Scales, growth rates and spectral fluxes of baroclinic instability in the ocean

ROSS TULLOCH*, JOHN MARSHALL, AND CHRIS HILL

Department of Earth, Atmospheric and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA,
K. Shafer Smith

Center for Atmosphere Ocean Science, New York University, New York, NY

January 13, 2011

*Corresponding author address: Ross Tulloch, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.
E-mail: tulloch@mit.edu
Abstract

An observational, modeling and theoretical study of the scales, growth rates and spectral fluxes of baroclinic instability in the ocean is presented, permitting a discussion of the relation between the local instability scale, the first baroclinic deformation scale (R_{def}) and the equilibrated, observed eddy scale. The geography of the large-scale, meridional quasi-geostrophic potential vorticity (QGPV) gradient is mapped out using a climatological atlas and attention is drawn to asymmetries between mid-latitude eastward currents and subtropical counter currents, which have both westward and eastward zonal velocity shears. A linear stability analysis of the climatology, under the “local approximation”, yields the growth rates and scales of the fastest growing modes. Fastest growing modes on eastward flowing currents, such as the Kuroshio and the Antarctic Circumpolar Currents, have a scale somewhat larger (by a factor of about 2) than R_{def}. They are rapidly growing (e-folding in one to three weeks) and deep-reaching, and can be characterized by an interaction between interior quasi-geostrophic potential vorticity (QGPV) gradients, with a zero crossing in the QGPV gradient at depth. By contrast, fastest growing modes in the subtropical counter currents (as well as much of the gyre interiors), have a scale smaller than R_{def} (by a factor of between 0.5 and 1), grow more slowly (e-folding scale of a few weeks), and owe their existence to the interaction of a positive surface QGPV gradient and a negative gradient beneath.

These predictions of linear theory under the local approximation are then compared to observed eddy length scales and spectral fluxes using altimetric data. It is found that the scale of observed eddies is some 2 to 3 times larger than the instability scale, indicative of a modest growth in horizontal scale. We find no evidence of an inverse cascade over decades in scale. Outside of a tropical band, the eddy scale varies with latitude along with, but somewhat less strongly than R_{def}.

Finally, exactly the same series of calculations is carried out on fields from an idealized global eddy resolving model, enabling study in a more controlled setting. Broadly similar conclusions are reached thus reinforcing inferences made from the data.
1. Introduction

Satellite altimetry indicates that much of the mesoscale in the world ocean is dominated by eddies that scale roughly with the first baroclinic deformation radius, R_{def} and have about 50 times the kinetic energy (KE) of the mean flow (see e.g., Stammer 1997). But how these eddies are generated and what sets their equilibrated scale remain open questions. The ocean is a complex turbulent fluid subject to surface and tidal forcing as well as internal flow instabilities. It has been proposed (Frankignoul and Müller 1979) and debated (Large et al. 1991; Stammer and Wunsch 1999) that stochastic wind forcing can generate the mid-ocean eddies directly. However, Ferrari and Wunsch (2009) note that the approximate agreement between linear theory and observations support the view that baroclinic instability of available potential energy (APE) in the mean currents is the main eddy kinetic energy source. Baroclinic instability appears to be ubiquitous, with the sloping isopycnals in the main thermocline storing roughly 1000 times more APE than the KE associated with its thermal wind current shear (Gill et al. 1974).

The full instability problem in ocean gyres is a difficult one. In this paper, we will adopt the local approximation, which represents a vast simplification of the full problem. The local approximation assumes that each lateral location of the ocean is a local, horizontally homogeneous patch. Within each patch the eddies are assumed to be the weakly-nonlinear response to instability of the local, and steady, mean flow and stratification. Gill et al. (1974) and Robinson and McWilliams (1974) used the local approximation to show that mid-ocean currents are baroclinically unstable on spatial and temporal scales consistent with observations. Arbic (2000) further concluded that local baroclinic instability seems to be a plausible mechanism for mid-ocean eddy generation.

However, the local approximation is clearly not universally appropriate, and ignores many dynamical possibilities. First, the steady assumption neglects eddy feedback onto the mean flow (Farrell and Ioannou 1999; Flierl and Pedlosky 2007) as well as the propagation of eddies into and out of regions of high and low baroclinic growth rate. Other dynamics that play a role in eddy formation include the radiation of instabilities from boundary currents into the interior (Kamenkovich and Pedlosky 1996; Hristova et al. 2008), weakly-non-linear growth of unstable modes (Hart 1981; Pedlosky 1981), sensitivity to non-zonal flow instabilities (Spall 2000; Arbic and Flierl 2004; Smith 2007a), non-parallel flow instabilities (Pedlosky 1987), barotropic instabilities of horizontally varying mean flows, and strongly-nonlinear turbulent dynamics (Held and Larichev 1996). Yet for better or worse, the horizontal locality assumption underlies most mesoscale ocean eddy theories and parameterizations in ocean general circulation models, and linear theory at least provides a well-defined prediction.

The goal in this paper is simply to compare the spatial and temporal scales predicted by local linear theory with the fully-developed nonlinear eddy field in the world ocean, neglecting the possible dynamical processes that may occur between the two. The scales of baroclinic instability expected from linear theory are computed analogously to Smith (2007b) and Killworth and Blundell (2007), but using the hydrographic atlas of Forget (2009). The most unstable scales are then compared with observed energy-containing scales inferred from diagnoses of spectral energy

\footnote{Some of the results reported in Smith (2007) are in error, due to a gridding mistake in the computation, as discussed in Appendix A.}
fluxes derived from surface satellite altimetry using the method reported in Scott and Wang (2005). The baroclinic instability analysis and spectral flux calculations are then repeated in an eddying simulation with full ocean dynamics, constant wind forcing and idealized orography.

We find that in both ocean observations and the eddying model simulation, highly energetic predominantly eastward flowing currents, such as the Antarctic Circumpolar Current (ACC), Gulf Stream and Kuroshio Current, the instability scale is larger than R_{def} and penetrates deep into the water column. The quasi-geostrophic potential vorticity (QGPV) gradient in these eastward flowing regions tends to change sign at a depth of $\sim 1 \text{ km}$. By contrast, the baroclinic instability of the gentler, westward return flows\(^2\) occurs on horizontal scales smaller than R_{def} and is surface-intensified, consistent with driving by a QGPV reversal within $\sim 100 - 200 \text{ m}$ of the surface. These broad tendencies can be understood as follows. For baroclinic instability to occur, the QGPV gradient must reverse sign in the interior, or have the opposite sign of the buoyancy gradient at the upper surface (Charney and Stern 1962; Pedlosky 1964). The mean states in the classic models of baroclinic instability constructed by Charney (1947) and Phillips (1954) can be thought of as idealizations of the two typical observed mean gradient configurations. Instability in the two-layer model of Phillips (1954) is driven by the mean QGPV gradient sign reversal between the two layers, while the Charney (1947) model instability is driven by an interaction of the mean surface temperature gradient with a constant interior PV gradient, β — the former is analogous to the eastward current regimes, while the latter is analogous to the westward current regimes (though with β replaced by the mean thermal-wind QGPV gradient). Here we classify these two types of baroclinic instabilities as ‘Phillips-like’ and ‘Charney-like’, respectively.

These generalized definitions allow us to characterize two qualitatively distinct regimes, but of course, typical oceanic velocity profiles contain a mix of both surface and non-constant interior gradients so these generalizations do not always apply. Currents with mixed shear, such as in the subtropical counter currents, are not well represented by two-mode or two-layer models since they contain both positive and negative interior QGPV shear as well as an upper boundary condition that opposes the interior shear beneath it. However three-layer QG models have been used to show that elevated eddy energy in the $20 - 30^\circ$ latitude bands is due to baroclinic instability of sloping isopycnals (Halliwell et al. 1994; Qiu 1999; Kobashi and Kawamura 2002; Qiu et al. 2008). In the calculations presented here we adopt 50 vertical levels and so adequately resolve key features of the flow and do not need to calibrate vertical model parameters.

Our paper is organized as follows. In Section 2 the climatology of the ocean’s large-scale meridional QGPV gradient is mapped out using the OCCA hydrographic atlas (Forget 2009). In Section 3, baroclinic growth rates and the horizontal scales of maximum growth rate are computed using zonal and meridional mean currents from the atlas at chosen points and also mapped globally. In Section 4, the results of linear theory are compared to the observed energy-containing scale and spectral fluxes of (geostrophic) KE computed from AVISO gridded satellite altimetry (Le Traon et al. 1998). The scale at which the kinetic energy spectral flux crosses zero, called the energy injection scale, is then compared with the scale of maximum baroclinic growth rate. In Section 5,

\(^2\)“Westward return flows” refers to regions typical of the $20 - 30^\circ$ counter currents which are predominantly westward between about 100m and 1km depth and have easterly shear at depth and westerly shear near the surface (i.e., mixed shear in Fig. 3).
the analyses of Sections 3 and 4 are performed on an eddying simulation on an aqua-planet. In Section 6 the results are interpreted in terms of instability and geostrophic turbulence theory and conclusions are drawn.

2. Climatology of the meridional potential vorticity gradient

As described in the introduction, the QGPV gradient is a diagnostic from which to infer the geography of instability. Here we focus on the meridional QGPV gradient in predominantly zonal flows and ignore non-zonal mean flows. Note however that non-zonal mean flows characterize significant regions of the ocean. Non-zonal mean flows yield zonal mean PV gradients Q_x, and are thus more unstable than zonal flows because the planetary vorticity gradient does not provide a restoring-force to zonal PV perturbations (Pedlosky 1987; Walker and Pedlosky 2002). Moreover, baroclinic instabilities generated by non-zonal mean flows are very effective at generating baroclinic turbulence (Spall 2000; Arbic and Flierl 2004), due to a strong nonlinear feedback between eddy generation and eddy scale and anisotropy (Smith 2007a). That said, such instabilities likely exist primarily near meridional continental boundaries, and here we focus on flows that are relatively zonal, such as the ACC, boundary current extensions and the subtropical counter currents.

The large-scale meridional QGPV gradient, generalized as in Bretherton (1966) to include upper and lower boundary conditions via delta function sheets, is

$$\frac{\partial \tilde{Q}}{\partial y} = \beta - f \frac{\partial s}{\partial z} + \frac{f^2}{N^2} \frac{dU}{dz} \delta_{\text{upper}},$$

(1)

where β is the planetary PV gradient, $s = -b_y/N^2$ the meridional isopycnal slope, f the Coriolis parameter, N^2 the stratification and δ_{upper} is a delta function at the upper boundary. Note we have neglected contributions from the lower boundary and from relative vorticity. Our neglect of the relative vorticity of the mean flow is well justified by its small magnitude relative to β, as shown in Fig. 1, computed at the surface from the OCCA atlas.

Various hydrographic ocean atlases are available from which QGPV can be computed. The calculations presented here were performed on the OCCA atlas, which is a three year climatology 2004-2006 on a $1^{\circ} \times 1^{\circ}$ horizontal grid with 50 vertical levels (Forget 2009). Altimeter data, satellite sea surface temperature, and Argo profiles are assimilated in a least squares sense using the adjoint of the MITgcm (Marshall et al. 1997; Marotzke et al. 1999; Adcroft et al. 2004b). We note that our analysis is insensitive to the particular ocean climatology used, key results are compared for three different climatologies in Appendix A.

Fig. 2a shows a cross-section of the zonally averaged QGPV gradient, Eq.(1), computed from the OCCA atlas. In the computation, it is assumed that the geostrophic zonal velocity is in thermal wind balance with the meridional density gradient. The QGPV gradient is normalized by β and plotted in three-tone grayscale. The white shading indicates regions where the meridional QGPV gradient is near zero (i.e. $-\beta/2 \leq Q_y \leq \beta/2$). The light gray regions indicate positive ($Q_y > \beta/2$) and the dark gray negative ($Q_y < -\beta/2$) regions. The surface gradient U_z is indicated above the dashed line at 50m depth. The light and dark gray regions can in some places, particularly
the ACC, be of order $\pm 100\beta$. Superimposed are gray contours of zonally-averaged neutral density ($\gamma^n = 27, 27.5, \text{and } 28$) to give an indication of thermocline structure. The dash dotted-curve is a visual guide to indicate the depth of the zero crossings of the QGPV gradient.

There is an asymmetry in the distribution of Q_y between regions where isopycnals slope up towards the poles (i.e., eastward currents) and where isopycnals slope up towards the equator in the thermocline (i.e., currents with mixed shear, westerly above easterly, as sketched in Fig. 3). This asymmetry is more pronounced in the southern hemisphere because eastward jets in the northern hemisphere are not as extensive, being confined to western margins of the gyres. The northern hemisphere also contains convective regions north of 50°N which create negative QGPV gradients below stratification minima (i.e., at a few hundred meters depth). A schematic diagram of an idealized QGPV gradient (that ignores the convective regions in the northern hemisphere) is shown in Fig. 2b. If deep currents are weak, then given the thermal wind equation $fU_z = -\bar{b}_y = N^2 s$, flow above will be directed eastward ($U > 0$) where isopycnals (solid gray lines) slope up toward the pole ($s > 0$ in the northern hemisphere), and directed westward ($U < 0$) where they slope up towards the equator ($s < 0$). The vertical extent of the thermocline is greater in eastward flowing regions relative to westward flowing regions. The vertical distribution of Q_y depends on the manner in which isopycnal slopes vary in the vertical. Isopycnal slopes tend to have a maximum at mid-depth in the thermocline, leading to a reversal in sign of Q_y at mid-depth, marked by the dash-dotted line. The broad patterns in the sign of Q_y are indicated by light gray ($Q_y > 0$) and dark gray ($Q_y < 0$) shading. In addition, there is a delta function contribution in Eq. (1) associated with surface boundary conditions, which has a positive sign ($U_z > 0$) at all latitudes (except the deep tropics) because the meridional buoyancy gradient at the surface is generally negative. This surface condition has little effect on regions where isopycnals slope up towards the pole but it is an important driver of baroclinic instability in subtropical return flow regions that have $Q_y < 0$ beneath.

Fig. 3 zooms in on idealized profiles of zonal velocity in typical westerly, mixed and easterly sheared flows. Note that westerly sheared profiles represent regions such as the ACC, Kuroshio and Gulf Stream, mixed shear profiles represent gyre return flows (or subtropical counter currents at $\approx \pm 20-30^\circ$), and easterly sheared profiles represent north and south equatorial countercurrents (at $\approx \pm 10-20^\circ$). Charney instabilities are not possible at the upper surface in a westerly sheared flow as depicted in Fig. 3: the shear has the same sign as the upper surface gradient and so the only instability that can occur is analogous to a two layer Phillips instability. However, in the mixed shear flow shown in Fig. 3, the upper surface gradient opposes the QGPV gradient just below it, so Charney instabilities near the surface are possible. As discussed in the conclusions, we hypothesize that such Charney instabilities make surface quasigeostrophic (SQG) dynamics (Held et al. 1995; Lapeyre 2008) more relevant in such mixed shear flows compared to westerly sheared flows. Moreover, near-surface Phillips instabilities can also occur due to the shallow zero crossing of the interior QGPV gradient. Finally, the easterly sheared flow depicted in Fig. 3 contains no interior QGPV gradient zero crossings, and therefore instability can only occur through the interaction of the negative surface gradient with the positive QGPV gradient beneath it.
3. Local instability analysis

Local baroclinic growth rates, scales of maximum instability and vertical structures of unstable modes, are computed by solving the linearized QG equations about the local climatological stream-function $\Psi(z) = V(z)x - U(z)y$ and stratification $N^2(z)$:

$$\begin{align*}
\partial_t q + J(\Psi, q) + J(\psi, \beta y + \Gamma \Psi) &= 0, \quad -H < z < 0, \\
\partial_t b + J(\Psi, b) + J(\psi, f \frac{\partial}{\partial z} \Psi) &= 0, \quad z = -H, 0,
\end{align*}$$

(2)

where $\Gamma = \frac{\partial}{\partial z} (f^2/N^2 \frac{\partial}{\partial z})$ is the vortex stretching operator, $b = f \frac{\partial \psi}{\partial z}$ is buoyancy, $q = (\nabla^2 + \Gamma) \psi$ is the eddy QGPV, and rigid lid and a flat bottom have been assumed. The vertical is discretized into fifty levels and derivatives are computing using centered differences in the same way as in Tulloch et al. (2009), which is based on the method used in Smith (2007b). The discretized version of Eq. (2) becomes a generalized eigenvalue problem when a wave solution of the form $\psi = \Phi(z) \exp(i(K \cdot \mathbf{x} - \omega t))$ is assumed, where $K = k \hat{i} + \ell \hat{j}$ is the wavenumber vector, ω is the eigenvalue and $\Phi(z)$ is the eigenvector.

In the discussion that follows, the wavenumber of the fastest growing mode K_{bci} is compared to the local deformation wavenumber K_{def}, which is defined as the square root of the first nonzero eigenvalue of the vertical mode equation,

$$\frac{d}{dz} \left(\frac{f^2}{N^2} \frac{d \phi(z)}{dz} \right) = -K^2 \phi(z),$$

(3)

with upper and lower boundary conditions $d\phi/dz = 0$. Note that in addition to the thermocline baroclinic instabilities which are the focus of our attention here, small-scale, surface trapped instabilities at wave numbers significantly larger than K_{def} also appear in the linear stability analysis. Smith (2007b) argued that because such surface instabilities do not penetrate far into the thermocline they are insignificant from the viewpoint of baroclinic conversion of APE to KE. Regardless of the importance of submesoscale instabilities and dynamics, the balanced quasigeostrophic (QG) analysis performed here does not properly resolve such instabilities. We therefore choose to limit the wavenumber range considered at each location to $K < 5K_{def}$ where K is the magnitude of the horizontal wavenumber $K = (k^2 + \ell^2)^{1/2}$. We return to this in the discussion.

3a. Detailed stability calculations at chosen locations

Fig. 4 shows instabilities computed at two eastward-flowing locations and two locations in the sub-tropics with mixed shear: $(39.5^\circ N, 299.5^\circ E)$ in the Gulf Stream (a)–(d), $(51.5^\circ S, 141.5^\circ E)$ in the ACC (e)–(h), $(23.5^\circ N, 299.5^\circ E)$ in the western subtropical North Atlantic (i)–(l), and $(23.5^\circ N, 155.5^\circ E)$ in the western subtropical North Pacific (m)–(p). Each row of Fig. 4 shows the neutral density profile, geostrophic zonal (solid line) and meridional (dashed line) current profiles, growth rate (ω_i) as a function of zonal and meridional wavenumbers (k, ℓ), and the vertical structure of the amplitude of the most unstable wave, whose wavenumber $K_{bci} = (k_{bci}^2 + \ell_{bci}^2)^{1/2}$ is marked.

3The deformation radius is defined as $R_{def} = K_{def}^{-1}$ and the deformation wavelength is defined as $L_{def} = 2\pi K_{def}^{-1}$.

7
by a dot in the third column. Note that the barotropic component of the flow is assumed to be zero since it does not alter baroclinic growth rates (Smith 2007b). Each of the growth rate plots in the third column presents four contours at equal intervals spanning the peak growth rate over the domain: wavenumbers have been non-dimensionalized by the local deformation wavenumber K_{def}. In the fourth column, the numerical value of the inverse length scale of the most unstable wave, K_{bci}, divided by the local deformation scale K_{def}, is also indicated. The peak growth rates at the four locations are: (c) 0.053 days$^{-1}$, (g) 0.11 days$^{-1}$, (k) 0.015 days$^{-1}$, (o) 0.017 days$^{-1}$, which highlights how unstable the Gulf Stream and ACC are compared to the subtropical flow regions. Note that in what follows we define $L_{\text{bci}} = 2\pi K_{\text{bci}}^{-1}$ and $L_{\text{def}} = 2\pi K_{\text{def}}^{-1}$.

i. Westerly shear The two locations in eastward flowing currents are dominated by instabilities that have a scale K_{bci}^{-1} larger than the deformation radius and extend all the way to the bottom, despite being peaked at the surface. These Gulf Stream and ACC instabilities can be thought of as Phillips instabilities because they can be recovered in a two layer or two mode model. The Gulf Stream instability is surface intensified, which is consistent with the surface-intensified stratification there. The amplitude of the ACC instability is largest at the surface but is also bottom intensified, typical of a Phillips instability with constant stratification. The stratification in the ACC is clearly not constant, but it is far less surface intensified than elsewhere in the ocean. While the ACC instability is not constrained to have zero interior PV gradients, as assumed in the Eady (1949) model, it is worth noting that the growth rate and length scales of the two are very similar. The Eady instability has a peak growth rate of $\omega_{\text{Eady}} = 0.31(f/NH)\Delta U$ at a horizontal scale $K_{\text{bci}}/K_{\text{def}} = 0.51$. The growth rate in Fig. 4(g) can be compared with that of an Eady mode when the meridional velocity is neglected. Recalling that for constant N^2 the first deformation wavenumber is $K_{\text{def}} = \pi f/NH$, then setting $\Delta U = 0.2 \text{m/s}$ and $K_{\text{def}} = 5.85 \times 10^{-5} \text{rad} \cdot \text{m}^{-1}$ gives $\omega_{\text{Eady}} = 0.1 \text{days}^{-1}$ which is close to the computed value of 0.11 days$^{-1}$.

Some unstable growth also occurs at wavenumbers in the corners of the domain in Fig. 4(g). This growth is associated with a mode that peaks at very small scales (wavenumber $K_{\text{bci}}/K_{\text{def}} = 18$) and has virtually zero amplitude at depths shallower than 2km. We believe that this is a spurious, unphysical numerical mode and not robustly resolved in our calculation since it changes significantly given different vertical discretizations, ocean climatologies and geographic locations. For example, neighboring locations typically exhibit surface intensified modes at these small scales rather than bottom intensified ones. Here we seek to identify mesoscale instabilities, thus we restrict our analysis to wavenumbers with magnitude $K < 5K_{\text{def}}$ and consider only those which peak inside that wavenumber domain. The scale of the mesoscale instabilities typically peak at a K_{bci} that is within a factor of two of K_{def}, which is in accordance with the classical models of baroclinic instability in geostrophic (Charney 1947; Eady 1949; Phillips 1954; Green 1960) and non-geostrophic (Stone 1966) flows.

ii. Mixed shear In contrast to the two eastward flowing locations, the subtropical sites with mixed shear (lower two rows of Fig. 4) are characterized by thermal wind shears that change sign near the surface. This is because the interior circulation is increasingly directed westward with height, but must ‘join on’ to a shear associated with a horizontal density gradient at the surface which is of
the opposite sign (i.e. a shear that is directed eastward). The resulting instabilities are associated with a shallow zero-crossing in gradients of QGPV (see Fig. 2): they are weaker and shallower than their westward counterparts and lie at horizontal wavenumbers K_{bci}^{-1} that are about twice K_{def}. The instability cannot be captured by a two vertical mode representation and is either the result of a zero crossing of the QGPV gradient near the surface (near surface ‘Phillips’) or the interaction of the surface gradient with the QGPV gradient just below the surface (‘Charney-like’).

The broad geography of baroclinic instability implied by Fig. 2 is evident in Fig. 4: at higher latitudes, where isopycnals slope up toward the pole, the flow is often baroclinically unstable with vertically deep modes at horizontal scales larger than the deformation radius. In contrast at lower latitudes, where isopycnals slope up toward the equator in the thermocline, flows are primarily unstable near the surface at smaller-than-deformation scales. We note in passing that this weaker dependence of the horizontal scale of the fastest growing mode on deformation scale is consistent with observed eddy length scales found by Scott and Wang (2005) and Chelton et al. (2007). However, the connection between the observed eddy scale and the scale of the fastest growing mode is far from clear — see the discussion in Section 4.

3b. Global distribution of growth rates and scales

Global maps and zonal averages of local growth rates and unstable length scales are now presented. At each (lat,lon) coordinate the eigenvalue problem associated with Eq. (2) is solved over 80×80 wavenumbers in (k, ℓ) space. Fig. 5(a) shows an estimate of the baroclinic growth rate from the so-called “Eady Timescale” (Visbeck et al. 1997; Smith 2007b). The inverse Eady Timescale $\tilde{\omega}_{\text{Eady}}$ is derived by Smith (2007b) by integrating the mean APE $(f^2/2N^2)\Psi_z^2$ both vertically and horizontally over a box, assuming a local mean streamfunction $\Psi = -yU_z(z) + xV_z(z)$ to arrive at:

$$\tilde{\omega}_{\text{Eady}}^2 = \frac{1}{H} \int_{-H}^{0} \frac{f^2 U_z^2 + V_z^2}{N^2} dz$$

after neglecting the cross terms $U_z V_z$. The factor of 6 arises from integrating $\Psi_z^2/2$ and, for constant stratification and zonal shear, it conveniently scales to $0.41(f/NH) \Delta U$ which is close to the peak growth rate $0.31(f/NH) \Delta U$ of the Eady (1949) model.

The growth rates computed from the detailed stability analysis, Eq.(2), are shown in Fig. 5(b). They are typically slightly smaller than $\tilde{\omega}_{\text{Eady}}$, but the spatial pattern of the two are very similar. The most notable differences between the $\tilde{\omega}_{\text{Eady}}$ and the detailed calculation are found at low latitudes. Here the mean flow is dominated by higher baroclinic modes which are not well captured by the vertical integral in Eq.(4). At higher latitudes, there is close agreement between ω_i and $\tilde{\omega}_{\text{Eady}}$. Note that in a few regions, such as near the equator in the South Equatorial Current, the growth rate has been set to zero (shaded black) because no growth rate peaks were found within the search domain ($K < 5K_{def}$).

Fig. 6 shows maps and zonal averages of L_{bci}/L_{def} (top) and K_{bci} (bottom). The red curve in Fig. 6(b) is the zonal and vertical average of the zonal velocity (cm/s). Eastward jet regions in Fig. 6(a) are typically shaded yellow or red because $K_{bci} < K_{def}$, while return flows are typically light blue because $K_{def} < K_{bci} < 2K_{def}$ here. Dark blue regions, which have the smallest baroclinic
length scales, correlate well with regions of small growth rate \((\omega_i < 1/200 \text{ days}^{-1})\). Note that \(L_{bci}\) in the ACC appears to be robustly larger than \(L_{def}\). Signatures of large scale baroclinic instability are also evident in the Gulf Stream and Kuroshio Current. Gyre interiors, which are only weakly unstable, have a patchy appearance and small baroclinically unstable scales \(K_{bci} > K_{def}\).

Finally, the purple, blue and black boxes superimposed on Fig. 6(c) indicate regions of approximate homogeneity over which zonal averages will be taken to compare the most baroclinically unstable length scale with the scales of eddies and spectral fluxes computed from altimetry.

4. Diagnosis of observed scales and spectral energy fluxes from altimetry

The scales of the fastest growing mode computed in the previous section can be compared with eddy length scales and spectral fluxes using satellite altimeter data. Here we make use of the approach of Scott and Wang (2005) because we are interested in diagnosing the injection scale, the scale of the equilibrated eddy field and the flux of energy in wavenumber space between them. The calculation of Scott and Wang (2005) is repeated using interpolated, one third degree Mercator gridded sea surface height (SSH) AVISO data (through 2008). To compute the KE spectrum and spectral energy flux in this way one takes two dimensional Fourier transforms over some local box. Since the ocean is not meridionally homogeneous, smaller grids are preferred, but at the risk of not resolving the large scales if the grid is too small. Scott and Wang (2005) investigated the dependence of the flux on the grid size using \(32 \times 32, 64 \times 64\) and \(128 \times 128\) grids and found a small but consistent bias towards smaller scales when smaller grid sizes were used. Nevertheless, to maximize the number of samples and keep statistics local, here all spectral flux calculations are performed on \(32 \times 32\) grids, whilst avoiding the deep tropics where scales approach the size of the box. Eddy length scales are taken to be the peak of the KE spectrum. See Appendix B for a discussion of different measures of eddy scale.

4a. Spectral fluxes

Spectral fluxes are computed identically to the method of Scott and Wang (2005) with the exception that Gibbs phenomena due to non-periodic data are suppressed using periodic data flipping, instead of a Hamming window. In a comparison test between the two methods, data flipping gave almost identical fluxes to a Hamming window, but with what appeared to be a slightly weaker forward KE fluxes at small scales. As with Scott and Wang (2005) and Schlösser and Eden (2007) the method of Frisch (1995) is used to compute the spectral KE fluxes at the surface. Assuming geostrophic balance and an \(f\)-plane within each box, the surface velocities are given by \(\mathbf{u}_g = (-\eta_y, \eta_x)g/f_0\) where \(g\) is gravity, \(\eta\) is SSH and \(f_0\) is the local Coriolis frequency. We define low and high-pass
filtered velocities thus:

\[u^<_K(x, y) = \sum_{K' < K} \hat{u} \exp(i(kx + \ell y)), \quad \text{and} \]

\[u^>_K(x, y) = \sum_{K' > K} \hat{u} \exp(i(kx + \ell y)), \]

where \(K = (k^2 + \ell^2)^{1/2} \) is the isotropic wavenumber and \(\hat{u} \) is the Fourier transform of \(u \). Note that although \(K, k \) and \(\ell \) are discrete, the above sum treats \(K' \) continuously by first masking \(\hat{u} \) with appropriate weights for each \(K \). The low-passed average KE density is \(KE^<_K = \langle u^<_K \cdot u^<_K \rangle / 2 \), and its evolution is given by (see e.g., Eqs. 4 and 5 of Scott and Wang 2005)

\[\frac{\partial KE^<_K}{\partial t} = -\Pi_K + F - D, \]

where

\[\Pi_K = \langle u^<_K \cdot (u^<_K \cdot \nabla u^<_K) \rangle + \langle u^<_K \cdot (u^>_K \cdot \nabla u^>_K) \rangle, \]

is the flux of energy towards small spectral scales at wavenumber \(K \). Here \(F \) and \(D \) represent forcing and dissipation terms respectively. As in Scott and Wang (2005) we assume that the vortex stretching term, which is proportional to \(\psi^<_K \partial_z w \) in QG, is contained in the forcing \(F \).

Fig. 7 shows spectral fluxes (solid line) and KE spectra (dashed line) at various latitudes plotted against wavenumber (in units of cycles/km). These fluxes and spectra were computed over regions denoted by the overlapping boxes in Fig. 6. That is, one flux is computed within each 10.6° wide box, and then boxes centered at each latitude are zonally averaged, giving equal weight to each box. In each panel, the solid vertical line is \(K_{\text{bci}} \) and the vertical dash-dotted line is \(K_{\text{def}} \) computed from the climatological atlas and then averaged over the same boxed regions. Note that the fluxes and spectra in each box were first normalized so that each have a maximum (or minimum) value of one before zonal averaging, arriving at an “equal-weighting” zonal average of scale. This should be contrasted with a non-normalized zonal average in which longitudes with the highest energy would dominate the average.

Scott and Wang (2005) note that the wavenumber where the spectral energy flux crosses zero can be thought of as the wavenumber of energy injection, \(K_{\text{inj}} \), from which energy cascades to larger scales. We also define the observed eddy wavenumber \(K_{\text{eddy}} \) as the wavenumber where the KE spectrum peaks, the observed eddy wavelength as \(L_{\text{eddy}} = 2\pi K_{\text{eddy}}^{-1} \) and the energy injection wavelength as \(L_{\text{inj}} = 2\pi K_{\text{inj}}^{-1} \). The close correspondence between \(K_{\text{bci}} \) and \(K_{\text{inj}} \) is pleasing, and supports the claim that classic, deep, deformation-scale baroclinic instability energizes eddies in the ACC. The upper row of Fig. 7 shows fluxes at lower latitudes, whose locations are denoted in Fig. 6 by blue boxes (for lat = -28.5° and lat = -23.7°) and purple boxes (for all latitudes equatorwards of ±20°). The scales of baroclinic instability at lower latitudes are less homogeneous, and observed eddy scales approach the size of the spectral grid in the flux calculations. It is thus difficult to obtain precise estimates of eddy scale in this way. However \(L_{\text{bci}}, L_{\text{inj}} \) and \(L_{\text{eddy}} \) all appear to follow a general trend: they are larger than the deformation scale at higher latitudes and smaller than the deformation scale at lower latitudes.
Scott and Wang (2005) also noted that L_{inj} did not covary with either L_{def} or the Rhines scale $\sqrt{U_{\text{RMS}}/\beta}$. The variation of L_{def} implies too strong a latitudinal dependence: at high latitudes observed scales are greater than L_{def}, while at low latitudes they are less than L_{def}. Moreover, because β decreases with latitude and the observed root mean square of the eddy velocity does not obviously decrease with latitude outside the tropics (Tulloch et al. 2009), the Rhines scale is unlikely to decrease towards higher latitudes (see e.g., Fig. 25a of Stammer 1997). If L_{eddy} does not vary with the Rhines scale in the ACC, and given that baroclinic instability produces deep modes there, it seems likely that bottom drag may be an important mechanism halting the inverse cascade.

Full zonal averages (away from coastal regions) of L_{def} (thick dashed black line), L_{inj} (thick solid black line), L_{bci} (thin solid black line), and L_{eddy} (gray dotted line) are plotted against latitude in Fig. 8. The eddy scale shown here is a zonal average of the peak wavenumbers of the isotropic KE spectra in each box4. At all latitudes L_{inj} is within about a factor of two of L_{eddy}. Similarly, L_{bci} is within a factor of 2 to 3 of L_{eddy} at all latitudes. Recall that wavenumbers of baroclinic instability are restricted to $K < 5K_{\text{def}}$ so it is not surprising that the baroclinic scale is not far from K_{def}. The best match between L_{inj} and L_{bci} is in the ACC from -60° to -50°. Here we find deep, first baroclinic instabilities with fast growth rates ($> 1/20$ days$^{-1}$). Again we see that L_{bci} and L_{eddy} vary less strongly with latitude than L_{def}.

5. Analysis of global eddying model

To assess the robustness of the observations and calculations presented in the previous section, the same analysis is repeated on an eddy permitting ocean simulation using an aqua-planet configuration (see Marshall et al. (2007)) of the MITgcm (see Marshall et al. 1997; Adcroft et al. 2004b, for details of the model’s equations and numerical algorithms).

5a. Eddying Double Drake solution

The eddying Double Drake configuration of the MITgcm has nominal grid resolution of about 15–20km and 41 vertical layers over a 3km deep flat-bottomed ocean. There are two meridional land barriers at 90$^\circ$E and 180$^\circ$E, which extend from the North Pole down to 35$^\circ$S and create a large, fresh Pacific-like basin, a small, salty Atlantic-like basin and a circumpolar current in the south — see Marshall et al. (2007); Ferreira et al. (2009) for more details. Atmospheric forcing is provided by steady winds derived from lower resolution (C24) climatology taken from Ferreira et al. (2009). There is no seasonal cycle or stochastic weather noise to generate mesoscale variability, leaving baroclinic instability as the sole source of variability. The model is initialized with a low resolution (C24) equilibrated ocean state that is interpolated onto the C510 grid and then spun up for 20 years, during which time the ocean breaks down into eddies. See Appendix C for more details of the configuration.

4Appendix B discusses the advantages and disadvantages of several different measures of eddy scale and the rationale for this choice of eddy scale.
A snapshot of vorticity ($\zeta = \partial_x v - \partial_y u$) at the surface, viewed from 30°W and 15° elevation, is shown in Fig. 9. The thick white strip is a land barrier that serves as the eastern (western) boundary of the small (large) basin. The thin white contours mark latitude circles 15° apart. The stability analysis performed here is based on a 5 year climatology which is interpolated onto a 1° × 1° degree grid, the same resolution as the Forget (2009) OCCA atlas.

Salient features of the vorticity field include: a linear wave region in the tropics devoid of non-linear eddies (except at the western boundaries), westward return flows from 15°N to 30°N (and 15°S to 30°), and eastward jets from 30°N to 45°N (and 30°S to 45°S). There are also “dead regions” largely devoid of eddies, corresponding to flat isopycnals at 45°N and 50°S. Polewards of these regions, eddies are again ubiquitous. The eastward jets appear to be saturated with high values of vorticity as eddies of a uniform scale propagate slowly eastwards. Meanwhile the westward return flows possess large-scale eddies as well as many small-scale filaments which are barely resolved by the model. Both propagate quickly westward at speeds close to that of the mean flow near the surface. The small filaments in the return flows are surface trapped, and are probably SQG-like (Tulloch and Smith 2009).

A zonal average of the distribution of eddy kinetic energy (EKE) amongst the barotropic (BT) and first two baroclinic (BC1 and BC2) vertical modes, defined by Eq. (3), is shown in Fig. 10. The total EKE is

$$EKE = \frac{1}{H} \int_{-H}^{0} (u')^2 + (v')^2 dz,$$

where $H = 3$km and u' and v' are horizontal eddy velocities. Similarly, barotropic and baroclinic EKE are

$$EKE_{BT} = \left(\frac{1}{H} \int_{-H}^{0} u' dz \right)^2 + \left(\frac{1}{H} \int_{-H}^{0} v' dz \right)^2,$$

$$EKE_{BCj} = \left(\frac{1}{H} \int_{-H}^{0} \phi_j u' dz \right)^2 + \left(\frac{1}{H} \int_{-H}^{0} \phi_j v' dz \right)^2.$$

Root mean square eddy velocities in the eastward jets are greater than 10cms$^{-1}$, while in the return flows they are closer to 5cms$^{-1}$. High latitudes are dominated by BT and BC1 modes. Equatorwards of 30°, BC2 becomes increasingly important. Note also that polewards of 20°, BC1 is the dominant mode implying that the sea surface height should reflect mostly BC1 dynamics, in agreement with observations (Wunsch 1997).

As might be expected, regions of high and low EKE in Fig. 10 correlate closely with isopycnal slope. Fig. 11 shows isopycnals and the QGPV gradient zonally averaged across the large basin. As with Fig. 2, isopycnals sloping up toward the equator in the thermocline are associated with shallow QGPV gradient zero crossings, whereas isopycnals sloping up toward the pole are associated with deep zero crossings, consistent with Smith and Marshall (2009). The trend is more clear in Fig. 11 because the Double Drake simulation is more zonally homogeneous than the ocean.

5b. Baroclinic instability in the Double Drake simulation

The geography of baroclinic instability in the Double Drake simulation is shown in Fig. 12. Panel (a) shows $\tilde{\omega}_{\text{Eady}}$ and panel (c) shows $L_{\text{bci}}/L_{\text{def}}$ at each location. As with the analysis of ocean ob-
servations discussed in Section 2, baroclinic growth rates are computed on a grid of wavenumbers limited to \(K < 5K_{\text{def}} \) to filter out poorly resolved surface instabilities. Panels (b) and (d) show zonal averages of the same variables (black line) as well as zonally and vertically averaged zonal velocity (red lines). As in the ocean, the highly energetic eastward flows centered at ±40° latitude are dominated by larger than deformation scale instabilities. Meanwhile return flows are dominated by smaller than deformation scale instabilities and regions with flat isopycnals are weakly unstable and are associated with very small spatial scales.

5c. Spectral fluxes and eddy scales in the Double Drake simulation

Unlike the ocean, model KE fluxes of the geostrophic flow can be compared against the fluxes of the full velocity at both the surface and at depth. Not surprisingly, because of the scales permitted and the 10 day velocity averages taken, the geostrophic KE fluxes are very similar to the full KE fluxes. APE fluxes can also be computed from the velocity field and the buoyancy. Following Schlösser and Eden (2007), the APE flux at the surface is

\[
B_K = N^{-2} \langle b_K^< u_K^< \cdot \nabla b_K^< \rangle + N^{-2} \langle b_K^> u_K^> \cdot \nabla b_K^> \rangle,
\]

where \(b_K^< \) is the low-pass filtered buoyancy, \((u, v)\) are the model velocities, and a rigid lid \(w = 0 \) has been assumed.

Fig. 13 shows zonally averaged kinetic and APE spectral fluxes and spectra at the surface for various latitude bands. As in Fig. 7, the vertical solid line is \(K_{\text{bci}} \) baroclinic growth rate, the vertical dash-dotted line is \(K_{\text{def}} \), the dashed curve is the KE spectrum and the black curve is the spectral flux of KE computed from the SSH gradients. Also plotted in Fig. 13 are the spectral flux of APE (light gray curve), the APE spectrum (dash-dotted curve) and the spectral flux of KE computed from the model velocities \(u \) and \(v \) (dark gray curve). In each panel, \(L_{\text{bci}} \) and \(L_{\text{def}} \) have been averaged over the latitudes shown and zonally from 20° to 250° and 290° to 340°. Spectral fluxes of KE computed from velocities are almost almost identical to those computed from SSH at high latitudes, while they have slightly larger forward cascades at lower latitude latitudes. The large forward KE fluxes in the model at low latitudes could also be due to smaller scale instabilities that are either not present in the ocean or not resolved by the altimeter. The APE flux is robustly positive at all latitudes and scales, consistent with surface geostrophic turbulence theory Capet et al. (2008). Consistent with the trend in the ocean data, \(L_{\text{bci}} \) is larger than \(L_{\text{def}} \) at high latitudes, where instabilities tend to be first baroclinic in vertical structure, and smaller than \(L_{\text{def}} \) at low latitudes, where instabilities tend to have higher baroclinic vertical structure.

Fig. 14 shows fluxes and spectra analogous to Fig. 13 but at a depth of 900m. Unlike at the surface where the forward APE flux extends down to the grid scale, the interior the APE flux tends to zero near \(K_{\text{inj}} \), consistent with interior geostrophic turbulence theory which predicts a flux of APE to deformation scales followed by a conversion to KE. The zonal averages of the low latitude (normalized) APE fluxes (panels in the right column of Fig. 14) peak at amplitudes which are significantly smaller than 1, indicating a disagreement in scales across longitudes. However 900m is both at the base of the thermocline and below most of the baroclinic growth at these latitudes (recall Fig. 4) so the fluxes there are probably insignificant.
Finally, zonal averages of L_{eddy} (gray dotted line), L_{inj} (thick black line) at the surface, L_{def} (dashed line) and L_{bci} (dash-dotted line) in the Double Drake simulation are plotted against latitude in Fig. 15. As before L_{eddy} is a zonal average of the peak wavenumber of the KE spectrum in each box 32×32 box. As in the ocean L_{eddy} varies with latitude in a similar way as L_{def} at higher latitudes but in the return flows ($\theta < 30^\circ$) it grows with latitude much less than L_{def}. Also, just as in the ocean, there is about a factor of 2 to 3 between L_{eddy}, L_{bci} and L_{inj}.

6. Summary and discussion

We remind the reader of the limitations our simplified analysis. Our use of linear baroclinic instability under the local approximation is not meant to fully explain the generation of oceanic eddies, but rather as a test of its limits. We have sought to bring together elements of linear and nonlinear geostrophic theory using both ocean data and a model simulation. The four main results of our study are as follows: 1.) in zonal flow there is an asymmetry between regions of eastward flow, which tend to have deep zero crossings in the meridional QGPV gradient, and westward flow, which are associated with shallow zero crossings in the QGPV gradient, 2.) L_{eddy} and L_{bci} predicted by linear theory both vary less strongly with latitude than L_{def}, 3.) the inverse cascade throughout the ocean spans a modest range of scales, and 4.) these aforementioned features can be captured in a simple eddying model with no atmospheric variability and a flat bottom.

The tendency towards shallow zero crossings of the QGPV gradient in regions where the thermocline slopes equatorwards is a consequence of the reversal of the meridional density gradient between the thermocline and the surface. Such regions tend to exhibit Charney-type baroclinic instability on horizontal scales between the first and second baroclinic wavenumbers. Steering levels, which were not shown in detail here but will be discussed in a future paper, also tend to be shallow in these regions since the barotropic component of the mean zonal flow usually reinforces the tendency of mesoscale anomalies to propagate westwards. In regions where the thermocline slopes polewards, the zero crossing of the QGPV gradient is below the maximum isopycnal slope which tends to be near the depth of the thermocline. Steering levels also tend to be deep in such regions.

One of the key results of the baroclinic instability analysis performed here is that L_{bci} in the ACC is larger than L_{bci} there (see Fig. 6). The growth rates of such instabilities are on the order of 10 days, and are only rivaled by very small scale surface instabilities (which are arguably not resolved by such a climatological analysis). Eastward wind driven jets in the Double Drake simulation exhibit similarly large growth rates and scales (see Fig. 12).

The oceanic inverse cascade is a subject of much debate. We find evidence of only a modest inverse cascade especially in the eddy rich regions driven by larger than deformation scale instabilities. In mixed shear return flows baroclinic instability acts closer to the surface at scales smaller than L_{def}, but L_{eddy} in those lower latitude regions are also smaller relative to L_{def}.

Acknowledgement This study was supported by grants from NSF and NOAA.
APPENDIX A

Baroclinic instability in other ocean atlases

In order to compare the OCCA atlas with more traditional ocean atlases we show growth rates and length scales of maximum baroclinic instability in the World Ocean Circulation Experiment (WOCE) 2004 climatology (Gouretski and Koltermann 2004) and the World Ocean Atlas (WOA) 2005 climatology (Boyer et al. 2006). The WOCE climatology uses data optimally interpolated onto a $0.5^\circ \times 0.5^\circ$ grid with 45 vertical levels, while the WOA climatology is interpolated onto a $1^\circ \times 1^\circ$ grid with 33 vertical levels. All modern climatologies appear to suffer from a lack of observations at depths below 1.5km in the Southern Ocean, so the GCM interpolated OCCA atlas is likely more suitable for instability calculations there.

Fig. 16 shows baroclinic growth rates in WOCE and WOA, which are directly comparable to Fig. 5(b). Outside the tropics the two agree with each other very well and with the OCCA atlas. The WOCE climatology has more fine scale instability because it is on a finer grid. The WOCE climatology is also noisier than OCCA which tends to create larger growth rates.

Fig. 17 shows length scales of maximum baroclinic instability non-dimensionalized by the local deformation scale in WOCE and WOA, comparable to Fig. 6(a). The broad features are consistent in all three data sets, but the OCCA is substantially less noisy, particularly in the ACC.

Smith (2007b) analyzed the WOCE climatology and found quite different scales and growth rates than those reported here (specifically, smaller and faster). This is due to an unfortunate gridding mistake in Smith’s analysis, which followed from an error on pg. 22 of Gouretski and Koltermann (2004). Specifically, the vertical grid levels are listed in Gouretski and Koltermann (2004) as including data at 450 m, and not at 900 m, while the climatology in fact included data at 900 m, but not at 450 m. This led to kinks in the profiles of stratification and shear, resulting in unphysical instabilities. The discovery of this error came about as the result of the present analysis.
APPENDIX B

Estimates of eddy length scale

Various measures exist for the length scale of eddies. For example, Stammer (1997) used autocorrelation of SSH gradients as well as cross track (mainly zonal) spectral peaks. Eden (2007) used Stammer’s autocorrelation measures and measures based on moments of isotropic KE. The simplest measure of scale is the peak wavenumber of the isotropic KE spectrum. But since isotropic spectra are computed from two-dimensional grid boxes, eddies with scales near the box size become coarsely quantized. For this reason measures based on moments of the KE spectrum, such as the centroid

\[K_c = \frac{\sum K \cdot KE(K)}{\sum KE(K)} \]

are often used instead of the peak wavenumber. However such measures depend on spectral slopes, measurement noise, and data interpolation.

Fig. 18 shows four zonally averaged measures of eddy scale (gray lines) and the deformation scale (dashed line) in the ocean plotted against latitude. The gray x’s are the wavelengths corresponding to the centroid wavenumber \(K_c \), and the gray circles are the wavelengths of the peak wavenumber of the KE spectra. The solid gray line is \(L_{SW} = 2\pi/K_c \) computed in the Pacific by Scott and Wang (2005) in roughly the same way as done here. The relative difference between Scott’s scales and the centroid computed here is slight, never more than about 5 differences. The dashed gray line is a measure of eddy scale computed from contours of the Okubo-Weiss parameter by Chelton et al. (2007). In their analysis they compute the Okubo-Weiss parameter, \(W = 4(u_x^2 + v_xu_y) \), from SSH gradients and define eddies as having either wholly positive or negative SSH within regions where \(W < -2 \times 10^{-12} \text{s}^{-2} \). From these eddy regions they compute diameters of circles that cover the same area. The gray dashed line \(L_{Chelton} \) in Fig. 18 is a zonal average of twice the eddy diameters computed by Chelton et al. (2007), which assumes that a wavelength is comprised of two adjacent diameters of alternate sign.

All of the scales shown in Fig. 18 lie within a wavelength range that is less than 100km wide at any given latitude, and their dependence against latitude is less strong than that of the deformation wavelength. The zonal average of the peak wavenumber (dotted gray line) is consistent with the other measures and is therefore the measure that is plotted in Fig. 8.
APPENDIX C

Double Drake Model Configuration

The eddying Double Drake model employs a cube sphere configuration (Ronchi et al. 1996; Rancic et al. 1996; Adcroft et al. 2004a) of the MITgcm. The mesh is locally orthogonal with 510 grid cells along each edge of the cube faces. The distribution of cell corners along cube face edges follows the \(\tan \) function used in Menemenlis et al. (2005), which produces isotropic cell edge lengths. The maximum cell edge length is 25km, the mean cell edge length is 18km, the minimum length is 4km (at the cube corner points). This model configuration integrates the hydrostatic equations with a fully non-linear equation of state (Jackett and McDougall 1995; McDougall et al. 2003).

Horizontal vorticity is advected according to a fourth-order accurate spatial discretization using an enstrophy conserving (Arakawa and Lamb 1977) and vector invariant formulation. Horizontal viscosity is biharmonic, with an amplitude that scales according to local grid spacing and stresses (Fox-Kemper and Menemenlis 2008). Vertical viscosity is Laplacian, flow along side-walls is zero and a bottom drag term is imposed at the flat bottom in the lowest model layer. The vertical coordinate is a scaled, height based, coordinate in which vertical layer thicknesses scale in proportion with barotropic mode amplitude (Adcroft and Campin 2004) and a non-linear free surface term balance is implemented (Campin et al. 2004).

Momentum (and temperature and salinity) is forced at the surface by climatological fields from coarse resolution experiment with the same ocean geometry (Ferreira et al. 2009). The initial hydrography is taken from the same coarse resolution setup. There is no explicit sea-ice, instead temperatures are clamped at \(\theta > -1.9^\circ C \). Advection of temperature, salinity and passive tracers utilizes a spatially seventh order accurate, monotonicity preserving scheme (Daru and Tenaud 2004).

The K-profile parameterization scheme of Large et al. (1994) is used to parameterize vertical mixing due to boundary layer shear and/or convective instability. Table 1 summarizes the numerical parameters employed.

Figure 1: Relative vorticity at the surface in the OCCA ocean atlas, non-dimensionalized by the local planetary PV gradient β. The relative vorticity is small compared to β almost everywhere.
Figure 2: (a) Zonally averaged cross-section of the meridional QGPV gradient (in units of β), from the OCCA atlas. The upper surface gradient U_z is shown above the dashed line evaluated at a depth of 50m, and gray contours are neutral density. (b) An idealized schematic of the PV gradients with isopycnals (solid gray lines) sloping up towards the equator (pole) at low (high) latitudes. Light (dark) shaded regions indicate $Q_y > 0$ ($Q_y < 0$) and the dash-dotted line indicates $Q_y = 0$. The δ-function surface contribution above the dashed line assumes the equator is more buoyant than the poles at the surface. See text for details.
Figure 3: Schematic of typical zonal velocity profiles in westerly, mixed and easterly sheared mean flows. The curve indicates $U(z)$ and the horizontal dashed line indicates approximately the height at which the QGPV gradient is zero assuming negligible planetary PV gradient. The surface shear is opposed to the PV gradient immediately beneath in the mixed and easterly sheared profiles.
Figure 4: Local baroclinic instability analysis using the OCCA ocean atlas at four locations. Columns from left to right are neutral density, zonal (solid) and meridional (dashed) geostrophic velocity, contours of growth rate ω_i against zonal and meridional wavenumbers and amplitude profiles of the fastest growing baroclinic mode which is located at the wavenumber K_{bci} labeled with a dot in the third column.
Figure 5: (a) Inverse Eady Timescale $\tilde{\omega}_{Eady}$ days$^{-1}$ and (b) baroclinic growth rate ω_i days$^{-1}$ in the OCCA ocean atlas. Values less than 1/200 days$^{-1}$ and locations where no local maximum growth rate is present are shaded black. The coastline is marked by a black contour and regions where no calculation was made are shaded white.
Figure 6: (a) Map and (b) zonal average of L_{bci}/L_{def}. The red line in (b) is a zonal and vertical average of the zonal velocity (cm/s), indicating eastward versus westward flow. (c) Map and (d) zonal average of K_{bci} (cycles/km): black (ACC), blue (mid gyre) and purple (return flow) boxes denote homogeneous regions about which zonal averages are taken for comparison with spectral fluxes computed from satellite altimetry.
Figure 7: Spectral flux of KE (solid line) and KE spectrum (dashed line) plotted against total wavenumber (in units of cycles/km) at various latitudes. The vertical solid line is K_{bci} and the vertical dash-dotted line is K_{def}.
Figure 8: Full zonal averages of L_{def} (thick dashed black), L_{inj} (thick solid black), L_{bci} (dash-dotted), and L_{edd} (gray dotted line), see text for details.
Figure 9: Snapshot of surface relative vorticity in the eddying Double Drake simulation. The thick, meridional white stripe is the land barrier at the western boundary of the large basin. The thin white zonal stripes denote latitude lines which are spaced by 15°.
Figure 10: Zonal averages of vertically integrated EKE (thin solid line), barotropic EKE (thick dashed line), first baroclinic EKE (thick solid line) and second baroclinic EKE (thin dash-dotted line) plotted against latitude from the Double Drake simulation.
Figure 11: Cross-section of zonally averaged meridional gradient of quasigeostrophic potential vorticity $\partial Q/\partial y$ in the Double Drake simulation (in units of the local β). The contribution of the upper surface gradient U_z is shown above 50m depth. Also plotted are gray contours of neutral density.
Figure 12: Global maps and zonal averages of inverse Eady Timescale $\tilde{\omega}_{Eady}$ days$^{-1}$ (a)–(b) and the ratio L_{bci}/L_{def} (c)–(d). Zonally and vertically averaged zonal velocity (cm/s) is plotted in red in (b) and (d) to distinguish low latitude westward flows from midlatitude eastward flows.
Figure 13: Zonal averages of normalized surface spectral fluxes and spectra plotted against wavenumber (cycles/km) in the Double Drake simulation. Plotted are the spectral flux of KE computed from SSH gradients (solid black curve), the spectral flux of KE computed from model velocities u and v (dark gray curve), KE spectrum (dashed curve), APE spectrum (dashed-dotted curve), and the spectral flux of APE (gray curve). The vertical solid line is K_{bc} and the vertical dash-dotted line is K_{def}.
Figure 14: Zonal averages of normalized spectral fluxes and spectra at 900m depth, plotted against wavenumber (cycles/km) in the Double Drake simulation. Plotted are: the spectral flux of KE computed from model velocities u and v (dark gray curve), KE spectrum (dashed curve), APE spectrum (dashed-dotted curve), and the spectral flux of APE (gray curve). The vertical solid line is K_{bc1} and the vertical dash-dotted line is K_{bc1}.
Figure 15: Zonally averaged eddy scale L_{eddy} (gray dotted), deformation scale L_{def} (dashed), energy injection scale L_{inj} (thick line), and the scale of maximum baroclinic growth rate L_{bci} (dash-dotted) in the Double Drake simulation.
Figure 16: Baroclinic growth rate ω_i (days$^{-1}$) in: (a) the WOCE 2004 climatology (Gouretski and Koltermann 2004) and (b) the WOA 2005 climatology (Boyer et al. 2006). Growth rates less than $1/200$ days$^{-1}$ are shaded black and locations with no data are white.
Figure 17: $L_{\text{bcl}}/L_{\text{def}}$ in: (a) the WOCE 2004 climatology (Gouretski and Koltermann 2004) and (b) the WOA 2005 climatology (Boyer et al. 2006). Regions with no data or where no maximum was found within $K < 5K_{\text{def}}$ are white.
Figure 18: Full zonal averages of L_{def} (thick dashed black), and measures of L_{eddy} (gray lines) based on the centroid of KE (this calculation can be compared to Scott and Wang 2005), the peak of the KE spectrum, and the Okubo-Weiss parameter from Chelton et al. (2007).
Figure Captions

Figure 1: Relative vorticity at the surface in the OCCA ocean atlas, non-dimensionalized by the local planetary PV gradient β. The relative vorticity is small compared to β almost everywhere.

Figure 2: Zonally averaged cross-section of the meridional QGPV gradient (in units of β), from the OCCA atlas. The upper surface gradient U_z is shown above the dashed line at 50m depth, and gray contours are neutral density. (b) An idealized schematic of the PV gradients with isopycnals (solid gray lines) sloping up towards the equator (pole) at low (high) latitudes. Light (dark) shaded regions indicate $Q_y > 0$ ($Q_y < 0$) and the dash-dotted line indicates $Q_y = 0$. Polewards sloping isopycnals are associated with deep PV gradient zero crossings while equatorwards sloping isopycnals are associated with zero crossings shallower than the thermocline. The δ-function surface contribution above the dashed line assumes the equator is more buoyant than the poles at the surface. See text for details.

Figure 3: Schematic of typical zonal velocity profiles in westerly, mixed and easterly sheared mean flows. The curve indicates $U(z)$ and the horizontal dashed line indicates approximately the height at which the QGPV gradient is zero assuming negligible planetary PV gradient. The surface shear is opposed to the PV gradient immediately beneath in the mixed and easterly sheared profiles.

Figure 4: Local baroclinic instability analysis using the OCCA ocean atlas at four locations. Columns from left to right are neutral density, zonal (solid) and meridional (dashed) geostrophic velocity, contours of growth rate ω_i against zonal and meridional wavenumbers and amplitude profiles of the fastest growing baroclinic mode which is located at the wavenumber K_{bci} labeled with a dot in the third column.

Figure 5: (a) Inverse Eady Timescale $\tilde{\omega}_{\text{Eady}}$ days$^{-1}$ and (b) baroclinic growth rate ω_i days$^{-1}$ in the OCCA ocean atlas. Values that are less than 1/200 days$^{-1}$ and locations where no local maximum growth rate is present are shaded black. The coastline is marked by a black contour and regions where no calculation was made are shaded white.

Figure 6: (a) Map and (b) zonal average of L_{bci}/L_{def}. The red line in (b) is a zonal and vertical average of the zonal velocity (cm/s), indicating eastward versus westward flow. (c) Map and (d) zonal average of K_{bci} (cycles/km): black (ACC), blue (mid gyre) and purple (return flow) boxes denote homogeneous regions about which zonal averages are taken for comparison with spectral fluxes computed from satellite altimetry.

Figure 7: Spectral flux of KE (solid line) and KE spectrum (dashed line) plotted against total wavenumber (in units of cycles/km) at various latitudes. The vertical solid line is K_{bci} and the vertical dash-dotted line is K_{def}.

Figure 8: Full zonal averages of L_{def} (thick dashed black), L_{inj} (thick solid black), L_{bci} (dash-dotted), and L_{eddy} (gray dotted line), see text for details.
Figure 9: Snapshot of surface relative vorticity in the eddying Double Drake simulation. The thick, meridional white stripe is the land barrier at the western boundary of the large basin. The thin white zonal stripes denote latitude lines which are spaced by 15°.

Figure 10: Zonal averages of vertically integrated EKE (thin solid line), barotropic EKE (thick dashed line), first baroclinic EKE (thick solid line) and second baroclinic EKE (thin dash-dotted line) plotted against latitude from the Double Drake simulation.

Figure 11: Cross-section of zonally averaged meridional gradient of quasigeostrophic potential vorticity \(\partial Q / \partial y \) in the Double Drake simulation (in units of the local \(\beta \)). The contribution of the upper surface gradient \(U_z \) is shown above 50m depth. Also plotted are gray contours of neutral density.

Figure 12: Global maps and zonal averages of inverse Eady Timescale \(\tilde{\omega}_{\text{Eady}} \) days\(^{-1} \) (a)–(b) and the ratio \(L_{\text{bci}} / L_{\text{def}} \) (c)–(d). Zonally and vertically averaged zonal velocity (cm/s) is plotted in red in (b) and (d) to distinguish low latitude westward flows from midlatitude eastward flows.

Figure 13: Zonal averages of normalized surface spectral fluxes and spectra plotted against wavenumber (cycles/km) in the Double Drake simulation. Plotted are the spectral flux of KE computed from SSH gradients (solid black curve), the spectral flux of KE computed from model velocities \(u \) and \(v \) (dark gray curve), KE spectrum (dashed curve), APE spectrum (dashed-dotted curve), and the spectral flux of APE (gray curve). The vertical solid line is \(K_{\text{bci}} \) and the vertical dash-dotted line is \(K_{\text{def}} \).

Figure 14: Zonal averages of normalized spectral fluxes and spectra at 900m depth, plotted against wavenumber (cycles/km) in the Double Drake simulation. Plotted are: the spectral flux of KE computed from model velocities \(u \) and \(v \) (dark gray curve), KE spectrum (dashed curve), APE spectrum (dashed-dotted curve), and the spectral flux of APE (gray curve). The vertical solid line is \(K_{\text{bci}} \) and the vertical dash-dotted line is \(K_{\text{bci}} \).

Figure 15: Zonally averaged eddy scale (gray dotted), deformation scale (dashed), energy injection scale (thick line), and the scale of maximum baroclinic growth rate (dash-dotted) in the Double Drake simulation.

Figure 16: Baroclinic growth rate \(\omega_i \) (days\(^{-1} \)) in: (a) the WOCE 2004 climatology (Gouretski and Koltermann 2004) and (b) the WOA 2005 climatology (Boyer et al. 2006). Growth rates less than 1/200 days\(^{-1} \) are shaded black and locations with no data are white.

Figure 17: \(L_{\text{bci}} / L_{\text{def}} \) in: (a) the WOCE 2004 climatology (Gouretski and Koltermann 2004) and (b) the WOA 2005 climatology (Boyer et al. 2006). Regions with no data or where no maximum was found within \(K < 5K_{\text{def}} \) are white.

Figure 18: Full zonal averages of \(L_{\text{def}} \) (thick dashed black), and measures of \(L_{\text{eddy}} \) (gray lines) based on the centroid of KE (this calculation can be compared to Scott and Wang 2005), the peak of the KE spectrum, and the Okubo-Weiss parameter from Chelton et al. (2007).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level Depths (m)</td>
<td>5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 127, 139, 154, 172, 194, 222, 257, 299, 350, 409, 477, 552, 634, 722, 814, 909, 1007, 1105, 1205, 1306, 1409, 1517, 1634, 1765, 1914, 2084, 2276, 2491, 2802</td>
</tr>
<tr>
<td>Vertical Viscosity ($m^2 s^{-2}$)</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>Side Boundary</td>
<td>no slip</td>
</tr>
<tr>
<td>Bottom Boundary</td>
<td>no slip</td>
</tr>
<tr>
<td>Linear bottom drag (s^{-1})</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Quadratic bottom drag (s^{-2})</td>
<td>2.1×10^{-3}</td>
</tr>
<tr>
<td>Time step (s)</td>
<td>600</td>
</tr>
<tr>
<td>Mean horizontal grid spacing (m)</td>
<td>1.8×10^4</td>
</tr>
<tr>
<td>Shear instability critical</td>
<td>0.358</td>
</tr>
</tbody>
</table>

Table 1: Numerical parameters used in the eddying Double Drake simulation.