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The horizontal spectra of atmospheric wind and tempera-
ture at the tropopause have a steep −3 slope at synop-
tic scales, but transition to −5/3 at wavelengths of order
500–1000 km [1]. Here we demonstrate that a model that
assumes zero potential vorticity and constant stratification
N over a finite depth H in the troposphere exhibits the
same type of spectra. In this model temperature pertur-
bations generated at the planetary scale excite a direct cas-
cade of energy with a slope of −3 at large scales, −5/3
at small scales and a transition near horizontal wavenum-
ber kt = f/NH, where f is the Coriolis parameter. Ball-
park atmospheric estimates for N, f and H give a transition
wavenumber near that observed and numerical simulations
of the new model verify the expected behavior. Despite its
simplicity, the model is consistent with a number of perplex-
ing features in the observations, and demonstrates that a
complete theory for mesoscale dynamics must take temper-
ature advection at boundaries into account.

I n the 1970s NASA instrumented commercial Boeing 747
airliners to collect atmospheric data during their regular
flights [1, 2] in an endeavor called the Global Atmospheric
Sampling Program (GASP). The resulting dataset consists of
thousands of flight tracks, a few hundred of which are over
10,000 km long, collected over a four year period. Most
flights occurred in the mid-latitudes and tropics, but span the
full range of seasons. Because airliners travel at altitudes be-
tween 9 and 14 km, the data largely reflect the upper tropo-
sphere and lower stratosphere, near the tropopause. Atmo-
spheric wavenumber spectra of horizontal wind and tempera-
ture computed from the GASP dataset by Nastrom and Gage
[1, hereafter NG85], reprinted here in figure 1, show a dis-
tinct transition from a steep spectral slope of−3 at synoptic
scales (∼ 1000 to 3000 km) to a shallower slope of−5/3 at
mesoscales (∼ 10 to 500 km), with a fairly distinct transition
centered at a horizontal wavelength of about 600 km. Under-
standing the source and structure of this spectrum has posed
a puzzle in atmospheric science for the past 20 years.

The spectrum is intriguing because it agrees so well at large-
scales with Charney’s theory of geostrophic turbulence [4],
but deviates from that prediction where it shallows. More-
over, the fact that the small-scale slope is−5/3 invites mul-
tiple explanations, since that is the theoretical slope both for
the forward cascade of energy in isotropic, three-dimensional
turbulence, and for the inverse cascade of two-dimensional
turbulence, as well as other systems. At the large-scale, Char-

Figure 1: Variance power spectra of horizontal wind and poten-
tial temperature near the tropopause from GASP aircraft data, repro-
duced from ref. 3. The spectra for meridional wind and temperature
are shifted one and two decades to the right; lines with slopes -3 and
-5/3 are drawn for reference.

ney argued, rotation and stratification conspire to make the
atmosphere quasi-two-dimensional. Stirring by baroclinic in-
stability (or any planetary mechanism) will induce a forward
cascade of potential enstrophy, reflected in a−3 kinetic en-
ergy spectrum below the stirring scale. Moreover, the theory
predicts equipartition between kinetic and available potential
turbulent energy, and so the temperature variance spectrum
should have the same slope as kinetic energy, just as ob-
served. The forward enstrophy cascade in this theory should
proceed down to scales at which rotation becomes less im-
portant, where unbalanced motions and instabilities might ef-
ficiently lead to dissipation. In the atmosphere, a reasonable
estimate puts this scale an order of magnitude smaller than
the observed transition scale.

Previous explanations
Explanations in the literature for the mesoscale spectrum fall
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into three general categories: (i) an inverse cascade of small-
scale energy, produced perhaps by convection [5–7]; (ii ) pro-
duction of gravity waves by divergent flows [8–12]; or (iii ) a
direct cascade of energy from the large-scales [13–16]. More
recent observations and analysis present new facts that must
be accommodated by theory. Regarding type-(i) theories,
Cho and Lindborg [17] analyze horizontal velocity data from
a series of thousands of fights in the late 1990s at altitudes be-
tween 9 and 12 km. From this they infer a forward cascade of
energy for scales of order 100 km and smaller. Regarding the
hypotheses of type (ii ), data collected on scales between 1 and
100 km over the Pacific Ocean (the Pacific Exploratory Mis-
sion, ref. 18) indicate that mesoscale energy away from the
equator is dominated by vortical modes rather than divergent
ones [19]. It is pointed out that observations over land may
reveal more gravity wave energy at these scales than over the
ocean, but even so, a complete theory cannot then rely solely
on gravity waves to produce the mesoscale spectrum. In sum,
the current state of observational evidence leaves only the-
ories of type (iii ) as plausible universal explanations of the
NG85 data.

Tung and Orlando [13, hereafter TO03] propose a model that,
at first glance, explains the observations. The basis of their ar-
gument is that the standard model of geostrophic turbulence
proposed by Charney is incomplete, because in any finite-
width inertial range, there will always be some leakage of en-
ergy to small scales [20, 21]. In their theory the subdominant
k−5/3 cascade reveals itself at the wavenumbers where the di-
rect cascading energy spectra exceeds that of the enstrophy
cascade, namely for wavenumbersk > (η/ε)1/2, whereε is
the downscale energy flux andη is the enstrophy flux. TO03
support their theory with a small number of simulations us-
ing a standard numerical two-layer quasigeostrophic forced
by baroclinic instability. One of the present authors, however,
noted that because the forward energy cascade rateε depends
on the dissipation scale, the transition scale of TO03 will al-
ways coincide with the effective Kolmogorov scale of the dis-
sipation mechanism, and so changes with filter strength and
grid resolution [22]. A similar spectra to that found by TO03
can be obtained by under-dissipating the forward enstrophy
cascade, causing a buildup of enstrophy at the grid scale. In
order for the theory of TO03 to be correct, then, the atmo-
sphere must possess a mechanism that selectively dissipates
the forward cascade at some fixed O(1 km) scale, independent
of energy flux.

The compelling part of the TO03 argument is that the pro-
posed mechanism relies on a forward cascade of vortical en-
ergy. An improved theory should also possess that char-
acteristic. Lindborg [14, 15] demonstrates that a forward
−5/3 slope energy cascade can arise in highly stratified three-
dimensional turbulence when rotation is sufficiently weak,
though no explicit connection to the synoptic scale is included
in this theory. Kitamura and Matsuda [16] do find that such

a mechanism seems to arise in a very high resolution non-
hydrostatic Boussinesq model, and follows on the tails of a
steep synoptic-scale spectrum. But in this case, much as seen
by Koshyk, Hamilton and collaborators [12, 23], the energy
in the mesoscale spectrum is due to divergent motions. The
latter fact is not consistent with the observations of Cho and
collaborators [19].

Idealized tropopause dynamics
The GASP observations were collected primarily near the
tropopause, the boundary between the well-mixed, low-
potential vorticity troposphere and the more stratified, high-
potential vorticity stratosphere [24, 25]. Juckes [24] points
out that when temperature anomalies of the tropopause and
ground are in phase the flow has a structure associated with
barotropic flow, and also suggests that tropopause anomalies
likely dominate tropospheric potential vorticity anomalies.
(This viewpoint is closely related to the Eady model of baro-
clinic instability [26], in which the tropopause interacts with
a similar layer in the lower troposphere to produce baroclinic
instability.) Juckes estimates from observations that neglect-
ing tropospheric potential vorticity anomalies will result in an
error on the order of 20%. The model he proposes takes into
account that the Ertel potential vorticity of the troposphere is
nearly constant, and so the balanced dynamics arise primarily
from the advection of tropopause temperature.

An idealization of this situation in which the depth of the in-
terior fluid is assumed semi-infinite and the stratification as-
sumed constant is termed ‘surface quasigeostrophy’ (SQG).
This model was first proposed by Blumen (27, but see also
28–30) as a counterpoint to Charney’s theory, which explic-
itly assumes that boundary effects are negligible. By contrast,
in SQG boundary advection determines the flow. The SQG
equations are,

∂tθ +J(ψ,θ) = 0, z= 0 (1a)

θ = ∂zψ (1b)

q≡
(
∂xx+∂yy+∂zσ

−2
∂z

)
ψ = 0, z< 0 (1c)

ψ → 0 as z→−∞ (1d)

whereψ is the horizontal streamfunction,J( , ) is the hori-
zontal Jacobian andσ = N/ f is Prandtl’s ratio (in generalN
is a function ofz, but here we will take it to be a constant).
Fourier decomposition in the horizontal plane atz= 0 leads
to the separable solution

ψ̂(k,z) = (σk)−1 eσkz
θ̂(k,0) (2)

wherek = |k| is the modulus of the horizontal wave-vectork
and the hatted variables are spectral amplitudes. The flow
is thus governed by the two-dimensional dynamics at the
boundary, where

ψ̂(k,0) = (σk)−1
θ̂(k,0),
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yet the resulting flow is three-dimensional.

The turbulent dynamics of SQG differ from those of quasi-
geostrophic turbulence because the conserved invariants of
the system are distinct. In quasigeostrophic dynamics, the
conserved invariants are the total energyE = −〈ψq〉/2 and
the potential enstrophyZ = 〈q2〉/2, where〈〉 represents a vol-
ume average. In SQG the invariants are the temperature vari-
anceT = θ 2/2 and the total energyES = ψθ/2, where the
overline implies an area average atz= 0. 1

Defining spectral densities such thatES=
∫

ES(k) dkandT =∫
T (k) dk, the SQG invariants are related asT = σk ES. In

the inverse cascade of total SQG energy, the densities have
spectraES ∝ k−2 andT ∝ k−1, while in the forward cascade
of temperature variance one hasES ∝ k−8/3 andT ∝ k−5/3

[27, 29].

A new model
The fundamental model we propose here is a variant of SQG
that highlights the transition between quasi-two-dimensional
barotropic flow and baroclinic three-dimensional flow. From
the solution connectingψ andθ (2), one sees that as the hor-
izontal scale gets larger (ork gets smaller), the penetration
depth of the temperature anomalies increases proportionally,
with aspect ratio given by the Prandtl ratio,σ = N/ f . At
large enough scale, the penetration will reach deep into the
troposphere and interact with the interior flow, if it ceases
to be homogenized at some depth, or the lower boundary as
an upper limit. The simplest possible extension of SQG that
takes this effect into account is the restriction of the domain
in (1) to a finite depth — specifically, replacing (1d) with the
conditionθ = 0 atz= −H. In this case, the replacement of
solution (2) is

ψ̂(k,z) =
[

cosh[σ(z+H) k]
σk sinh(σH k)

]
θ̂(k,0), (3)

which at the upper surface becomes

ψ̂(k,0) =
[
σk tanh(σH k)

]−1
θ̂(k,0). (4)

The remarkable property of this finite-depth surface-
quasigeostrophic model (fSQG) results from the properties
of the hyperbolic tangent in the inversion. At large scales, or
k� (σH)−1, the temperature is related to the streamfunction
like θ̂(k,0) ' σ2H k2 ψ̂(k,0), while at small scales, ork�
(σH)−1, the inversion is approximatelŷθ(k,0)'σk ψ̂(k,0).
Thus the relation at the surface of streamfunction to advected
quantity (temperature) transitions from a QG/2D-like inver-
sion at large scales, to an SQG-like inversion at small scales,

1The invariantES is proportional to the total energy of the flow; multi-
plying the potential vorticityq by−ψ and integrating over volume, one has
that 〈

|∇ψ|2 +σ
−2

θ
2〉 = σ

−2H−1
a ψθ

∣∣∣
z=0

−
〈
ψq

〉
,

which is just twice the total energyE (hereHa is some averaging depth).
Thus ifq≡ 0 the total energy isE = (1/2)σ−2H−1

a ψθ = σ−2H−1
a ES.

with the transition occurring at the wavenumber

kt ≡ (σH)−1 =
f

NH
. (5)

Note that this predicted transition scale is only equal to the
deformation scale whenH is taken as the full depth of the
troposphere, which we take as an upper bound. This will be
considered further in the discussion.

The spectral slopes can be predicted as follows. Defining the
spectral density of the streamfunction by the relationψ2/2 =∫

P(k) dk, the conserved invariants have the form

ES(k) = σk tanh(k/kt) P(k) (6a)

T (k) =
[
σk tanh(k/kt)

]2
P(k) (6b)

In the present context we are interested in the influence
synoptic-scale stirring on the mesoscales, presumably due to
baroclinic instability, and so we restrict our attention to the
forward cascade regime, in which the conservation of tem-
perature variance determines the spectrum via the standard
phenomenology [31, 32]. The temperature variance spectrum
(6b) has the same dimensions as kinetic energy, and so it is
the flux of this boundary-flow energy that is constant in its
inertial range,

ε ' kT (k)τ−1(k) = constant (7)

whereτ(k) is the turbulent timescale at wavenumberk. Since
the turbulent timescale is the advective timescale, we can
express it in terms of the streamfunction spectrum,τ(k) '[
k5P(k)

]−1/2
. Using this expression in (7) and eliminating

P(k) with the help of (6b) reveals that

T (k) = CTε
2/3[

σ tanh(σH k)
]2/3

k−5/3, (8)

whereCT is the appropriate Kolmogorov constant.

It is the temperature variance spectrum that determines all
other spectra in the direct cascade range, and so, for example,
we can deriveP(k) via elimination ofT (k) between (6b)
and (8), and similarly forES(k). More to the point, the kinetic
energy spectrum is

k2P(k) =
[
σ tanh(σH k)

]−2
T (k), (9)

which thus takes on the small- and large-scale limits

k2P(k)'

{
CTε2/3(σ2H)−4/3 k−3, k� kt

CTε2/3σ−4/3 k−5/3, k� kt
(10)

To summarize, the hypothesis is that synoptic scale stirring
produces a balanced, forward cascade of temperature vari-
ance at the tropopause (and perhaps at the ground as well).
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Figure 2: Finite depth SQG kinetic energy spectra atz = 0 with
kt = 50, computed at different horizontal resolutions. The thin solid
line shows a calculation of regular two-dimensional turbulence for
reference, and the thin dashed line is the theoretical spectrum (9),
with constant chosen to match the large scale spectra.

At large scales, the flow is quasi-barotropic because the pen-
etration depth is large enough to interact with the interior flow
(or the lower boundary as an upper limit), and here the cas-
cade exhibits the same kinetic energy spectrum as in Char-
ney’s theory of quasigeostrophic turbulence. As the cascade
proceeds, the penetration depth of temperature anomalies de-
creases. When the vertical scale is small compared to the
depth over which the tropospheric interior potential vorticity
is homogenized, the cascade flattens to a−5/3 slope, recov-
ering its essential SQG-like nature. The accompanying tem-
perature spectrum is considered in the discussion.

Numerical tests of the predicted spectra
Here we present the results of a series of simulations of the
fSQG model, forced by large-scale stirring and dissipated
scale-selectively at both the domain and grid scales. The sys-
tem modeled is just (1a) with added forcing and dissipation
terms, coupled with thêψ-θ̂ inversion for the finite-depth
model (4). The calculation is performed in the spectral do-
main, corresponding to a 2π-periodic physical domain, us-
ing a de-aliased fast Fourier transform method to calculate
the non-linear terms, via the staggered grid method of Orszag
[33]. Stirring is generated atkf = 4 by a random Markovian
process that is highly correlated in time (so that the decorre-
lation time is longer than the eddy turnover time in the cas-
cade). Large-scale dissipation of the inverse cascade is ac-
complished with a strong linear drag on temperature. The
forward cascade of temperature variance is dissipated using a
highly scale-selective exponential cutoff. The filter is explic-
itly restricted to act only onk & 2kmax/3, but in fact affects a
much smaller range of wavenumbers close tokmax. The de-
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Figure 3:Finite-depth SQG kinetic energy spectrak2P(k) atz= 0
with kt = 25, 50, 100, and 200 at 20482 resolution. The thin solid
line is the spectrum from a simulation of standard two-dimensional
turbulence, shown for reference. The inset plot shows the measured
transition wavenumber compared to the input valuekt . See text for
details.

tails of the filter are discussed in ref. 22. In all cases, the filter
is sufficiently strong that the high-wavenumber spectrum is
minimally influenced by the filter, but strong enough to en-
sure our effective Kolmogorov scale is resolved.

Figure 2 shows a plot of the kinetic energy spectrak2P(k)
for a series of simulations performed at resolutions ranging
from 2562 (kmax = 127) to 20482 (kmax = 1023), all using
σ = 1 andH = 1/50, so that the input transition wavenumber
is kt = 50. Also shown for reference is the result of a simu-
lation of standard two-dimensional Euler (TDE) turbulence,
forced and dissipated identically to the other runs, performed
at 20482 resolution, and the theoretical spectrum (9), with
constant chosen to match the large scale spectra. The small-
scale filter is adjusted for each simulation so that it acts only
near the highest resolved wavenumber, as explained above.
Each spectrum was calculated by averaging over time (for the
portion of the simulation over which the flow was in steady
state) and azimuthal angle in the horizontal plane.

At large scales, all fSQG spectra follow the TDE spectra.
That said, all are steeper than a−3 slope near the forcing
scale, but this is not uncommon for the direct cascade range in
two-dimensional turbulence. The consistency at large-scales
between the fSQG and TDE simulations indicate that devia-
tions from−3 at wavenumbers near the forcing scale reflect
the forcing mechanism and intrinsic dynamics of forced two-
dimensional turbulence with drag, not the intrinsic dynamics
of the fSQG model. The shallow slope for all fSQG runs at
k > kt approaches−5/3, as expected. Crucially, the series of
simulations represented in figure 2 shows that the transition
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scale is independent of resolution and small-scale dissipation.

In order to check that the transition scale that arises from
the simulation is truly proportional to the input transition
wavenumberkt , we performed a series of simulations at
20482 resolution, withkt equal, respectively, to 25, 50, 100,
and 200 (σ = 1 for all simulations, andH was varied). The
energy generation rate was normalized by(σ2H)−1 for each
simulation2. Figure 3 shows the kinetic energy spectra for
each run, along with the spectra from a simulation of stan-
dard two-dimensional turbulence for comparison. One can
see that the resulting transition wavenumber increases with
increasing inputkt . The inset axes in figure 3 shows the mea-
sured estimates of the transition wavenumber plotted against
the input parameter,kt (the measured transition wavenum-
ber is defined as the wavenumber where the spectral slope is
k−15/6). The plot indicates that the transition wavenumber is
well-approximated byf/NH, as expected.

Discussion
The proposed model for the effects of tropopause tempera-
ture anomalies on the atmospheric energy spectrum should
be taken as a heuristic tool, not as a complete theory. The
model is significant, however, because it demonstrates how
turbulent motions at the synoptic scale can produce a bal-
anced, forward cascade of temperature variance, resulting in
an upper-tropospheric spectrum with a break at a scale that
is a function of fundamental background parameters. The
numerical simulations presented here moreover demonstrate
that such a transition indeed occurs in the fSQG model, and
that the transition is robust, is well-predicted by the natural
scalef/NH, and is independent of both model resolution and
small-scale dissipation. Therefore, one need invoke neither
unbalanced dynamics nor an inverse cascade to produce the
spectra observed in the GASP data.

The form of the predicted transition scale (5) implies a dis-
tinct geographical dependence. WhileN is roughly constant
throughout the troposphere,f varies with latitude. Also, de-
pending on the interpretations ofH, one could argue that the
deeper tropical troposphere should translate into a larger trop-
ical homogenization depth. Thus wheref increases,H likely
decreases, and so the transition scale should decrease with in-
creasing latitude. Figure 8 of NG85, which plots the spectra
of wind and temperature as functions of latitude band, indi-
cates that this is the situation.

The model suggested here can explain many features of
the observations, but taken on its own has important lim-
itations. Using typical mid-latitude tropospheric values of
N∼ 10−2s−1 and f ∼ 10−4s−1, the predicted transition scale
between the two slopes isLt = NH/ f ∼ 100 H. Therefore
a transition scale on order hundreds of kilometers, as ob-

2A unit input ofθ scaled by(σ2H)−1 will result in the same streamfunc-
tion as a unit input of two-dimensional vorticity, because(σ2H)−1 is the
factor in theθ̂ → ψ̂ inversion at large scale, where the energy is injected.

served by NG85, requires a vertical scale on order kilometers.
This is consistent with the notion of the tropospheric depth as
an upper bound onH, with such a bound occurring in the
limit that potential vorticity is assumed constant throughout
the entire thickness of the troposphere. However, if we take
H = Htroposphere, then the transition wavenumber (5) is equiv-
alent to the Rossby deformation wavenumber. If baroclinic
instability induces the cascade of temperature variance, one
then must haveH < Htropospherein order for a−3 cascade
range to exist. The most straightforward way to include baro-
clinic instability in the present model is to replace the lower
isothermal boundary condition with a second active tempera-
ture layer [34], but in this case it is not clear that the transi-
tion scale will be different than in our one-layer finite-depth
model. One might also question the assumption of constant
tropospheric and infinite stratospheric stratification. Follow-
ing Juckes [24], it is straightforward to show that adding a
stratospheric layer changes the large scale spectral slope, but
also does not alter the expected transition scale3

Another issue not yet addressed is the vertical structure of
the spectra. If the entire troposphere were truly dominated
by the dynamics of temperature advection at the tropopause,
then at scales smaller than the transition scale, one should
see an evanescently decaying signal as one moves down into
the troposphere. Tracer spectra should also, in this case, show
qualitatively different behavior at depth than at the tropopause
[35]. Gao and Meriwether [36] present an analysis of a lim-
ited set of data taken at 6 km, and not unexpectedly, there
is energy at mesoscale mid-depths. They do find that the
spectrum of energy is steeper (close to−2) than that of the
GASP data, but there is more amplitude than would be ex-
pected from purely tropopause-trapped flow.

Finally, careful consideration of the predicted fSQG spectra
indicates a potential inconsistency between the present theory
and the NG85 potential energy spectrumσ−2T (k). The po-
tential energy spectrum predicted at large scales by the fSQG
model is shallower than that predicted by the Charney theory,
while the data of NG85 indicate equipartition at all scales,
consistent with Charney’s theory. Using (9) the ratio of po-
tential to kinetic energy in fSQG is

σ−2T (k)
k2P(k)

= [tanh(σH k)]2.

At k� kt , potential energy thus has a slope of approximately
k−1, but is smaller than the kinetic energy by the ratio(k/kt)2,
while atk� kt , fSQG predicts equipartition.

3Assuming a stratospheric buoyancy frequencyNs and a tropospheric
buoyancy frequencyNt , and retaining the isothermal condition at the ground,
the connection between streamfunction and potential temperature at the
tropopause (4) changes to

ψ̂(k,0) =
1− r2

σk [tanh(σH k)+ r]
θ̂(k,0).

whereσ = Nt/ f is the tropospheric Prandtl ratio andr = Nt/Ns.
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The three inadequacies of the present model noted in the pre-
vious few paragraphs can be resolved with a simple exten-
sion. If both surface and interior anomalies are active in gen-
erating the flow, then interior dynamics should dominate the
temperature spectrum at large scales, and so large-scale avail-
able potential and kinetic energy will be in equipartition, as
observed. At scales smaller than the transition scale, fSQG
predicts equipartition between potential and kinetic energy,
but also predicts that both will have spectra that are shal-
lower and of larger amplitude than those generated by the in-
terior flow. Thus at small scales the energy generated by the
surface-trapped cascade will emerge to dominate the spec-
tra of both kinetic and potential energy (Held et al. [30]
make a similar hypothesis in their conclusion). Moreover, the
emergence of the−5/3 surface-trapped cascade may occur at
smaller scales thankt when the large scales are dominated by
the−3 interior dynamics, depending on the relative strength
of the surface and interior forcing.

It may be the case that a continuously stratified quasi-
geostrophic model in which both lower and upper bound-
ary temperature advection are explicitly taken into account
(isothermal boundaries are used in most numerical quasi-
geostrophic models) would reveal a spectral signature quan-
titatively similar to that observed by NG85. This, as well as
other details of the problem will be considered in a forthcom-
ing paper. Nevertheless, the consistency of the predictions for
the observedmesoscalespectrum with or without significant
interior flow anomalies is a satisfying feature of the simple
model suggested here.
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