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ABSTRACT

The quasigeostrophic equations consist of the advection of linearized potential vorticity coupled with

advection of temperature at the bounding upper and lower surfaces. Numerical models of quasigeostrophic

flow often employ greater (scaled) resolution in the horizontal than in the vertical (the two-layer model is

an extreme example). In the interior, this has the effect of suppressing interactions between layers at

horizontal scales that are small compared to Ndz/f (where dz is the vertical resolution, N the buoyancy

frequency, and f the Coriolis parameter). The nature of the turbulent cascade in the interior is, however,

not fundamentally altered because the downscale cascade of potential enstrophy in quasigeostrophic

turbulence and the downscale cascade of enstrophy in two-dimensional turbulence (occurring layerwise)

both yield energy spectra with slopes of 23. It is shown here that a similar restriction on the vertical

resolution applies to the representation of horizontal motions at the surfaces, but the penalty for under-

resolving in the vertical is complete suppression of the surface temperature cascade at small scales and a

corresponding artificial steepening of the surface energy spectrum. This effect is demonstrated in the

nonlinear Eady model, using a finite-difference representation in comparison with a model that explicitly

advects temperature at the upper and lower surfaces. Theoretical predictions for the spectrum of turbu-

lence in the nonlinear Eady model are reviewed and compared to the simulated flows, showing that the

latter model yields an accurate representation of the cascade dynamics. To accurately represent dynamics

at horizontal wavenumber K in the vertically finite-differenced model, it is found that the vertical grid

spacing must satisfy dz & 0.3f/(NK); at wavenumbers K . 0.3f/(Ndz), the spectrum of temperature variance

rolls off rapidly.

1. Introduction

Synoptic-scale eddying flows in both the atmosphere

and ocean lie in an asymptotic range well described by the

quasigeostrophic (QG) equations. Two phenomenological

theories are typically invoked to describe the turbulent

dynamics of such flows: geostrophic turbulence (GT;

Charney 1971) and surface quasigeostrophic turbulence

(SQG; Blumen 1978a; Held et al. 1995). These two the-

oretical ideas have been taken to describe complementary

but distinct flows, with the former assumed to be more

generic and relevant to atmospheric and oceanic motions.

Geostrophic turbulence is based on the analogous

structure of QG and two-dimensional dynamics and

leads to the prediction that total energy cascades to

large scales, both horizontally and vertically, whereas

potential enstrophy cascades to small scales. Barotrop-

ization and the upscale cascade are widely observed

phenomena, and their existence has put GT on firm

ground. Geostrophic turbulence, however, neglects bound-

aries entirely in the downscale cascade—this is explicitly

stated in Charney’s list of six limitations of the theory

proposed in his 1971 paper. Surface quasigeostrophy, by

contrast, considers only boundary dynamics: it is de-

rived by assuming a semi-infinite volume with constant

potential vorticity (PV), bounded above or below by a

surface on which temperature anomalies are advected by

a geostrophic velocity field. The relationship between

streamfunction and temperature is obtained by solving

the homogeneous elliptic problem for the streamfunction

in the interior, subject to a boundary condition given by

the temperature field on the surface. Moreover, the con-

served invariants, turbulent cascades, and spectral slopes

are different in SQG and GT. In geostrophic turbulence,
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total energy cascades upscale and potential enstrophy

downscale, yielding an energy spectrum with a 25/3 slope

above the forcing range and a 23 slope in the downscale

cascade range. In SQG the invariants are the total energy

and temperature variance: total energy still undergoes

an upscale cascade, but with a spectral slope of 22, and

the temperature variance [proportional to kinetic en-

ergy (KE) at the surface] cascades to small scales with

a 25/3 spectral slope (Pierrehumbert et al. 1994).

With two boundaries bounding a region of constant

PV, one obtains the system on which the linear baro-

clinic instability problem of Eady (1949) is based. The

fully nonlinear system of this type was considered by

Blumen (1978a). The two-level Phillips model (Phillips

1954) is simultaneously taken as a representation of the

Eady model [because their baroclinic instability growth

rates are very similar; see, e.g., Pedlosky (1987)] and used

as a model for geostrophic turbulence [because its down-

scale cascade yields a kinetic energy spectrum slope that is

close to 23; see, e.g., Larichev and Held (1995)]. However,

as argued by Blumen (1978a) and demonstrated numeri-

cally by Hoyer and Sadourny (1982), the turbulent dy-

namics that arise in the Eady and Phillips models are not

equivalent.

It is straightforward to see that the Eady model will

behave differently than the Phillips model (or Charney’s

geostrophic turbulence predictions) at small scales. In

the Phillips model, for motion at horizontal wavenum-

ber K such that f/(KN) is less than the separation H/2

between the two levels, the vortex stretching term is

suppressed and the system becomes a set of decoupled

layers, each controlled by two-dimensional vorticity

dynamics. However, because both geostrophic turbu-

lence and two-dimensional turbulence predict energy

spectra with slopes of 23, the vertical decoupling does

not affect the energy density at a given horizontal scale; it

only inhibits transfers of energy in the vertical. The same

result holds in the two-mode (barotropic–baroclinic)

formulation (see, e.g., Salmon 1980): the baroclinic flow

becomes dominated by vorticity dynamics when K �
NH/f. In the Eady model, by contrast, at wavenumber K

such that the corresponding vertical scale f/(KN)� H,

the surface temperature perturbations will not ‘‘feel’’

the other boundary, and so the system will behave as

a set of uncoupled SQG models, with 25/3 energy

spectral slopes at each surface. Thus, no break in the

spectrum at the surfaces is expected.

The Phillips model is a vertically finite-differenced QG

model with only two levels, yet when the vertical reso-

lution is increased, keeping the stratification and shear

constant, the finite-difference model approaches a rep-

resentation of the Eady model. This representation,

however, is only accurate up to a horizontal wavenumber

that depends on the vertical resolution of the model, for

the following reasons. Temperature u in the quasigeo-

strophic approximation is related to the vertical deriva-

tive of the streamfunction as gu/u0 5 fcz’ fdc/dz, where

dc/dz is the finite-difference approximation to cz and g is

gravitational acceleration. Because in geostrophic flow

vertical and horizontal scales are linked by the Prandtl

ratio N/f, horizontal temperature signals will only be ac-

curately represented at wavenumbers sufficiently smaller

than Kdz 5 f/(Ndz). Surface dynamics, dominated by

temperature advection, should therefore be absent from

low–vertical resolution QG simulations and, in general,

only partially represented up to wavenumbers of order f/

(Ndz). Simulations reported on in this note confirm this

expectation and provide a quantitative bound on the

resolution necessary to resolve surface temperature dy-

namics at a given horizontal wavenumber.

The differences between the Eady and Phillips mod-

els are frequently neglected. This is possibly due to the

fact that at large scales, the models behave similarly,

and so their subsequent accidental conflation has led to

a neglect of their differences at smaller scales. Low ver-

tical resolution in general, and the two-layer model in

particular, are well rationalized by the idea of barotrop-

ization, which stems from Charney’s theory of geo-

strophic turbulence (Charney 1971): if large-scale eddies

are the result of an upscale cascade in both horizontal

and vertical (scaled by N/f) dimensions, only the gravest

few vertical modes should be necessary to represent

those eddies (of course, similar logic should lead one to

neglect higher horizontal wavenumbers as well). More-

over, the two-layer model has proved to be a tremen-

dously useful tool for understanding much about atmo-

spheric and oceanic eddy energy cycles and equilibration.

In fact, one could say that so much has been understood

through the lens of the two-layer model that those me-

soscale phenomena that cannot be explained by it are

often assumed to lie outside the realm of the quasi-

geostrophic approximation. A good example is the at-

mospheric energy spectrum (Nastrom and Gage 1985),

and in a companion paper to this one (Tulloch and

Smith 2009) we show that quasigeostrophic dynamics

are adequate to explain those observations when sur-

face effects are accounted for theoretically and resolved

numerically.

2. Vertical finite-difference representations of the
PV streamfunction inversion

The quasigeostrophic equations driven by a mean

zonal baroclinic wind, and bounded above and below by

rigid surfaces consist of a conservation equation for the

QG potential vorticity and two advection equations for
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the potential temperature at each surface [equations are

stated in numerous other works; see, e.g., Vallis (2006)

or Tulloch and Smith (2009)]. The potential vorticity q

and potential temperature u (scaled by g/u0) are related

to the streamfunction c by the elliptic problem

q 5 =2c 1
f 2

N2
cz

 !
z

, and u z50,H 5 f cz

�� ��
z50,H

. (1)

A typical direct vertical discretization of this relation

(assuming constant N2 and grid spacing dz) is

Gnmcm 5
f 2

N2

1

dz2

c2 � c1, n 5 1,
cn�1 � 2cn 1 cn11, n 5 2 .. N

cN�1 � cN , n 5N ,
� 1

8<
: ,

(2)

where N is the total number of layers (which should

not be confused with N, the buoyancy frequency).

Bretherton (1966) showed that instead of considering

nonconstant cz at the upper and lower boundaries, one

can equivalently consider constant potential tempera-

ture at the boundaries with d sheets of potential vor-

ticity just inside the boundaries, given by

q(z) 5 � f 2

N2
cz z5H�

�� d(z�H) 1
f 2

N2
cz z50 1

��� d(z).

The discrete operator Gnm effectively includes an

approximation of the d sheets that is accurate to

O(Ndz/f)—see appendix of Smith (2007)—so surface

temperature dynamics at horizontal scales smaller than

O(Ndz/f) are not captured.

3. The structure of nonlinear Eady turbulence

Here we consider the nonlinear Eady problem (Eady

1949): f plane, uniform stratification and shear, with the

fluid bounded above and below by rigid surfaces, depth

H apart. The mean interior PV gradient Qy 5 0 and the

mean surface temperature gradients are equal—Qy(H) 5

Qy(0)—thus, q 5 0 and the motion is determined solely

by temperature advection on the boundaries. Assuming

horizontal periodicity and taking the Fourier transform

of the remaining equations, one has

ût 1 Ĵ(ĉ, û) 1 ik(Uû 1 ĉQy) 5 0, z 5 0, H, (3)

with hatted variables denoting spectral components

[e.g., c(x, y, z, t) 5 �K exp (iK � x)ĉK(z, t), with K 5 (k, l)

the horizontal wavenumber vector], the hatted Jacobian

denoting a double sum over wavenumbers of the spec-

tral products, and the temperature–streamfunction re-

lation being given by

ĉ(z, t) 5
H

m sinh m

�
cosh m

z

H

� �
û(H, t)

� cosh m
z�H

H

� �
û(0, t)

�
. (4)

The variable m 5 KNH/f is the nondimensional wave-

number and K 5 |K|. We refer to this representation of

Eady dynamics as the Blumen model, following Blumen

(1978b).

One can understand the turbulent dynamics of the

Eady model by considering the advection equations at

each surface in the limits of large and small scales,

separately. At the upper boundary (z 5 H), the stream-

function is related to the surface temperatures as

ĉ(H, t) 5
H

m

û(H, t)

tanh m
� û(0, t)

sinh m

" #
.

At large scales (m � 1), both sinh m and tanh m are

approximated by m, so that ĉ(H, t)’ (H/m2)[û(H, t)�
û(0, t)] 5 �(H/m2)Dû, where Dû [ û(0, t)� û(H, t). A

similar relation exists at the bottom boundary, and

therefore ĉ(0, t)’ ĉ(H, t) at large scales. Furthermore,

then, the temperature difference is related to the depth-

independent streamfunction as Dû 5 �m2ĉ/H, and by

subtracting the upper and lower advection equations, one

has

(Dû)t 1 Ĵ(ĉ, Dû) 1 ik(UDû 1 ĉQy)’ 0.

Thus, the evolution of the temperature difference be-

tween the two surfaces is isomorphic to 2D vorticity

flow at large scales.

At small scales (m� 1), on the other hand, sinh m! ‘

but tanh m ; 1, so that ĉ(H, t)’ (H/m)û(H, t), and

similarly at the bottom. Thus, at small scales each sur-

face obeys SQG dynamics, independent of the other

surface.

In between these scale limits, where m ; 1, baroclinic

instability pumps energy into the eddying flow. Thus,

the small-scale limit is governed by the downscale cas-

cade, whereas the large-scale limit is controlled by the

upscale cascade. Surface potential and kinetic energy in

the upscale cascade of baroclinic turbulence and in the

SQG downscale cascade are all expected to obey a 25/3

slope; thus, in nonlinear Eady turbulence there should

be no spectral break in the surface energy spectra, and a

25/3 surface spectrum should dominate all scales. On

the other hand, there should be a horizontal scale de-

pendence in the interior flow. At large scale, temperature

signals reach through the full depth of the domain, yield-

ing a quasi-barotropic flow, and so the interior spectrum
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should also approach a 25/3 slope. At small scales, the

temperature signals are trapped near their respective

surfaces, and so the interior should be largely devoid of

energy—the spectrum should roll off quickly as m exceeds

1 and should be weakest in the middle of the domain.

4. Numerical simulations

We present a series of numerical simulations of qua-

sigeostrophic turbulence with the Eady mean state, us-

ing two distinct representations of the vertical coupling:

(i) advecting q at every vertical level and using the finite-

difference operator (2) to invert the streamfunction nu-

merically and (ii) the ‘‘Blumen model,’’ which advects

only the upper and lower temperature fields and uses (4)

to invert the streamfunction analytically. The calcula-

tions are performed in K space horizontally, with wave-

number 1 just filling the domain. The nonlinear terms are

calculated using a dealiased fast Fourier transform.

Downscale cascades are dissipated using a scale-selective

exponential cutoff filter that acts explicitly on K $ 2Kmax/3

but has little effect until the highest wavenumbers. The

horizontal resolution of the simulations is Kmax 5 511,

or 10242 resolution in grid space. To preserve the dy-

namics and spectral slopes, the slow upscale cascades

are not dissipated in this series of simulations.

Figure 1 shows wavenumber spectra of the kinetic

energy density K2 ĉ
�� ��2 in the top level for simulations

using the discretization in (2), with an increasing vertical

resolution: N 5 4, 8, 16, 32, and 64 levels. All of

the simulations have the same deformation scale (Kd [

fL/NH 5 5) and seed energy (E 5 1023) at K0 5 10,

which grows because of Eady baroclinic instability,

leading to a dual cascade. The peak linear growth rate is

near 1.6Kd ’ 8 and there is no linear baroclinic growth

at wavenumbers above 2.4Kd ’ 12. Because there is no

large-scale drag to halt the cascade and equilibrate the

motion, we show a partial time average (from t 5 4.5 to

t 5 5 in nondimensional time) of the KE density, nor-

malized by e2/3, where e 5 Uf 2/HN2(yu z5H � yu
�� ��

z50
) is

the baroclinic energy generation rate. The normaliza-

tion nearly equalizes the peak amplitude of the spectra

for each simulation, facilitating their comparison. An-

other consequence of the lack of drag is some variation

of peak wavenumber among the spectra, but this is

minor and irrelevant to the point addressed here.

FIG. 1. Kinetic energy density vs horizontal wavenumber magnitude K in the top layer of a

series of Eady-forced QG simulations, with N 5 4, 8, 16, 32, 64 layers, b 5 0, Uz 5 1, and

deformation wavenumber Kd 5 fL/NH 5 5. Because there is no large-scale dissipation, the

spectra shown are normalized by the baroclinic generation rate for each and then averaged in

time between t 5 4.5 and t 5 5 for each simulation. The inset shows measured roll-off wave-

numbers Kroll-off (where the spectral slope is K27/3) vs the prediction Kdz 5 f/(Ndz). The best-fit

line (dashed line in figure) is Kroll-off 5 0.34Kdz 1 8.
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The kinetic energy spectra in the upper layer roll off

from a 25/3 slope to a steeper slope, approaching 23,

but the wavenumber at which the roll-off begins in-

creases with increasing vertical resolution. The inset of

Fig. 1 plots the roll-off wavenumbers Kroll-off (defined to

be where the spectral slope of the KE spectrum drops to

K27/3) against Kdz 5 f/(Ndz) for each dz 5 H/N. The

dependence of Kroll-off on Kdz is roughly linear, with a

best-fit slope of 0.34 (given by the dashed line), indi-

cating that to resolve a wavenumber K, a vertical grid

scale spacing dz # 0.34 f/(NK) is required.

The kinetic energy spectra at depths throughout the

flow for both the 64-level simulation (dashed lines) and

the Blumen model simulation (solid lines) are shown in

Fig. 2. The Blumen simulation is normalized and aver-

aged in the same way as the vertically discrete QG solu-

tion, and only three of its levels are plotted. The 64-level

simulation is clearly a good representation of the non-

linear Eady model at this horizontal resolution; at higher

horizontal resolutions, however, the discrete model will

fail to resolve smaller horizontal scales at the surfaces

unless its vertical resolution is concomitantly increased.

The spectrum of energy in the interior, as expected

from (4), is determined solely by the horizontal cascade

at the surfaces. Below the vertical trapping scale f/(NK),

there is essentially no energy in the flow. Because this

vertical scale is dependent on horizontal wavenumber,

the farther away from either surface one observes the

spectrum, the larger the horizontal scale at which it

begins to roll off. At midlevel, the spectrum roll-off

begins practically at the deformation scale.

The implied resolution requirements suggested by the

comparison of the Blumen and discrete representations

of the nonlinear Eady model are similar to but different

from those suggested by other authors. Barnier et al.

(1991) argued, for example, that it is necessary to re-

solve horizontally the smallest baroclinic deformation

scale. By contrast, the results here put the onus on the

vertical resolution: whatever the horizontal resolution,

the vertical resolution must be sufficiently fine for those

horizontally included scales to accurately represent

surface temperature dynamics. Lindzen and Fox-

Rabinovitz (1989), on the other hand, argued that the

vertical resolution must satisfy dz ; fdx/N to maintain

stability in a numerical simulation of geostrophic flows,

but we find no support for this claim (rather, here, as

well as in the two-level model, failure to resolve vert-

ical motions consistent with a given horizontal wave-

number merely removes some degrees of freedom). The

closest analogy to the phenomenon discussed here is that

studied by Solomon and Lindzen (2000), who demon-

strated the necessity of sufficient resolution to model the

FIG. 2. Comparison of kinetic energy density in the Blumen model vs the standard QG

formulation with 64 layers. The dashed gray lines are KE density at the mid-depths of layers

z1, z2, z4, z8, z16, and z32 in the layered QG model, whereas the solid black lines are KE density

at z 5 0, z 5 z1, and z 5 z32 in the Blumen model.
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barotropic instability of a point jet. Still, all such argu-

ments imply the need for consistent horizontal and ver-

tical resolutions, and all suggest their quotient should

follow the Prandtl ratio, N/f.

5. Discussion

We have demonstrated that with sufficient vertical res-

olution, the numerical turbulent solution to the nonlinear

Eady model with standard vertical finite-differencing

converges to the ‘‘exact’’ solution, computed using a

formulation proposed originally by Blumen (1978a) that

explicitly advects the surface temperatures. This con-

vergence results from the fact that in the standard ver-

tical discretization, surface boundary conditions are

effectively implemented as a finite approximation to the

PV delta sheets of Bretherton (1966). The error of that

approximation leads to a horizontal dependence on the

vertical resolution: horizontal length scales on the order

of the Prandtl ratio times the vertical grid spacing and

smaller are not properly represented in the standard

formulation.

In Tulloch and Smith (2009) we propose a generalized

remedy to this problem that does not require excessive

vertical resolution. The proposed formulation decom-

poses the QG streamfunction into a sum of interior and

surface components that solve the associated elliptic

inversion problems. Truncating the interior modes to a

computationally manageable set yields an efficient and

accurate representation of the full system at all depths.

The formulation also allows for the generation of sim-

plified models, including both well-known approxima-

tions and new ones.

In the ocean, recent simulations by Klein et al. (2008)

indicate that the kinetic energy spectrum exhibits a

shallowing near the surface, consistent with SQG effects

near the surface. Scott and Wang (2005) observed the

advective flux of surface kinetic energy to be in the

upscale direction, and Capet et al. (2008) point out that

the surface advective flux in SQG is also in the upscale

direction. Although it does not seem likely that bal-

anced surface dynamics can explain the entire picture, it

is likely that it plays a part. In a forthcoming paper, we

explore the degree to which a model that properly

represents both the interior and surface dynamics can

explain the ocean surface dynamics at the submesoscale.
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