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ABSTRACT

An observational, modeling, and theoretical study of the scales, growth rates, and spectral fluxes of baro-

clinic instability in the ocean is presented, permitting a discussion of the relation between the local instability

scale; the first baroclinic deformation scale Rdef; and the equilibrated, observed eddy scale. The geography of

the large-scale, meridional quasigeostrophic potential vorticity (QGPV) gradient is mapped out using a cli-

matological atlas, and attention is drawn to asymmetries between midlatitude eastward currents and sub-

tropical return flows, the latter of which has westward and eastward zonal velocity shears. A linear stability

analysis of the climatology, under the ‘‘local approximation,’’ yields the growth rates and scales of the fastest-

growing modes. Fastest-growing modes on eastward-flowing currents, such as the Kuroshio and the Antarctic

Circumpolar Current, have a scale somewhat larger (by a factor of about 2) than Rdef. They are rapidly

growing (e folding in 1–3 weeks) and deep reaching, and they can be characterized by an interaction between

interior QGPV gradients, with a zero crossing in the QGPV gradient at depth. In contrast, fastest-growing

modes in the subtropical return flows (as well as much of the gyre interiors) have a scale smaller than Rdef (by

a factor of between 0.5 and 1), grow more slowly (e-folding scale of several weeks), and owe their existence to

the interaction of a positive surface QGPV gradient and a negative gradient beneath.

These predictions of linear theory under the local approximation are then compared to observed eddy

length scales and spectral fluxes using altimetric data. It is found that the scale of observed eddies is some 2–3

times larger than the instability scale, indicative of a modest growth in horizontal scale. No evidence of an

inverse cascade over decades in scale is found. Outside of a tropical band, the eddy scale varies with latitude

along with but somewhat less strongly than Rdef.

Finally, exactly the same series of calculations is carried out on fields from an idealized global eddying

model, enabling study in a more controlled setting. Broadly similar conclusions are reached, thus reinforcing

inferences made from the data.

1. Introduction

Satellite altimetry indicates that much of the meso-

scale in the World Ocean is dominated by eddies that

scale roughly with the first baroclinic (BC) deformation

radius Rdef and have about 50 times the kinetic energy

(KE) of the mean flow (see, e.g., Stammer 1997). But

how these eddies are generated and what sets their

equilibrated scale remain open questions. The ocean is

a complex turbulent fluid subject to surface and tidal

forcing as well as internal flow instabilities. It has been

proposed (Frankignoul and Müller 1979) and debated

(Large et al. 1991; Stammer and Wunsch 1999) that

stochastic wind forcing can generate the midocean

eddies directly. However, Ferrari and Wunsch (2009)

note that the approximate agreement between linear

theory and observations support the view that baroclinic

instability of available potential energy (APE) in the

mean currents is the main eddy kinetic energy source.

Baroclinic instability appears to be ubiquitous, with the

sloping isopycnals in the main thermocline storing

roughly 1000 times more APE than the KE associated

with its thermal-wind current shear (Gill et al. 1974).

The full instability problem in ocean gyres is a difficult

one. In this paper, we will adopt the local approximation,
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which represents a vast simplification of the full problem.

The local approximation assumes that each lateral loca-

tion of the ocean is a local, horizontally homogeneous

patch. Within each patch, the eddies are assumed to be

the weakly nonlinear response to instability of the local

and steady mean flow and stratification. Gill et al. (1974)

and Robinson and McWilliams (1974) used the local

approximation to show that midocean currents are baro-

clinically unstable on spatial and temporal scales, con-

sistent with observations. Arbic (2000) further concluded

that local baroclinic instability seems to be a plausible

mechanism for midocean eddy generation.

However, the local approximation is clearly not uni-

versally appropriate and ignores many dynamical possi-

bilities. First, the steady assumption neglects eddy

feedback onto the mean flow (Farrell and Ioannou 1999;

Flierl and Pedlosky 2007) as well as the propagation of

eddies into and out of regions of high and low baroclinic

growth rate. Other dynamics that play a role in eddy

formation include the radiation of instabilities from

boundary currents into the interior (Kamenkovich and

Pedlosky 1996; Hristova et al. 2008), weakly nonlinear

growth of unstable modes (Hart 1981; Pedlosky 1981),

sensitivity to nonzonal flow instabilities (Spall 2000; Arbic

and Flierl 2004; Smith 2007a), nonparallel flow in-

stabilities (Pedlosky 1987), barotropic (BT) instabilities of

horizontally varying mean flows, and strongly nonlinear

turbulent dynamics (Held and Larichev 1996). However,

for better or worse, the horizontal locality assumption

underlies most mesoscale ocean eddy theories and pa-

rameterizations in ocean general circulation models, and

linear theory at least provides a well-defined prediction.

The goal in this paper is simply to compare the spatial

and temporal scales predicted by local linear theory with

the fully developed nonlinear eddy field in the World

Ocean, neglecting the possible dynamical processes that

may occur between the two. The scales of baroclinic

instability expected from linear theory are computed

analogously to Smith (2007b)1 and Killworth and

Blundell (2007) but using the hydrographic atlas of

Forget (2010). The most unstable scales are then com-

pared with observed energy-containing scales inferred

from diagnoses of spectral energy fluxes derived from

surface satellite altimetry using the method reported in

Scott and Wang (2005). The baroclinic instability anal-

ysis and spectral flux calculations are then repeated in an

eddying simulation with full ocean dynamics, constant

wind forcing, and idealized orography.

We find that, in both ocean observations and the ed-

dying model simulation, in highly energetic predomi-

nantly eastward-flowing currents, such as the Antarctic

Circumpolar Current (ACC), Gulf Stream, and Kuroshio,

the instability scale is larger than Rdef and penetrates deep

into the water column. The quasigeostrophic potential

vorticity (QGPV) gradient in these eastward-flowing re-

gions tends to change sign at a depth of ;1 km. By con-

trast, the baroclinic instability of the gentler, westward

return flows2 occurs on horizontal scales smaller than Rdef

and is surface intensified, consistent with driving by a

QGPV reversal within ;100 to 200 m of the surface. These

broad tendencies can be understood as follows: For baro-

clinic instability to occur, the QGPV gradient must re-

verse sign in the interior or have the opposite sign of the

buoyancy gradient at the upper surface (Charney and

Stern 1962; Pedlosky 1964). The mean states in the classic

models of baroclinic instability constructed by Charney

(1947) and Phillips (1954) can be thought of as idealiza-

tions of the two typical observed mean gradient config-

urations. Instability in the two-layer model of Phillips

(1954) is driven by the mean QGPV gradient sign re-

versal between the two layers, whereas the Charney

(1947) model instability is driven by an interaction of the

mean surface temperature gradient with a constant in-

terior PV gradient b; the former is analogous to the

eastward current regimes, whereas the latter is analogous

to the westward current regimes (though with b replaced

by the mean thermal-wind QGPV gradient). Here, we

classify these two types of baroclinic instabilities as

‘‘Phillips like’’ and ‘‘Charney like,’’ respectively.

These generalized definitions allow us to characterize

two qualitatively distinct regimes, but of course typical

oceanic velocity profiles contain a mix of both surface

and nonconstant interior gradients, so these general-

izations do not always apply. Currents with mixed shear,

such as in the subtropical return flows are not well rep-

resented by two-mode or two-layer models because they

contain both positive and negative interior QGPV shear

as well as an upper boundary condition that opposes the

interior shear beneath it. However, three-layer QG

models have been used to show that elevated eddy en-

ergy in the 208–308 latitude bands is due to baroclinic

instability of sloping isopycnals (Halliwell et al. 1994;

Qiu 1999; Kobashi and Kawamura 2002; Qiu et al. 2008).

In the calculations presented here, we adopt 50 vertical

levels and so adequately resolve key features of the flow

and do not need to calibrate vertical model parameters.

1 Some of the results reported in Smith (2007b) are in error

because of a gridding mistake in the computation, as discussed in

appendix A.

2 ‘‘Westward return flows’’ refers to regions typical of the 208–

308 latitudes which are predominantly westward between about

100-m and 1-km depths and have easterly shear at depth and

westerly shear near the surface (i.e., mixed shear in Fig. 3).
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Our paper is organized as follows: In section 2, the

climatology of the ocean’s large-scale meridional QGPV

gradient is mapped out using the hydrographic Ocean

Comprehensible Atlas (OCCA; Forget 2010). In section

3, baroclinic growth rates and the horizontal scales of

maximum growth rate are computed using zonal and

meridional mean currents from the atlas at chosen points

and are also mapped globally. In section 4, the results

of linear theory are compared to the observed energy-

containing scale and spectral fluxes of (geostrophic) KE

computed from Archiving, Validation, and Interpreta-

tion of Satellite Oceanographic data (AVISO) gridded

satellite altimetry (Le Traon et al. 1998). The scale at

which the kinetic energy spectral flux crosses zero, which

is called the energy injection scale, is then compared with

the scale of maximum baroclinic growth rate. In section 5,

the analyses of sections 3 and 4 are performed on an

eddying simulation on an aquaplanet. In section 6, the

results are interpreted in terms of instability and geo-

strophic turbulence theory and conclusions are drawn.

2. Climatology of the meridional potential
vorticity gradient

As described in the introduction, the QGPV gradient is

a diagnostic from which to infer the geography of in-

stability. Here, we focus on the meridional QGPV gradient

in predominantly zonal flows and ignore nonzonal mean

flows. Note however that nonzonal mean flows character-

ize significant regions of the ocean. Nonzonal mean flows

yield zonal mean PV gradients Qx, and are thus more un-

stable than zonal flows because the planetary vorticity

gradient does not provide a restoring force to zonal PV

perturbations (Pedlosky 1987; Walker and Pedlosky 2002).

Moreover, baroclinic instabilities generated by nonzonal

mean flows are very effective at generating baroclinic tur-

bulence (Spall 2000; Arbic and Flierl 2004) because of

a strong nonlinear feedback between eddy generation and

eddy scale and anisotropy (Smith 2007a). Here we focus on

flows that are relatively zonal, such as the ACC, boundary

current extensions, and subtropical return flows.

The large-scale meridional QGPV gradient, general-

ized as in Bretherton (1966) to include upper and lower

boundary conditions via delta function sheets, is

› ~Q

›y
5 b� f

›s

›z
1

f 2

N2

dU

dz
d

upper
, (1)

where b is the planetary PV gradient, s 5 2by/N2 is the

meridional isopycnal slope, f is the Coriolis parameter, N2

is the stratification, and dupper is a delta function at the

upper boundary. Note that we have neglected contribu-

tions from the lower boundary and from relative vorticity.

Our neglect of the relative vorticity of the mean flow

is well justified by its small magnitude relative to b, as

shown in Fig. 1, computed at the surface from the OCCA.

Various hydrographic ocean atlases are available from

which QGPV can be computed. The calculations pre-

sented here were performed on the OCCA, which is

a 3-yr climatology for 2004–06 on a 18 3 18 horizontal grid

with 50 vertical levels (Forget 2010). Altimeter data,

satellite sea surface temperature, and Argo profiles are

assimilated in a least squares sense using the adjoint of the

Massachusetts Institute of Technology GCM (MITgcm;

Marshall et al. 1997; Marotzke et al. 1999; Adcroft et al.

2004b). We note that our analysis is insensitive to the

particular ocean climatology used, and key results are

compared for three different climatologies in appendix A.

FIG. 1. Relative vorticity at the surface in the OCCA state estimate, nondimensionalized

by the local planetary PV gradient b. The relative vorticity is small compared to b almost

everywhere.
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Figure 2a shows a cross section of the zonally averaged

QGPV gradient, Eq. (1), computed from the OCCA. In

the computation, it is assumed that the geostrophic zonal

velocity is in thermal-wind balance with the meridional

density gradient. The QGPV gradient is normalized by b

and plotted in three-tone grayscale. The white shading

indicates regions where the meridional QGPV gradient is

near zero (i.e., 2b/2 # Qy # b/2). The light gray indicates

positive regions (Qy . b/2), and the dark gray indicates

negative regions (Qy , 2b/2). The surface gradient Uz is

indicated above the dashed line at 50-m depth. The light

and dark gray regions can in some places, particularly the

ACC, be on the order of 6100b. Superimposed are gray

contours of zonally averaged neutral density (gn 5 27,

27.5, and 28) to give an indication of thermocline struc-

ture. The dashed–dotted curve is a visual guide to indicate

the depth of the zero crossings of the QGPV gradient.

There is an asymmetry in the distribution of Qy be-

tween regions where isopycnals slope up toward the poles

(i.e., eastward currents) and where isopycnals slope up

toward the equator in the thermocline (i.e., currents with

mixed shear, westerly above easterly, as sketched in Fig. 3).

This asymmetry is more pronounced in the South-

ern Hemisphere because eastward jets in the Northern

Hemisphere are not as extensive, being confined to

western margins of the gyres. The Northern Hemisphere

also contains convective regions north of 508N, which

create negative QGPV gradients below stratification

minima (i.e., at a few hundred meters depth). A schematic

diagram of an idealized QGPV gradient (that ignores the

convective regions in the Northern Hemisphere) is shown

in Fig. 2b. If deep currents are weak, then, given the

thermal-wind equation fUz 5 �by 5 N2s, flow above

will be directed eastward (U . 0), where isopycnals (solid

FIG. 2. Zonally averaged cross section of the meridional QGPV gradient (in units of b), from

the OCCA. The upper surface gradient Uz is shown above the dashed line evaluated at a depth

of 50 m, and gray contours are neutral density. (b) An idealized schematic of the PV gradients

with isopycnals (solid gray lines) sloping up toward the equator (pole) at low (high) latitudes.

Light (dark) shaded regions indicate Qy . 0 (Qy , 0), and the dashed–dotted line indicates

Qy 5 0. Poleward-sloping isopycnals are associated with deep PV gradient zero crossing,

whereas equatorward-sloping isopycnals are associated with zero crossing shallower than the

thermocline. The d-function surface contribution above the dashed line assumes the equator is

more buoyant than the poles at the surface. See text for details.
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gray lines) slope up toward the pole (s . 0 in the Northern

Hemisphere), and directed westward (U , 0), where they

slope up toward the equator (s , 0). The vertical extent of

the thermocline is greater in eastward-flowing regions

relative to westward-flowing regions. The vertical distri-

bution of Qy depends on the manner in which isopycnal

slopes vary in the vertical. Isopycnal slopes tend to have

a maximum at middepth in the thermocline, leading to

a reversal in sign of Qy at middepth, marked by the

dashed–dotted line. The broad patterns in the sign of Qy

are indicated by light gray (Qy . 0) and dark gray (Qy ,

0) shading. In addition, there is a delta function con-

tribution in Eq. (1) associated with surface boundary

conditions, which has a positive sign (Uz . 0) at all lati-

tudes (except the deep tropics) because the meridional

buoyancy gradient at the surface is generally negative.

This surface condition has little effect on regions where

isopycnals slope up toward the pole, but it is an important

driver of baroclinic instability in subtropical return flow

regions that have Qy , 0 beneath.

Figure 3 zooms in on idealized profiles of zonal velocity

in typical westerly, mixed, and easterly sheared flows. Note

that westerly sheared profiles represent regions such as the

ACC, Kuroshio, and Gulf Stream; mixed shear profiles

represent gyre return flows (at approximately 6208–308);

and easterly sheared profiles represent north and south

equatorial countercurrents (at approximately 6108–208).

Charney instabilities are not possible at the upper surface

in a westerly sheared flow as depicted in Fig. 3: the shear

has the same sign as the upper surface gradient and so the

only instability that can occur is analogous to a two-layer

Phillips instability. However, in the mixed shear flow

shown in Fig. 3, the upper surface gradient opposes the

QGPV gradient just below it, so Charney instabilities near

the surface are possible. As discussed in the conclusions,

we hypothesize that such Charney instabilities make sur-

face quasigeostrophic (SQG) dynamics (Held et al. 1995;

Lapeyre 2009) more relevant in such mixed shear flows

compared to westerly sheared flows. Moreover, near-sur-

face Phillips instabilities can also occur because of the

shallow zero crossing of the interior QGPV gradient. Fi-

nally, the easterly sheared flow depicted in Fig. 3 contains

no interior QGPV gradient zero crossings; therefore, in-

stability can only occur through the interaction of the

negative surface gradient with the positive QGPV gradient

beneath it.

3. Local instability analysis

Local baroclinic growth rates, scales of maximum in-

stability, and vertical structures of unstable modes are

computed by solving the linearized QG equations about

the local climatological streamfunction C(z) 5 V(z)x 2

U(z)y and stratification N2(z),

›
t
q 1 J(C, q) 1 J(c, by 1 GC) 5 0, �H , z , 0,

›
t
b 1 J(C, b) 1 J(c, f ›

z
C) 5 0, z 5�H, 0, (2)

where G 5 ›z( f 2/N2›z) is the vortex stretching operator,

b 5 f›c/›z is buoyancy, q 5 (=2 1 G)c is the eddy

QGPV, and rigid lid and a flat bottom have been as-

sumed. The vertical is discretized into 50 levels and

derivatives are computed using centered differences

in the same way as in Tulloch et al. (2009), which is

based on the method used in Smith (2007b). The dis-

cretized version of Eq. (2) becomes a generalized ei-

genvalue problem when a wave solution of the form

c 5 F(z)ei(K � x 2 vt) is assumed, where K 5 ki 1 ‘j is

FIG. 3. Schematic of typical zonal velocity profiles in westerly, mixed, and easterly sheared

mean flows. The curve indicates U(z), and the horizontal dashed line indicates approximately

the height at which the QGPV gradient is zero, assuming negligible planetary PV gradient. The

surface shear is opposed to the PV gradient immediately beneath in the mixed and easterly

sheared profiles.
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the wavenumber vector, v is the eigenvalue, and F(z)

is the eigenvector.

In the discussion that follows, the wavenumber of the

fastest-growing mode Kbci is compared to the local de-

formation wavenumber Kdef, which is defined as the

square root of the first nonzero eigenvalue of the vertical-

mode equation,3

d

dz

f 2

N2

df(z)

dz

" #
5�K2

deff(z), (3)

with upper and lower boundary conditions df/dz 5 0.

Note that, in addition to the thermocline baroclinic in-

stabilities, which are the focus of our attention here,

small-scale, surface trapped instabilities at wave-

numbers significantly larger than Kdef also appear in the

linear stability analysis. Smith (2007b) argued that, be-

cause such surface instabilities do not penetrate far into

the thermocline, they are insignificant from the view-

point of baroclinic conversion of APE to KE. Regard-

less of the importance of submesoscale instabilities and

dynamics, the balanced QG analysis performed here

does not properly resolve such instabilities. We there-

fore choose to limit the wavenumber range considered

at each location to K , 5Kdef, where K is the magnitude

of the horizontal wavenumber K 5 (k2 1 ‘2)1/2. We re-

turn to this in the discussion.

a. Detailed stability calculations at chosen locations

Figure 4 shows instabilities computed at two eastward-

flowing locations and two locations in the subtropics with

mixed shear: (39.58N, 60.58W) in the Gulf Stream (Figs.

4a–d); (51.58S, 141.58E) in the ACC (Figs. 4e–h); (23.58N,

60.58W) in the western subtropical North Atlantic (Figs.

4i–l); and (23.58N, 155.58E) in the western subtropical

North Pacific (Figs. 4m–p). Each row of Fig. 4 shows the

neutral density profile; geostrophic zonal (solid line) and

meridional (dashed line) current profiles; growth rate vi

as a function of zonal and meridional wavenumbers (k, ‘);

and the vertical structure of the amplitude of the most

unstable wave, whose wavenumber K
bci

5 (k2
bci 1 ‘2

bci)
1/2

is marked by a dot in the third column. Note that the

barotropic component of the flow is assumed to be zero,

because it does not alter baroclinic growth rates (Smith

2007b). Each of the growth rate plots in the third column

presents four contours at equal intervals, spanning the

peak growth rate over the domain: wavenumbers have

been nondimensionalized by the local deformation

wavenumber Kdef. In the fourth column, the numerical

value of Kbci/Kdef is also indicated. The peak growth rates

at the four locations are 0.053, 0.11, 0.015, and 0.017

days21 (Figs. 4c,g,k,o, respectively), which highlights how

unstable the Gulf Stream and ACC are compared to the

subtropical flow regions.

1) WESTERLY SHEAR

The two locations in eastward-flowing currents are

dominated by instabilities that have a scale K�1
bci larger

than the deformation radius and extend all the way to

the bottom, despite being peaked at the surface. These

Gulf Stream and ACC instabilities can be thought of as

Phillips instabilities because they can be recovered in

a two-layer or two-mode model. The Gulf Stream in-

stability is surface intensified, which is consistent with

the surface-intensified stratification there. The ampli-

tude of the ACC instability is largest at the surface but is

also bottom intensified, typical of a Phillips instability

with constant stratification. The stratification in the

ACC is clearly not constant, but it is far less surface

intensified than elsewhere in the ocean. Although the

ACC instability is not constrained to have zero interior

PV gradients, as assumed in the Eady (1949) model, it is

worth noting that the growth rate and length scales of

the two are very similar. The Eady instability has a peak

growth rate of vEady 5 0.31( f/NH)DU at a horizontal

scale Kbci/Kdef 5 0.51. The growth rate in Fig. 4g can be

compared with that of an Eady mode when the meridi-

onal velocity is neglected. Recalling that for constant N2

the first deformation wavenumber is Kdef 5 pf/NH, then

setting DU 5 0.2 m s21 and Kdef 5 5.85 3 1025 rad m21

gives vEady 5 0.1 days21, which is close to the computed

value of 0.11 days21.

Some unstable growth also occurs at wavenumbers in

the corners of the domain in Fig. 4g. This growth is as-

sociated with a mode that peaks at very small scales

(wavenumber Kbci/Kdef 5 18) and has virtually zero am-

plitude at depths shallower than 2 km. We believe that

this is a spurious, unphysical numerical mode and not

robustly resolved in our calculation because it changes

significantly given different vertical discretizations, ocean

climatologies, and geographic locations. For example,

neighboring locations typically exhibit surface-intensified

modes at these small scales rather than bottom-intensified

ones. Here, we seek to identify mesoscale instabilities;

thus, we restrict our analysis to wavenumbers with mag-

nitude K , 5Kdef and consider only those that peak inside

that wavenumber domain. The scale of the mesoscale

instabilities typically peak at a Kbci that is within a factor

of 2 of Kdef, which is in accordance with the classical

3 The deformation radius is defined as R
def

5 K�1
def, and the de-

formation wavelength is defined as L
def

5 2pK�1
def . Note that in

what follows we also define Lbci 5 2pK�1
bci
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models of baroclinic instability in geostrophic (Charney

1947; Eady 1949; Phillips 1954; Green 1960) and non-

geostrophic (Stone 1966) flows.

2) MIXED SHEAR

In contrast to the two eastward-flowing locations, the

subtropical sites with mixed shear (bottom two rows of

Fig. 4) are characterized by thermal-wind shears that

change sign near the surface. This is because the interior

circulation is increasingly directed westward with height

but must ‘‘join on’’ to a shear associated with a horizontal

density gradient at the surface that is of the opposite sign

(i.e., a shear that is directed eastward). The resulting in-

stabilities are associated with a shallow zero crossing in

FIG. 4. Local baroclinic instability analysis using the OCCA at four locations: (left)–(right) neutral density, zonal (solid) and meridional

(dashed) geostrophic velocity, contours of growth rate vi against zonal and meridional wavenumbers, and amplitude profiles of the fastest-

growing baroclinic mode, which is located at the wavenumber Kbci labeled with a dot in the third column.
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gradients of QGPV (see Fig. 2): they are weaker and

shallower than their westward counterparts and lie at

horizontal wavenumbers Kbci that are about twice Kdef.

The instability cannot be captured by a two-vertical-mode

representation and is either the result of a zero crossing of

the QGPV gradient near the surface (near-surface Phillips)

or the interaction of the surface gradient with the QGPV

gradient just below the surface (Charney like).

The broad geography of baroclinic instability implied

by Fig. 2 is evident in Fig. 4: at higher latitudes, where

isopycnals slope up toward the pole, the flow is often

baroclinically unstable with vertically deep modes at

horizontal scales larger than the deformation radius. In

contrast at lower latitudes, where isopycnals slope up to-

ward the equator in the thermocline, flows are primarily

unstable near the surface at smaller-than-deformation

scales. We note in passing that this weaker dependence of

the horizontal scale of the fastest-growing mode on de-

formation scale is consistent with observed eddy length

scales found by Scott and Wang (2005) and Chelton et al.

(2007). However, the connection between the observed

eddy scale and the scale of the fastest-growing mode is far

from clear (see the discussion in section 4).

b. Global distribution of growth rates and scales

Global maps and zonal averages of local growth rates

and unstable length scales are now presented. At each

(latitude, longitude) coordinate, the eigenvalue problem

associated with Eq. (2) is solved over 80 3 80 wave-

numbers in (k, ‘) space. Figure 5a shows an estimate of

the baroclinic growth rate from the so-called Eady time

scale (Visbeck et al. 1997; Smith 2007b). The inverse

Eady time scale ~vEady is derived by Smith (2007b) by

integrating the mean APE ( f2/2N2)Cz
2 both vertically

and horizontally over a box, assuming a local mean

streamfunction C 5 2yU(z) 1 xV(z), to arrive at

~v2
Eady 5

1

H

ð0

�H

f 2

N2

U2
z 1 V2

z

6
dz (4)

after neglecting the cross terms UzVz. The factor of 6 arises

from integrating Cz
2/2 and, for constant stratification and

zonal shear, it conveniently scales to 0.41( f/NH)DU, which

is close to the peak growth rate 0.31( f/NH)DU of the Eady

(1949) model.

The growth rates computed from the detailed stability

analysis, Eq. (2), are shown in Fig. 5b. They are typically

FIG. 5. (a) Inverse Eady time scale ~v
Eady

(days21) and (b) baroclinic growth rate vi days21 in

the OCCA. Values less than 1/200 days21 and locations where no local maximum growth rate is

present are shaded black. The coastline is marked by a black contour, and regions where no

calculation was made are shaded white.
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slightly smaller than ~vEady, but the spatial pattern of the

two are very similar. The most notable differences be-

tween the ~v
Eady

and the detailed calculation are found at

low latitudes. Here, the mean flow is dominated by

higher baroclinic modes, which are not well captured by

the vertical integral in Eq. (4). At higher latitudes, there

is close agreement between vi and ~vEady. Note that, in

a few regions, such as near the equator in the South

Equatorial Current, the growth rate has been set to zero

(shaded black) because no growth rate peaks were

found within the search domain (K , 5Kdef).

Figure 6 shows maps and zonal averages of Lbci/Ldef

(top) and Kbci (bottom). The red curve in Fig. 6b is the

zonal and vertical average of the zonal velocity (cm s21).

Eastward jet regions in Fig. 6a are typically shaded yellow

or red because Kbci , Kdef, whereas return flows are

typically light blue because Kdef , Kbci , 2Kdef here.

Dark blue regions, which have the smallest baroclinic

length scales, correlate well with regions of small growth

rate (vi ,
1/200 days21). Note that Lbci in the ACC appears

to be robustly larger than Ldef. Signatures of large-scale

baroclinic instability are also evident in the Gulf Stream

and Kuroshio. Gyre interiors, which are only weakly

unstable, have a patchy appearance and small baroclini-

cally unstable scales Kbci . Kdef.

Finally, the purple, blue, and black boxes superimposed

on Fig. 6c indicate regions of approximate homogeneity

over which zonal averages will be taken to compare the

most baroclinically unstable length scale with the scales of

eddies and spectral fluxes computed from altimetry.

4. Diagnosis of observed scales and spectral energy
fluxes from altimetry

The scales of the fastest-growing mode computed in the

previous section can be compared with eddy length scales

and spectral fluxes using satellite altimeter data. Here, we

make use of the approach of Scott and Wang (2005) be-

cause we are interested in diagnosing the injection scale,

the scale of the equilibrated eddy field, and the flux of

energy in wavenumber space between them. The calcu-

lation of Scott and Wang (2005) is repeated using

FIG. 6. (a) Map and (b) zonal average of Lbci/Ldef. The red line in (b) is a zonal and vertical average of the zonal

velocity (cm s21), indicating eastward vs westward flow. (c) Map and (d) zonal average of Kbci (cycles per kilometer):

black (ACC), blue (midgyre), and purple (return flow) boxes denote homogeneous regions about which zonal av-

erages are taken for comparison with spectral fluxes computed from satellite altimetry.
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interpolated, 1/38 Mercator gridded sea surface height

(SSH) AVISO (through 2008). To compute the KE

spectrum and spectral energy flux in this way, one takes

two-dimensional Fourier transforms over some local box.

Because the ocean is not meridionally homogeneous,

smaller grids are preferred, but at the risk of not resolving

the large scales if the grid is too small. Scott and Wang

(2005) investigated the dependence of the flux on the grid

size using 32 3 32, 64 3 64, and 128 3 128 grids and found

a small but consistent bias toward smaller scales when

smaller grid sizes were used. Nevertheless, to maximize

the number of samples and keep statistics local, here all

spectral flux calculations are performed on 32 3 32 grids

while avoiding the deep tropics, where scales approach

the size of the box. Eddy length scales are taken to be the

peak of the KE spectrum. See appendix B for a discussion

of different measures of eddy scale.

Spectral fluxes

Spectral fluxes are computed identically to the method

of Scott and Wang (2005) with the exception that Gibbs

phenomena due to nonperiodic data are suppressed using

periodic data flipping, instead of a Hamming window. In

a comparison test between the two methods, data flipping

gave almost identical fluxes to a Hamming window, but

with what appeared to be a slightly weaker forward KE

fluxes at small scales. As with Scott and Wang (2005) and

Schlösser and Eden (2007), the method of Frisch (1995) is

used to compute the spectral KE fluxes at the surface.

Assuming geostrophic balance and an f plane within each

box, the surface velocities are given by ug 5 (2hy, hx)g/f0,

where g is gravity, h is SSH, and f0 is the local Coriolis

frequency. We define low- and high-pass-filtered veloci-

ties thus as

u,
K (x, y) 5 �

K9 , K

bu expi(kx 1 ‘y) and (5)

u.
K (x, y) 5 �

K9 . K

bu expi(kx 1 ‘y), (6)

where K 5 (k2 1 ‘2)1/2 is the isotropic wavenumber and

û is the Fourier transform of u. Note that, although K, k,

and ‘ are discrete, the above sum treats K9 continuously

by first masking û with appropriate weights for each K.

The low-passed average KE density is KEK
, 5 huK

, � uK
,i/

2, and its evolution is given by [see, e.g., Eqs. (4) and (5)

of Scott and Wang 2005]

›KE,
K

›t
5�P

K
1F �D, (7)

where

P
K

5 u,
K � (u,

K � $u.
K )

� �
1 u,

K � (u.
K � $u.

K )
� �

(8)

is the flux of energy toward small spectral scales at wave-

number K. Here, F and D represent forcing and dissipa-

tion terms, respectively. As in Scott and Wang (2005), we

assume that the vortex stretching term, which is pro-

portional to cK
,›zw in QG, is contained in the forcing F .

Figure 7 shows spectral fluxes (solid line) and KE

spectra (dashed line) at various latitudes plotted against

wavenumber (in units of cycles per kilometer). These

fluxes and spectra were computed over regions denoted

by the overlapping boxes in Fig. 6. That is, one flux is

computed within each 10.68 wide box, and then boxes

centered at each latitude are zonally averaged, giving

equal weight to each box. In each panel, the solid vertical

line is Kbci and the vertical dashed–dotted line is Kdef,

computed from the climatological atlas and then aver-

aged over the same boxed regions. Note that the fluxes

and spectra in each box were first normalized so that each

have a maximum (or minimum) value of one before zonal

averaging, arriving at an ‘‘equal weighting’’ zonal average

of scale. This should be contrasted with a nonnormalized

zonal average in which longitudes with the highest energy

would dominate the average.

Scott and Wang (2005) note that the wavenumber

where the spectral energy flux crosses zero can be thought

of as the wavenumber of energy injection Kinj from which

energy cascades to larger scales. We also define the ob-

served eddy wavenumber Keddy as the wavenumber where

the KE spectrum peaks, the observed eddy wavelength as

Leddy 5 2pK�1
eddy, and the energy injection wavelength as

Linj 5 2pK�1
inj . The close correspondence between Kbci

and Kinj is pleasing and supports the claim that classic,

deep, deformation-scale baroclinic instability energizes

eddies in the ACC. The scales of baroclinic instability at

lower latitudes are less homogeneous, and observed eddy

scales approach the size of the spectral grid in the flux

calculations. It is thus difficult to obtain precise estimates

of eddy scale in this way. However, Lbci, Linj, and Leddy all

appear to follow a general trend: they are larger than the

deformation scale at higher latitudes and smaller than the

deformation scale at lower latitudes.

Scott and Wang (2005) also noted that Linj did not

covary with either Ldef or the Rhines scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U

RMS
/b

p
.

The variation of Ldef implies too strong a latitudinal de-

pendence: at high latitudes observed scales are greater

than Ldef, whereas at low latitudes they are less than Ldef.

Moreover, because b decreases with latitude and the

observed root-mean-square of the eddy velocity does not

obviously decrease with latitude outside the tropics

(Tulloch et al. 2009), the Rhines scale is unlikely to
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decrease toward higher latitudes (see, e.g., Fig. 25a of

Stammer 1997). If Leddy does not vary with the Rhines

scale in the ACC and given that baroclinic instability

produces deep modes there, it seems likely that bottom

drag may be an important mechanism halting the inverse

cascade.

Full zonal averages (away from coastal regions) of

Ldef (dashed black line), Linj (solid black line), Lbci

(dash-dotted line), and Leddy (gray dotted line) are

plotted against latitude in Fig. 8. The eddy scale shown

here is a zonal average of the peak wavenumbers of the

isotropic KE spectra in each box.4 At all latitudes, Linj is

within about a factor of 2 of Leddy. Similarly, Lbci is

within a factor of 2–3 of Leddy at all latitudes. Recall that

wavenumbers of baroclinic instability are restricted to

K , 5Kdef, so it is not surprising that the baroclinic scale

is not far from Kdef. The best match between Linj and

Lbci is in the ACC from 2608 to 2508. Here we find

deep, first baroclinic instabilities with fast growth rates

(.1/20 days21). Again, we see that Lbci and Leddy vary

less strongly with latitude than Ldef.

5. Analysis of global eddying model

To assess the robustness of the observations and cal-

culations presented in the previous section, the same

analysis is repeated on an eddy-permitting ocean simu-

lation using an aquaplanet configuration (see Marshall

et al. 2007) of the MITgcm (for details of the model’s

equations and numerical algorithms, see Marshall et al.

1997; Adcroft et al. 2004b).

a. Eddying Double Drake solution

The eddying Double Drake configuration of the

MITgcm has nominal grid resolution of about 15–20 km

and 41 vertical layers over a 3-km-deep flat-bottomed

ocean. There are two meridional land barriers at 908E

and 1808, which extend from the North Pole down to

358S and create a large, fresh Pacific-like basin; a small,

salty Atlantic-like basin; and a circumpolar current in

the south (for more details, see Marshall et al. 2007;

Ferreira et al. 2010). Atmospheric forcing is provided

by steady winds derived from lower-resolution (C24)

climatology taken from Ferreira et al. (2010). There is

no seasonal cycle or stochastic weather noise to generate

mesoscale variability, leaving baroclinic instability as the

sole source of variability. The model is initialized with

a low resolution (C24) equilibrated ocean state that is

FIG. 7. Spectral flux of KE (solid line) and KE spectrum (dashed line) plotted against total wavenumber (cycles per kilometer) at various

latitudes. The vertical solid line is Kbci, and the vertical dashed–dotted line is Kdef.

4 Appendix B discusses the advantages and disadvantages of

several different measures of eddy scale and the rationale for this

choice of eddy scale.
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interpolated onto the C510 grid and then spun up for

20 yr, during which time the ocean breaks down into

eddies. See appendix C for more details of the configura-

tion.

A snapshot of vorticity (z 5 ›xy 2 ›yu) at the surface is

shown in Fig. 9. The thick white strip is a land barrier

that serves as the eastern (western) boundary of the

small (large) basin. The thin white contours mark lati-

tude circles 158 apart. The stability analysis performed

here is based on a 5-yr climatology, which is interpolated

onto a 18 3 18 grid, the same resolution as the OCCA

(Forget 2010).

Salient features of the vorticity field include a linear

wave region in the tropics devoid of nonlinear eddies

(except at the western boundaries), westward return flows

from 158 to 308N (and from 158 to 308S), and eastward jets

from 308 to 458N (and from 308 to 458S). There are also

‘‘dead regions’’ largely devoid of eddies, corresponding to

flat isopycnals at 458N and 508S. Poleward of these re-

gions, eddies are again ubiquitous. The eastward jets ap-

pear to be saturated with high values of vorticity as eddies

of a uniform scale propagate slowly eastward. Meanwhile,

the westward return flows possess large-scale eddies as

well as many small-scale filaments, which are barely re-

solved by the model. Both propagate quickly westward at

speeds close to that of the mean flow near the surface. The

small filaments in the return flows are surface trapped and

are probably SQG like (Tulloch and Smith 2009).

A zonal average of the distribution of eddy kinetic

energy (EKE) among the BT and first two BC (BC1 and

BC2) vertical modes, defined by Eq. (3), is shown in

Fig. 10. The total EKE is

EKE 5
1

H

ð0

�H

(u9)2
1 (y9)2 dz, (9)

where H 5 3 km and u9 and y9 are horizontal eddy ve-

locities. Similarly, barotropic and baroclinic EKE are

EKE
BT

5
1

H

ð0

�H

u9 dz

� �2

1
1

H

ð0

�H

y9 dz

� �2

and (10)

EKE
BCj

5
1

H

ð0

�H

f
j
u9 dz

� �2

1
1

H

ð0

�H

f
j
y9 dz

� �2

, (11)

where fj is the jth vertical mode from Eq. (3). Root-

mean-square eddy velocities in the eastward jets are

greater than 10 cm s21, whereas in the return flows they

are closer to 5 cm s21. High latitudes are dominated by

BT and BC1 modes. Equatorward of 308, BC2 becomes

increasingly important. Note also that, poleward of 208,

BC1 is the dominant mode, implying that the sea surface

FIG. 8. Full zonal averages of Ldef (thick dashed black line), Linj

(thick solid black line), Lbci (dashed–dotted line), and Leddy (gray

dotted line); see text for details.

FIG. 9. Snapshot of surface relative vorticity in the eddying

Double Drake simulation. The thick, meridional white stripe is the

land barrier at the western boundary of the large basin. The thin

white zonal stripes denote latitude lines that are spaced by 158.

FIG. 10. Zonal averages of vertically integrated EKE (thin solid

line), barotropic EKE (thick dashed line), first baroclinic EKE

(thick solid line), and second baroclinic EKE (thin dashed–dotted

line) plotted against latitude from the Double Drake simulation.
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height should reflect mostly BC1 dynamics, in agree-

ment with observations (Wunsch 1997).

As might be expected, regions of high and low EKE in

Fig. 10 correlate closely with isopycnal slope. Figure 11

shows isopycnals and the QGPV gradient zonally aver-

aged across the large basin. As with Fig. 2, isopycnals

sloping up toward the equator in the thermocline are

associated with shallow QGPV gradient zero crossings,

whereas isopycnals sloping up toward the pole are as-

sociated with deep zero crossings, consistent with Smith

and Marshall (2009). The trend is more clear in Fig. 11

because the Double Drake simulation is more zonally

homogeneous than the ocean.

b. Baroclinic instability in the Double Drake
simulation

The geography of baroclinic instability in the Double

Drake simulation is shown in Fig. 12. Figure 12a shows

~vEady and Fig. 12c shows Lbci/Ldef at each location. As

with the analysis of ocean observations discussed in

section 2, baroclinic growth rates are computed on a grid

of wavenumbers limited to K , 5Kdef to filter out poorly

resolved surface instabilities. Figures 12b,d show zonal

averages of the same variables (black line) as well

as zonally and vertically averaged zonal velocity (red

lines). As in the ocean, the highly energetic eastward

flows centered near 6408 latitude are dominated by

FIG. 11. Cross section of zonally averaged meridional gradient of

QGPV ›Q/›y in the Double Drake simulation (in units of the local

b). The contribution of the upper surface gradient Uz is shown above

50-m depth. Also plotted are gray contours of neutral density.

FIG. 12. Global maps and zonal averages of (a),(b) inverse Eady time scale ~v
Eady

(days21) and (c),(d) the ratio

Lbci/Ldef. Zonally and vertically averaged zonal velocity (cm s21) is plotted in red in (b) and (d) to distinguish low-

latitude westward flows from midlatitude eastward flows.
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larger-than-deformation-scale instabilities. Meanwhile,

return flows are dominated by smaller-than-deformation-

scale instabilities and regions with flat isopycnals are

weakly unstable and are associated with very small

spatial scales.

c. Spectral fluxes and eddy scales in the Double
Drake simulation

Unlike the ocean, model KE fluxes of the geostrophic

flow can be compared against the fluxes of the full velocity

at both the surface and at depth. Not surprisingly, because

of the scales permitted and the 10-day velocity averages

taken, the geostrophic KE fluxes are very similar to the

full KE fluxes. APE fluxes can also be computed from the

velocity field and the buoyancy. Following Schlösser and

Eden (2007), the APE flux at the surface is

B
K

5 N�2 b,
K u,

K � $b.
K

� �
1 N�2 b,

K u.
K � $b.

K

� �
, (12)

where bK
, is the low-pass-filtered buoyancy; (u, y) are the

model velocities; and a rigid lid w 5 0 has been assumed.

Figure 13 shows zonally averaged kinetic and APE

spectral fluxes and spectra at the surface for various

latitude bands. As in Fig. 7, the vertical solid line is the

wavenumber of fastest growth Kbci, the vertical dashed–

dotted line is Kdef, the dashed curve is the KE spectrum,

and the black curve is the spectral flux of KE computed

from the SSH gradients. Also plotted in Fig. 13 are the

spectral flux of APE (light gray curve), the APE spec-

trum (dashed–dotted curve) and the spectral flux of KE

computed from the model velocities u and y (dark gray

curve). In each panel, Lbci and Ldef have been averaged

over the latitudes shown and zonally from 208 to 2508

and from 2908 to 3408. Spectral fluxes of KE computed

from velocities are almost identical to those computed

from SSH at high latitudes, whereas they have slightly

larger forward cascades at lower latitude latitudes. The

large forward KE fluxes in the model at low latitudes

could also be due to smaller-scale instabilities that are

either not present in the ocean or not resolved by the

altimeter. The APE flux is robustly positive at all lati-

tudes and scales, consistent with surface geostrophic

turbulence theory (Capet et al. 2008). Consistent with

the trend in the ocean data, Lbci is larger than Ldef at

high latitudes, where instabilities tend to be first baro-

clinic in vertical structure, and smaller than Ldef at low

latitudes, where instabilities tend to have higher baro-

clinic vertical structure.

FIG. 13. Zonal averages of normalized surface spectral fluxes and spectra plotted against wavenumber (cycles per kilometer) in the

Double Drake simulation. Plotted are the spectral flux of KE computed from SSH gradients (solid black curve), the spectral flux of KE

computed from model velocities u and y (dark gray curve), KE spectrum (dashed curve), APE spectrum (dashed–dotted curve), and the

spectral flux of APE (gray curve). The vertical solid line is Kbci, and the vertical dashed–dotted line is Kdef.
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Figure 14 shows fluxes and spectra analogous to Fig. 13,

but at a depth of 900 m. Unlike at the surface where the

forward APE flux extends down to the grid scale, in the

interior the APE flux tends to zero near Kinj, consistent

with interior geostrophic turbulence theory, which pre-

dicts a flux of APE to deformation scales, followed by a

conversion to KE. The zonal averages of the low-latitude

(normalized) APE fluxes (Fig. 14, right) peak at amplitudes

that are significantly smaller than one, indicating a dis-

agreement in scales across longitudes. However, 900 m is

both at the base of the thermocline and below most of the

baroclinic growth at these latitudes (recall Fig. 4), so the

fluxes there are probably insignificant.

Finally, zonal averages of Leddy (gray dotted line),

Linj (thick black line) at the surface, Ldef (dashed line),

and Lbci (dashed–dotted line) in the Double Drake

simulation are plotted against latitude in Fig. 15. As

before, Leddy is a zonal average of the peak wave-

number of the KE spectrum in each 32 3 32 box. As in

the ocean, Leddy varies with latitude in a similar way as

Ldef at higher latitudes, but in the return flows (u , 308)

it grows with latitude much less than Ldef. Also, just as

in the ocean, there is about a factor of 2–3 between

Leddy, Lbci, and Linj.

6. Summary and discussion

We remind the reader of the limitations of our sim-

plified analysis. Our use of linear baroclinic instability

under the local approximation is not meant to fully ex-

plain the generation of oceanic eddies but rather serve

as a test of its limits. We have sought to bring together

elements of linear and nonlinear geostrophic theory

FIG. 14. Zonal averages of normalized spectral fluxes and spectra at 900-m depth, plotted against wavenumber (cycles per kilometer) in

the Double Drake simulation. Plotted are the spectral flux of KE computed from model velocities u and y (dark gray curve), KE spectrum

(dashed curve), APE spectrum (dashed–dotted curve), and the spectral flux of APE (gray curve). The vertical solid line is Kbci, and the

vertical dashed–dotted line is Kbci.

FIG. 15. Zonally averaged eddy scale (gray dotted line), de-

formation scale (dashed line), energy injection scale (thick line),

and the scale of maximum baroclinic growth rate (dashed–dotted

line) in the Double Drake simulation as defined in sections 3 and 4.
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using both ocean data and a model simulation. The four

main results of our study are as follows: 1) in zonal flow,

there is an asymmetry between regions of eastward flows

which tend to have deep zero crossings in the meridional

QGPV gradient, and westward return flows, which are

associated with shallow zero crossings in the QGPV

gradient; 2) Leddy and Lbci predicted by linear theory

both vary less strongly with latitude than Ldef; 3) the

inverse cascade throughout the ocean spans a modest

range of scales; and 4) these aforementioned features

can be captured in an idealized eddying GCM with no

atmospheric variability and a flat bottom.

The tendency toward shallow zero crossings of the

QGPV gradient in regions where the thermocline slopes

equatorward is a consequence of the reversal of the me-

ridional density gradient between the thermocline and

the surface. Such regions tend to exhibit Charney-type

baroclinic instability on horizontal scales between the

first and second baroclinic wavenumbers. Steering levels,

which were not shown here but will be discussed in a fu-

ture paper, also tend to be shallow in these regions be-

cause the barotropic component of the mean zonal flow

usually reinforces the tendency of mesoscale anomalies to

propagate westward. In regions where the thermocline

slopes poleward, the zero crossing of the QGPV gradient

is below the maximum isopycnal slope, which tends to be

near the depth of the thermocline. Steering levels also

tend to be deep in such regions.

One of the key results of the baroclinic instability

analysis performed here is that Lbci in the ACC is often

larger than Ldef there (see Fig. 6). The growth rates of such

instabilities are on the order of 10 days and are only rivaled

by very small-scale surface instabilities (which are argu-

ably not resolved by such a climatological analysis).

Eastward wind-driven jets in the Double Drake simulation

exhibit similarly large growth rates and scales (see Fig. 12).

The oceanic inverse cascade is a subject of much de-

bate. We find evidence of only a modest inverse cascade

especially in the eddy-rich regions driven by larger-than-

deformation-scale instabilities. In mixed shear return

flows baroclinic instability acts closer to the surface at

scales smaller than Ldef, but Leddy in those lower latitude

regions are also smaller relative to Ldef.
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APPENDIX A

Baroclinic Instability in Other Ocean Atlases

To compare the OCCA with more traditional ocean

atlases, we show growth rates and length scales of

maximum baroclinic instability in the World Ocean

Circulation Experiment (WOCE) 2004 climatology

(Gouretski and Koltermann 2004) and the World Ocean

Atlas 2005 (WOA05) climatology (Boyer et al. 2006).

The WOCE climatology uses data optimally in-

terpolated onto a 0.58 3 0.58 grid with 45 vertical levels,

whereas the WOA05 climatology is interpolated onto

a 18 3 18 grid with 33 vertical levels. All modern cli-

matologies appear to suffer from a lack of observations

at depths below 1.5 km in the Southern Ocean, so the

GCM-interpolated OCCA is likely more suitable for

instability calculations there.

Figure A1 shows baroclinic growth rates in WOCE

and WOA05, which are directly comparable to Fig. 5b.

Outside the tropics, the two agree with each other very

well and with the OCCA. The WOCE climatology has

more finescale instability because it is on a finer grid.

The WOCE climatology is also noisier than OCCA,

which tends to create larger growth rates.

Figure A2 shows length scales of maximum baroclinic

instability nondimensionalized by the local deformation

scale in WOCE and WOA05, comparable to Fig. 6a. The

broad features are consistent in all three datasets, but the

OCCA is substantially less noisy, particularly in the ACC.

Smith (2007b) analyzed the WOCE climatology and

found quite different scales and growth rates than those

reported here (specifically, smaller and faster). This is

due to an unfortunate gridding mistake in Smith’s anal-

ysis, which followed from an error on p. 22 of Gouretski

and Koltermann (2004). Specifically, the vertical grid

levels are listed in Gouretski and Koltermann (2004) as

including data at 450 m and not at 900 m, whereas the

climatology in fact included data at 900 m but not at

450 m. This led to kinks in the profiles of stratification and

shear, resulting in unphysical instabilities. The discovery

of this error came about as the result of the present

analysis.

APPENDIX B

Estimates of Eddy Length Scale

Various measures exist for the length scale of eddies.

For example, Stammer (1997) used autocorrelation of

SSH gradients as well as cross-track (mainly zonal)

spectral peaks. Eden (2007) used Stammer’s autocor-

relation measures and measures based on moments of

isotropic KE. The simplest measure of scale is the peak

wavenumber of the isotropic KE spectrum. However,

because isotropic spectra are computed from two-

dimensional grid boxes, eddies with scales near the box

size become coarsely quantized. For this reason, measures
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based on moments of the KE spectrum, such as the

centroid

Kc 5
�K �KE(K)

�KE(K)
, (B1)

are often used instead of the peak wavenumber. How-

ever, such measures depend on spectral slopes, mea-

surement noise, and data interpolation.

Figure B1 shows four zonally averaged measures of

eddy scale (gray lines) and the deformation scale (dashed

line) in the ocean plotted against latitude. The gray Xs are

the wavelengths corresponding to the centroid wave-

number Kc, and the gray circles are the wavelengths of

the peak wavenumber of the KE spectra. The solid gray

line is LSW 5 2p/Kc, computed in the Pacific by Scott and

Wang (2005) in roughly the same way as done here. The

relative difference between Scott’s scales and the cen-

troid computed here is slight, never more than about 5%,

and likely only the result of minor technical differences.

The dashed gray line is a measure of eddy scale computed

from contours of the Okubo–Weiss parameter by

Chelton et al. (2007). In their analysis, they compute the

Okubo–Weiss parameter, W 5 4(ux
2 1 yxuy), from SSH

gradients and define eddies as having either wholly pos-

itive or negative SSH within regions where W , 22 3

10212 s22. From these eddy regions, they compute

diameters of circles that cover the same area. The gray

dashed line Lchelton in Fig. B1 is a zonal average of twice

the eddy diameters computed by Chelton et al. (2007),

which assumes that a wavelength is comprised of two

adjacent diameters of alternate sign.

All of the scales shown in Fig. B1 lie within a wave-

length range that is less than 100 km wide at any given

latitude, and their dependence against latitude is less

strong than that of the deformation wavelength. The

zonal average of the peak wavenumber (dotted gray line)

is consistent with the other measures and is therefore the

measure that is plotted in Fig. 8.

APPENDIX C

Double Drake Model Configuration

The eddying Double Drake model employs a cube

sphere configuration (Ronchi et al. 1996; Rancic et al.

1996; Adcroft et al. 2004a) of the MITgcm. The mesh is

locally orthogonal with 510 grid cells along each edge of

FIG. A1. Baroclinic growth rate vi (days21) in (a) the WOCE 2004 climatology (Gouretski

and Koltermann 2004) and (b) the WOA05 climatology (Boyer et al. 2006). Growth rates less

than 1/200 days21 are shaded black, and locations with no data are white.
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the cube faces. The distribution of cell corners along cube

face edges follows the tan function used in Menemenlis

et al. (2005), which produces isotropic cell edge lengths.

The maximum cell edge length is 25 km, the mean cell

edge length is 18 km, and the minimum length is 4 km

(at the cube corner points). This model configuration

integrates the hydrostatic equations with a fully non-

linear equation of state (Jackett and McDougall 1995;

McDougall et al. 2003).

Horizontal vorticity is advected according to a fourth-

order accurate spatial discretization using an enstrophy

conserving (Arakawa and Lamb 1977) and vector in-

variant formulation. Horizontal viscosity is biharmonic,

with an amplitude that scales according to local grid

spacing and stresses (Fox-Kemper and Menemenlis

2008). Vertical viscosity is Laplacian, flow alongside walls

is zero, and a bottom drag term is imposed at the flat

bottom in the lowest model layer. The vertical coordinate

is a scaled, height-based coordinate in which vertical layer

thicknesses scale in proportion with barotropic mode am-

plitude (Adcroft and Campin 2004) and a nonlinear free

surface term balance is implemented (Campin et al. 2004).

Momentum (and temperature and salinity) is forced

at the surface by climatological fields from a coarse-

resolution experiment with the same ocean geometry

(Ferreira et al. 2010). The initial hydrography is taken

from the same coarse-resolution setup. There is no

FIG. A2. Values of Lbci/Ldef in (a) the WOCE 2004 climatology (Gouretski and Koltermann 2004) and (b) the

WOA05 climatology (Boyer et al. 2006). Regions with no data or where no maximum was found within K , 5Kdef are

white.

FIG. B1. Full zonal averages of Ldef (thick dashed black lines)

and measures of Leddy (gray lines) based on the centroid of KE (this

calculation can be compared to Scott and Wang 2005), the peak of

the KE spectrum, and the Okubo–Weiss parameter from Chelton

et al. (2007).
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explicit sea ice; instead, temperatures are clamped at

u . 21.98C. Advection of temperature, salinity, and pas-

sive tracers utilizes a spatially seventh-order accurate,

monotonicity preserving scheme (Daru and Tenaud

2004).

The K-profile parameterization scheme of Large et al.

(1994) is used to parameterize vertical mixing due to bound-

ary layer shear and/or convective instability. Table C1

summarizes the numerical parameters employed.
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