity flux to that ob-
tained from simulations using a horizontally homo-
geneous QG model and realistic profiles of strat-
ification and zonal mean shear. The left panel is



similar to SV figure 15 and is based on a con-
tinuation of the same strongly unstable, 15-layer
simulation reported therein (see SV for a more
complete description). The true steady-state now
obtained for that simulation reveals that the the-
ory of SV fits the simulated data without multipli-
cation by an overall scale factor. The fit is not per-
fect, notably near the surface, where the predicted
southward surface flux far overshoots the simu-
lated result. The right panel shows results from
a recent 10-layer simulation using weakly unstable
mean flow and non-uniform profiles of stratifica-
tion and mean shear. The profiles were derived
from data taken for the North Atlantic Tracer Re-
lease Experiment in the eastern Atlantic ocean.
The theory is apparently even better at predicting
the PV flux magnitude and structure in the weakly
unstable limit.
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Figure 1: Top: profile of northward eddy potential vor-
ticity flux v′q′ from 2562 by 15-layer simulation (aster-
isks) using mean profiles that are interpolations from
the shear and potential density profiles generated by
a primitive equation simulation of the North Atlantic,
compared to theory based on (17) with (20) and (21)
(solid). Bottom: profile of northward eddy potential
vorticity flux v′q′ from 5122 by 10-layer simulation (as-
terisks) using mean profiles taken from NATRE, com-
pared to same theory (solid).


