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ABSTRACT

Satellite altimetric observations of the ocean reveal surface pressure patterns in the core of the Antarctic

Circumpolar Current (ACC) that propagate downstream (eastward) but slower than the mean surface

current by about 25%. The authors argue that these observations are suggestive of baroclinically unstable waves

that have a steering level at a depth of about 1 km. Detailed linear stability calculations using a hydrographic

atlas indeed reveal a steering level in the ACC near the depth implied by the altimetric observations.

Calculations using a nonlinear model forced by the mean shear and stratification observed close to the core

of the ACC, coinciding with a position where mooring data and direct eddy flux measurements are avail-

able, reveal a similar picture, albeit with added details. When eddy fluxes are allowed to adjust the mean

state, computed eddy kinetic energy and eddy stress are close to observed magnitudes with steering levels

between 1 and 1.5 km, broadly consistent with observations.

An important result of this study is that the vertical structure of the potential vorticity (PV) eddy

diffusivity is strongly depth dependent, implying that the diffusivity for PV and buoyancy are very different

from one another. It is shown that the flow can simultaneously support a PV diffusivity peaking at 5000

m2 s21 or so near the middepth steering level and a buoyancy diffusivity that is much smaller, of order 1000

m2 s21, exhibiting less vertical structure. An effective diffusivity calculation, using an advected and diffused

tracer transformed into area coordinates, confirms that the PV diffusivity more closely reflects the mixing

properties of the flow than does the buoyancy diffusivity, and points explicitly to the need for separating

tracer and buoyancy flux parameterizations in coarse-resolution general circulation models. Finally, impli-

cations for the eddy-driven circulation of the ACC are discussed.

1. Introduction

Mixing and stirring due to mesoscale eddies in the

ocean exhibit considerable variability in space and

time. For example, studies by Holloway (1986), Stam-

mer (1998), Bauer et al. (2002), and Marshall et al.

(2006) using surface altimetry suggest significant hori-

zontal spatial variation in eddy diffusivity at the ocean’s

surface. Studies of the vertical structure of mixing and

stirring, however, are more sparse and challenging. The

studies of Phillips and Rintoul (2000) and Gille (2003)

find depth dependence in the eddy statistics, but such

estimates are based on isolated moorings and sparsely

distributed subsurface floats.

There is no feasible way at present to attain suffi-

ciently resolved direct observations of eddy diffusivity

and mixing rates at depth over significant regions of the

ocean, so one must use indirect methods and models.

Ferreira et al. (2005), for example, use inverse methods

to back out eddy diffusivities from a data assimilation

model. The inferred eddy stress is computed as the re-

sidual necessary to minimize the difference between the

observed global temperature–salinity distribution of the

ocean and the model. The magnitudes of mixing rates

found in that study are consistent with other studies

(e.g., Marshall et al. 2006) and are strongly depth de-

pendent. Here we draw on additional evidence that is

strongly suggestive of depth-dependent mixing.

Mesoscale eddies are widely believed to be generated

by baroclinic instability of the mean flow (Gill et al.

1974; Robinson and McWilliams 1974; Stammer 1997;

Smith 2007), extracting their energy from the stores of
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available potential energy in the mean oceanic density

structure. Rossby waves, owing their existence to mean

potential vorticity (PV) gradients, mutually interact

with one another and, in strongly unstable flows, grow

to finite amplitude, exciting turbulent cascades. Even

weakly unstable flows can lead to turbulence and the

production of coherent vortices. In either case the pro-

cess starts with the linear growth of a few waves. For

unstable zonal flows, the real part of the Doppler-

shifted phase speed cr 2 U(z) will vanish somewhere in

the flow. If the instability is weak (ci � cr), the distur-

bance will be localized around the level at which cr 2

U(z) vanishes—the steering level or critical layer. At

this depth, the growing wave can efficiently displace

fluid parcels large meridional distances, resulting in en-

hanced mixing of fluid parcels and their conserved

properties (such as conservative tracers and PV)—see,

for example, Green (1970). In more strongly unstable

flow, characterized by an energy cascade and a spec-

trum of continuously excited waves, the exact theoret-

ical importance of the steering level of the linearly most

unstable mode is less clear. Nevertheless, its depth is

likely a place of active eddy stirring and mixing. For

example, Lozier and Bercovici (1992) present evidence,

from both linear and nonlinear analysis, for enhanced

particle exchange at the steering level.

Satellite altimetric observations of the Southern

Ocean do suggest the presence of large-scale waves that

propagate downstream in the Antarctic Circumpolar

Current (ACC) at a rate significantly slower (25%)

than that of surface currents. This was anticipated by

Hughes (1996) in studies of an eddy-resolving model of

the Southern Ocean where it was argued that the east-

ward flow of the ACC turned it into a Rossby wave-

guide. The top panel of Fig. 1 shows observations of

surface geostrophic flow from surface drifter observa-

tions (N. Maximenko 2007, personal communication).

We see that the surface flow associated with the ACC is

directed eastward, peaking at a speed of about 8 cm s21.

This is consistent with the analysis by Karsten and Mar-

shall (2002) of streamwise-average buoyancy and geo-

strophic flow (shown in Fig. 3) obtained by vertical

integration of the thermal wind equation, assuming a

level of no motion at the bottom of the ocean (note that

ACC transport is sensitive to the assumption of a level

of no motion, but near-surface currents are much less

so).

The bottom panel of Fig. 1 shows an estimate of

‘‘wave speed’’ cr (C. Hughes 2007, personal communi-

cation).1 The apparent phase speed is cr ; 2 cm s21

over the latitudinal range of the ACC (roughly 508–

FIG. 1. (a) Climatological zonal current speed in cm s21 at the

surface as measured by surface drifters (courtesy of N. Maxi-

menko). Positive is eastward, and the thick black lines are iso-

pleths of a climatological surface geostrophic streamfunction in-

ferred from altimetry, chosen to delineate that part of the flow

that in a mean sense is circumpolar. (b) Zonal phase speed of

surface pressure signals computed from altimetric observations

(courtesy of C. Hughes).

1 The wave speed is calculated as follows: The altimetric time

series is filtered at each point, passing periods between 7 and 57

weeks. A running mean over 108 of longitude is subtracted to

ensure that only wavelengths shorter than about 108 are mea-

sured. Each time series is divided by its standard deviation and a

Radon transform is performed on the 58 (longitude) patch cen-

tered on each grid point to calculate speed for that grid point—the

chosen speed is that giving the maximum Radon transform. Each

latitude is treated independently. A 540-week time series is used.
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558S); it is directed downstream but at a speed much

less than the surface current. The wavelengths are of

order 100–300 km, consistent with baroclinic planetary

waves being advected eastward by the mean current.2

Equatorward of the ACC the waves travel from east to

west, as is found in the rest of the oceanic basins (Chel-

ton and Schlax 1996). Both the alongstream average

current and the wave speeds are plotted in Fig. 2 to

summarize the observations. The vertical structure of

the mean current, shown in Fig. 3, along with the wave

speed observations in Fig. 2 suggest that the steering

level is at a depth of about 1 km.

An analysis of the stability properties of the global

hydrography by Smith (2007) also reveals indirect

evidence of deep eddy mixing in the ACC. In that paper,

it is shown that mean PV gradients exhibit multiple

zero crossings in the vertical. There are both vigorous,

near-surface instabilities and slower, thermocline-

level baroclinic instabilities associated with interior PV

gradients. The steering level of these latter modes is

found to lie at a level where PV gradients change

sign. In the ACC this occurs at a depth of a kilometer or

so, and is consistent with phase speeds observed from

altimetry. Moreover, the linear stability analysis shows

that baroclinic growth in the ACC is dominated by

waves with peak energy conversion at about 1-km depth

(see Fig. 4).

Our goals here are to (i) understand why the steering

level is at a depth of about 1 km and (ii) study the

implications of this deep steering level for eddy-driven

processes in the ACC. We address these goals with the

aid of a local process model that we use to ‘‘measure’’

eddy fluxes. The model is quasigeostrophic (QG) and

horizontally periodic, but uses the mean hydrography

(shear and stratification) of a location that is coinci-

dent with the field study of Phillips and Rintoul (2000,

hereafter PR00). PR00 compute eddy stress, energy,

and flux, using an array of direct current measurements

in a location just south of Tasmania, in the core of the

ACC. We use their measured estimates as a bench-

mark against which to compare our modeled eddy sta-

tistics.

A crucial result of our study is that mesoscale eddy

mixing is, indeed, peaked at a depth of about 1 km in the

core of the ACC. Moreover, mixing is found to be

strongly depth dependent, and the diffusivities for

buoyancy and potential vorticity are found to be quite

FIG. 2. Streamwise average of along-stream current, Usurface, and altimetric wave speed, cr

(positive is eastward), in cm s21.

2 Chelton et al. (2007) and collaborators have recent evidence

that what appear to be waves may actually be coherent vortices

being advected by the mean flow. In either case, the difference in

speed between the wave, or eddying motion, and the mean flow

lead us to consider what happens at depths where these speeds are

equal.
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different, both in magnitude and structure (basic kine-

matics show that, when mixing is not constant in the

vertical, diffusivities of buoyancy and PV cannot be the

same). An effective diffusivity calculation (Nakamura

1996) additionally suggests that tracers are mixed more

like PV than like buoyancy, though differences are

present. This has obvious implications for numerical

models that must parameterize the transfer and mixing

of properties by mesoscale eddies.

The paper is organized as follows: In section 2, we

connect the surface observations to a linear baroclinic

instability analysis using the hydrography of the Southern

Ocean and review connections to eddy transfer. In sec-

tion 3, we focus on the target region of the observa-

tional analysis of PR00. Here we compute both detailed

linear and nonlinear solutions and calibrate our results

to the measurements of PR00. The model eddy stresses

and diffusivities are analyzed in section 4 and are shown

to be consistent with observations of eddy stress and

diffusivity. In section 5, we summarize and discuss the

implications of our study for eddy parameterization in

coarse-resolution general circulation models and for

the dynamics of the ACC.

2. Interpretation in terms of linear baroclinic
instability theory

Recently linear baroclinic instability theory has been

systematically applied to the hydrographic structure of

the ocean to map stability properties of the flow (see

Killworth and Blundell 2007; Smith 2007). Here we spe-

cialize key results of the latter paper to the Southern

Ocean and discuss their implications for the observa-

tions presented in section 1. The details of the stability

problem are discussed in Smith (2007), but we briefly

review key elements of the method below.

Neutral density �r (Jackett and McDougall 1997) is

computed from the Gouretski and Koltermann (2004,

hereafter GK04) hydrographic climatology, and the

thermal wind velocity is then computed at each hori-

zontal position from density gradients via

f
›U

›z
5 z 3 $B; ð2:1Þ

where U 5 (U, V) are the horizontal components of the

mean geostrophic flow, f is the Coriolis parameter, and

B 5 �g�r=r0 is the mean (neutral) buoyancy. The mean

FIG. 3. (left) Time-mean geostrophic streamfunction measured from altimetry; (top right) mean streamwise-average buoyancy with

contour interval 1023 m s22; (bottom right) mean streamwise-average thermal wind velocity with contour interval 1 cm s21 obtained by

assuming that the zonal flow at the bottom is zero and integrating up using thermal wind. The vertical dashed lines mark the boundaries

of the ACC; the horizontal dashed line marks the annual mean mixed layer depth. Modified from Karsten and Marshall (2002).
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velocity and stratification are taken to be horizontally

local and slowly varying in the sense of Pedlosky

(1984); hence each horizontal location only depends on

z. Consistent with the assumption of a slowly varying

background state that is locally horizontally homoge-

neous, the domain is taken to be horizontally periodic.

This implies the neglect of mean relative vorticity,

which is well justified by the smallness of horizontal

gradients of the geostrophic velocities computed from

hydrography (see also Smith, 2007).

A local linear stability calculation is performed at

each horizontal location. Substitution of a plane wave

solution of the form c9 5 Re ~c zð Þ exp i kx 1 ly� vtð Þ½ �
� �

;

where ~c is the complex amplitude, into the QG equa-

tions gives

K �U� vð ÞðG� Kj j2Þ~c 5 �P~c; �H , z , 0; ð2:2aÞ

K �U� vð Þ ~cz 5 K � dU

dz
2

N2

f
z 3 $hB

� �
~c;

z 5 �H; 0; ð2:2bÞ

where G 5 ›=›z f 2=N2
� �

›=›z (an operator), K 5 k; lð Þ is

the horizontal wavenumber, hb is the bottom topogra-

phy and P 5 ẑ � K 3 $Qð Þ.3 The horizontal quasigeo-

strophic potential vorticity (QGPV) gradient is given by

$Q 5 by� f
›S

›z
; ð2:3Þ

where b is the planetary vorticity gradient and S 5

2$B/Bz is the slope of buoyancy surfaces. The linear

eigenvalue problem (2.2) is solved on a grid of horizon-

tal wavenumbers ranging in modulus from 1/10 to 100

times the local first deformation wavenumber. From

the solution, the modes with imaginary phase speeds

are filtered to require an energetic conversion rate that

is of the same order as the winds. In particular, the

amplitude of each raw unstable mode is dimensional-

ized with an eddy velocity of 0.1 m s21, the correspond-

ing rate at which mean available potential energy is

transferred to eddy kinetic energy via each mode is

computed, and only those modes with conversion ex-

ceeding 0.5 mW m22 (typical wind input is about 1 mW

m22) are considered (see Smith 2007, and references

therein, for more detail). This has the effect of remov-

ing very small scale surface modes that, while poten-

tially important in mixed layer dynamics, have little

energetic influence on the large-scale mean state.

a. Critical layers and growth rates from linear
theory

If the observed undulations at the surface of the

ACC are the expression of baroclinic waves with a criti-

FIG. 4. (a) Critical layer depth (m) corresponding to the fastest-

growing, baroclinically unstable mode, filtered by the requirement

that the energy transfer of the mode be at least 5 3 1024 W m22

(the white areas indicate regions that do not satisfy this criterion);

(b) growth rate for same calculation (days21). The thick black lines

delineate the core of the ACC.

3 Note that we use K (and K) for horizontal wavenumber, not

to be confused with diffusivity, denoted by k.
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cal level in the interior, then by the Miles–Howard

theorem (Howard 1961), these waves are unstable. By

considering the real parts of the phase speeds that cor-

respond to the fastest-growing modes of energetic sig-

nificance, we can compute the normal-mode critical-

level directly. Specifically, the depth zc of the critical

layer will be such that

cr �U zcð Þ �
Kmax

Kmaxj j 5 0;

where Kmax 5 (kmax, lmax) is the local wavenumber of

fastest growth. This form takes into account that the

local mean flow is, in general, nonzonal, so the direc-

tion of fastest growth may have lmax 6¼ 0.

Figure 4 shows the growth rate and steering level of

the fastest-growing mode obtained by carrying out the

stability analysis described above. The steering level of

the fastest-growing mode, shown in Fig. 4a, is at a depth

O(1 km), consistent with the observations of U and cr

reviewed in the introduction. On the equatorial flank of

the ACC, where the phase speed is directed westward,

the steering level shallows.

The growth rate (Fig. 4b) shows the axis of the ACC

to be a region of vigorous instability, where in some

locations growth rates reach (2 days)21. The scales of

the fastest- growing mode are O(10 km) (figure not

shown here), much smaller than the scale of the most

energetic eddies in the ACC (Stammer 1997; Chelton et

al. 2007). This is discussed at length in Smith (2007),

where it is argued that the observed scale is likely the

result of an inverse cascade, consistent with Scott and

Wang (2005). Nonlinear simulations presented later

support this conclusion.

b. PV flux and eddy diffusivity in linear theory

Green (1970) proposed a theory for PV fluxes in

horizontally homogeneous, baroclinically unstable flow

based on the fastest-growing linear normal mode. This

idea was further developed in a two-layer context by

Marshall (1981) and as a full eddy parameterization

scheme by Killworth (1997). The linear theory will not

be formally correct in highly unstable flows and fully

developed geostrophic turbulence, but it does provide a

form to which one can compare measured and simu-

lated fluxes. We briefly review this theory here. Using

the linearly most unstable normal mode solutions from

(2.2), one has

u9q9 5
1

2
Re ~u~q�f g5 z 3 K

vi

2

~c

K �U� v

����
����
2

P;

where the asterisk superscript denotes a complex con-

jugate, ~u 5 iz 3 K~c; ~q 5 ðG� Kj j2Þ~c; vi 5 Im vf g, and

P is defined below (2.2). Parseval’s theorem is used in

the first equality and (2.2a) is used in the second. This

form is equivalent to Killworth’s Eq. (30). In the case of

a mean velocity that does not turn with depth and with

b � jf ›z By=Bz

� �
j (thus contributing negligibly to the

mean PV gradient), $Q points perpendicular to mean

streamlines at every depth (both of these assumptions

are justified in the ACC). Projecting the PV flux onto

the cross-stream direction (denoted by the unit vector

n), and assuming Kmax t $Q (so that Kmax is in the

direction of streamlines, denoted by the unit vector s)

results in a simplification of the linear approximation of

the PV flux; namely,

n � u9q9 5 �kq;linn � $Q; where kq;lin 5
vi

2

~c

s �U� c

����
����
2

;

ð2:4Þ

equivalent to downgradient diffusion with diffusivity

kq,lin. This is equivalent to Green’s Eq. (15). In the

above expression it is to be understood that vi 5 max(vi)

and c is the corresponding complex phase speed for this

mode, with wavenumber Kmax. At the critical level zc,

the denominator of the diffusivity expression takes on a

minimum; hence, the diffusivity kq,lin has a maximum.

Linear theory and physical reasoning, therefore, lead

one to expect a peak in mixing at the critical level, as

originally discussed by Green (1970). We now investi-

gate how well these ideas apply to measurements and a

process model study at a particular location in the

Southern Ocean.

3. Detailed analysis at a field observation site in
the ACC

The observational analysis of eddy statistics by PR00

provides us with an opportunity to make a more de-

tailed comparison between observations and theory.

Here we use the hydrography at the location of the

PR00 analysis to compute both the linear stability char-

acteristics of the region as well as the eddy fluxes in the

nonlinearly equilibrated state that results from active

baroclinic instability.

a. Local linear calculation

The linear stability computation discussed now is

similar to that carried out for the same region in Smith

(2007) (and for which the general method was reviewed

in section 2), albeit here we first average profiles of mean

velocity and mean density over a 58 3 58 horizontal re-

gion centered about 518S, 1418E. We project the results

onto along-stream and across-stream coordinates—the
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local flow at this location is roughly east-southeast at the

surface, and the velocity does not turn with depth, so the

mean velocity can be represented with a single profile.

There are 29 usable depth levels in the atlas after av-

eraging and removing regions of vanishing static stabil-

ity. The mean PV gradient at the bottom level includes

the averaged topographic slope, computed from the

Smith and Sandwell (1997) dataset.

Figure 5 shows the mean buoyancy (B) and stratifi-

cation (›B/›z 5 N2) profiles from the neutral density

field �r; and the thin lines in Fig. 6 show the along-

stream velocity s � U (where s is the unit vector directed

along streamlines) and across-stream QGPV gradient

n � $Q (the thick lines are discussed in the next sec-

tion). The mean velocity is computed from the GK04

dataset, using a finite difference approximation of the

thermal wind balance (2.1), averaged over the 58 region

of the target area. As is generically found at locations in

the ACC, the mean across-stream QGPV gradient,

computed from hydrography, is a complicated function

of depth, with roughly five sign changes, and a magni-

tude of order 10–100 b (e.g., Marshall et al. 1993). It

should be noted that (i) salinity measurements in the

Southern Ocean are relatively sparse, so the neutral

density field constructed from the GK04 dataset may be

less accurate here than in other regions (S. Gille 2007,

personal communication); (ii) relatively small changes

in the mean hydrography (particularly horizontal gra-

dients, for which no optimization is performed in the

construction of hydrographic datasets) lead to large

changes in the mean QGPV gradient (which involves

two vertical derivatives, and so brings out small-scale

features); (iii) sharp reversals in the QGPV gradient

lead to large levels of eddy energy production; and (iv)

the use of shear coordinates by PR00 may introduce

additional inaccuracies (Meinen and Luther 2003). We

address these issues in the next section.

The growth rate as a function of along-stream wave-

number (nondimensionalized by the local first defor-

mation wavenumber) that results from the full baro-

clinic stability calculation at this location is shown in

Fig. 7. Three instability peaks are prominent, and the

inset figures show the squared amplitudes j~cj2 corre-

sponding to each of these: (i) the first (lowest wave-

number) peak occurs at a horizontal scale slightly larger

than the first deformation scale of about 19 km and

corresponds to a vertical structure that reflects a some-

what surface-intensified, top-to-bottom mode; (ii) the

second peak, occurring at horizontal scales of about 5

km (;Rd/4), has a vertical structure focused in a sharp

peak at about a depth of 1 km; (iii) the third peak,

occurring at a horizontal scale of about 1 km, is trapped

near the surface and associated with sharp gradients

near the surface (note the change in ordinate in the

FIG. 5. (a) Neutral buoyancy B 5 �ðg=r0Þ�rðm s�2Þ and (b) neutral stratification

›B/›z 5 N2 (s22) at 518S, 1418E.
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inset plot). Note that the latter two instabilities have

vertical structures concentrated right at the levels of

reduced stratification, ›B/›z, apparent in Fig. 5. The

effects of these instabilities in generating steady-state

eddy fluxes will now be addressed.

b. Nonlinear model

We now describe the results of a series of simulations

with a nonlinear, doubly periodic spectral quasigeo-

strophic model. The model is used to simulate the fully

developed turbulent state that results from the baro-

clinic instability of the same 29-level mean state for

which the linear instabilities were computed in the pre-

vious section (the 29 depths available at the PR00 lo-

cation from the GK04 dataset). The numerical model is

the same as that used in Smith and Vallis (2002), albeit

enabled to run in parallel on a distributed memory clus-

ter, and with a few additions to the physics, described

below. The scale of the model domain (largest resolved

wavelength) is 1000 km, which allows sufficient room to

equilibrate a field of eddies with length scales near

those observed (80–120 km). The effective horizontal

resolution is 2562, implying a smallest resolved wave-

length of 3.9 km, or smallest resolved inverse wavenum-

ber (radius) of less than 1 km. Dissipation of enstrophy

is accomplished with a highly scale selective exponen-

tial cutoff filter (Smith et al. 2002), so wavenumbers

down to kcut 5 (2 km)21 are modeled with no loss to the

filter. Dissipation of energy occurs through a quadratic

bottom drag (Grianik et al. 2004; Arbic and Scott 2008),

using Cd 5 1023 and a bottom boundary layer depth of

10 m. Bottom relief for the target region is included

from the Smith and Sandwell (1997) dataset by includ-

ing its contribution to the bottom-level PV at each time

step. The topographic section is made periodic by sym-

metrizing in both directions (the field is flipped in x,

concatenated, and then the same is done in y). The

mean slope of the topography in the target region is

small (i.e., topographic b is less than the Coriolis gra-

dient, which itself is already small compared to shear in

the mean PV gradient), so the main influence of the

topography is through its roughness, which is known to

reduce the eddy energy somewhat (Treguier and Hua

1988).

The mean stratification and mean velocity profiles

used in the model are the same as those used in the

linear stability calculation of the previous subsection.

Consistent with quasigeostrophic scaling, the buoyancy

frequency is constant in time and horizontal space over

the model domain. In a quasigeostrophic channel

FIG. 6. (a) Streamwise velocity U � s ðm s�1Þ and (b) cross-stream QGPV gradient $Q � n (in

units of b 5 1.45 3 10211 m21 s21 at 518S, 1418E). The thin lines are the profiles computed

directly from the thermal wind assuming a level of no motion at the bottom, and the thick lines

are the steady-state profiles that evolve after adjustment by eddy fluxes via Eq. (3.1) in the

nonlinear model. The inset plot in (b) is the hydrographic mean QGPV gradient for the upper

1500 m, shown over its full range of values.
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model, the zonal-mean velocity varies in time and

space, while in a doubly periodic model, the mean ve-

locity varies only in the vertical and is constant in time,

unless an explicit evolution equation for the mean state

is included (e.g., Haidvogel and Held 1980; Vallis 1985,

1988; see discussion below).

The usefulness of a model of this type is supported by

the results of Pavan and Held (1996). They show that,

in a doubly periodic model, the PV fluxes produced as

a function of the imposed mean shear are nearly the

same as those produced at each latitude in an equili-

brated channel model, for all but the narrowest baro-

clinic zones. In other words, given a local, steady-state

mean shear (or equivalently, the local mean PV gradi-

ent) at a particular cross-channel location, and the local

value of the mean PV flux, one arrives at the same

relationship between flux and imposed gradients as in

the horizontally homogeneous, doubly periodic model.

Thus the fluxes produced by the baroclinic instability of

a given mean state in a homogeneous model can be

taken as a good approximation of those produced lo-

cally in an inhomogeneous flow that has the same local

time-mean flow, as long as that mean flow is nearly

constant over a few deformation radii horizontally.

The PV fluxes are a function of the local mean flow,

but the zonal-mean steady state of the channel model is

also a function of the PV fluxes. The steady state that

evolves is one in which the tendency of eddies to flux

PV down its mean gradient is balanced by the thermal

relaxation of the zonal mean toward a baroclinically

unstable state. In the spatially homogeneous model

used for the present study, we implicitly assume that the

mean state taken from hydrography results from a bal-

ance between large-scale thermal and wind forcing,

which drive the mean state to be baroclinically un-

stable, and local eddy fluxes that act to remove mean

PV gradients. This is sensible if large-scale forcing re-

stores the mean faster than, or comparable to the rate at

which eddies erode it. However, when the mean state

is unstable at very small scales, this may not be a rea-

sonable assumption.

The geostrophic mean shear computed from hydrog-

raphy (the thin line in Fig. 6a) is an approximation of

the true mean shear. This, due to the horizontal finite

differences taken over the 0.58 GK04 grid, is less accu-

rate than vertical profiles of N2 (which themselves are

of course not precise—see again the previous subsec-

tion). The mean QG PV gradient (2.3) is a function of

FIG. 7. Growth rate (days21) as a function of along-stream wavenumber (normalized by the

first deformation wavenumber Kd 5 5.25 3 1025 m21, corresponding to a deformation radius

of Rd 5 19 km) for the hydrographic mean state at 518S, 1418E (solid line) and for the

steady-state mean after adjustment by eddy fluxes (dashed line). The inset plots show

the squared amplitude |c|2 (z) for the three prominent peaks of the instability curve for the

hydrographic mean state (the first inset also shows the squared amplitude for the peak insta-

bility of the adjusted mean state).
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both N2(z) and U(z). Its profile, computed from hy-

drography, is plotted as the thin line in Fig. 6b. It

reaches maximum values of more than 100b, which pre-

sumably reflect the inaccuracies in the computation

from hydrography. As found in the linear calculation,

these large PV gradients are confined to sharp, vertical

regions and lead to fast growth at very small scales.

A simulation carried out with the fixed mean shear

computed from hydrography results in a turbulent

steady state with rms eddy velocities near 45 cm s21 at

the upper surface. This is about 3–4 times the observed

surface eddy velocities (Stammer 1997; D. B. Chelton

2007, personal communication). One can assume that

the excess eddy energy is due to either missing dissipa-

tion or excess generation, or a combination of both. We

believe that the mean horizontal buoyancy gradients

are noisy due to data sparcity, which, on differentiation,

introduce much structure into the QGPV gradients on

small vertical scales. In the simulation, the eddy PV flux

generated by the hydrographic QGPV gradient can be

huge but is directed systematically downgradient. Thus,

if the mean flow is allowed to respond to the eddy

fluxes on short time scales, this rich structure would be

smoothed, leaving only large-scale features. We now

devise a method to model the interaction of the PV flux

with the mean flow.

c. A time-varying mean state

We allow the mean horizontal velocity to evolve in

time by incorporating an eddy feedback:

›U

›t
5 �z 3 u9q9� t�1

m ðU�UtargetÞ; ð3:1Þ

where U 5 U (z, t) is the mean velocity, Utarget 5 Utarget(z)

is the target profile, computed via thermal wind balance

from hydrography, tm is a restoring time, and u9q9 is the

horizontally averaged horizontal eddy potential vortic-

ity flux, computed at each time step in the computation.

Note that there is no Coriolis term in (3.1) because the

average is over both horizontal directions, and the tur-

bulence is horizontally homogeneous. Vallis (1988) at-

tempted a rigorous derivation of the equivalent of (3.1)

for a two-layer model.4 Here we regard the closure

statement (3.1) as an ad hoc representation that allows

downgradient PV fluxes to quell the instability, acting

against processes tending to restore the mean to an

unstable state; the resulting mean is a balance between

eddy-induced fluxes and the restoring.

The properties of the eddy feedback are as follows: in

the horizontally homogeneous model, eddy relative

vorticity fluxes vanish on horizontal averaging, and so

u9q9 5 f
›

›z

u9b9

Bz

� �
: ð3:2Þ

Thus, if the buoyancy flux is downgradient, u9b9 5

�kb$B 5 f kbz 3 Uz (where $B is the mean meridio-

nal buoyancy gradient and kb is an eddy buoyancy

diffusivity), then the PV flux acts to vertically smooth

the mean momentum (see, e.g., Greatbatch and Lamb

1990; Ferreira et al. 2005). The linear restoring force

maintains the mean velocity close to its observed pro-

file; taking a vertical derivative of (3.1) and applying

thermal wind balance demonstrates that the restoring

force maintains the mean available potential energy

(APE), which is the source of the instability. Also note

that since

ð 0

�H

u9q9 dz 5 0; ð3:3Þ

and assuming U(z, 0) 5 Utarget(z), the eddies only ver-

tically redistribute horizontal momentum (the baro-

tropic velocity does not change in time). Finally, dotting

U into (3.1) and integrating in z shows that a steady-

state mean energy balance can be achieved between

momentum dissipation and forcing by restoration.

The physical meaning of the time scale of the mean

momentum restoration toward the target velocity can

be understood as follows: To the extent that the eddy

PV flux is locally proportional to the negative of the

mean PV gradient (a good approximation, as will be

discussed below), it will be strongest near the steepest

features in the mean gradient. Therefore, the mean re-

storing force will only be effective at preserving the

mean gradient against eddy fluxes that result from its

larger-scale features—eddy fluxes with time scales

slower than the restoring time tm. The small-scale

features will be damped by the eddy flux. This ap-

proach is sensible if the large-scale features are set by

the mean wind and buoyancy forcing on time scales

on the order of the observed eddy time scale. Given

that, for example, the mean current and eddy velocity

scales in the ACC are roughly equivalent, this seems

likely. Small-scale, rapidly growing eddies should be

quite effective at attacking the mean gradients that

generate them on time scales faster than the gradi-

ents can be restored by large-scale forcing. In this

way, the eddy feedback mechanism enables one to

proceed using noisy data, and results in a more robust

calculation.

4 Further motivation for (3.1) comes from Eq. (2.50) of Wardle

(2000): if ageostrophic and nonlinear terms are ignored and re-

laxation toward a mean velocity imposed, one has precisely (3.1).
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A series of simulations was performed in which the

restoring time was used as a control parameter. Once

the time scale is shorter than the fastest linear growth

rate (;5 days) by a factor of ;2, the resulting steady-

state mean flows become rather insensitive to further

changes. Though the overall shear changes somewhat,

the mean very quickly settles to a steady state in which

all small-scale instabilities have been removed, as will

be shown below.

The simulation we now discuss uses a short restoring

time (tm 5 0.4) day to maintain the mean state close to

the observed state. The resulting steady state velocity

and PV gradient profiles are the thick black lines shown

in Fig. 6. The mean velocity has, indeed, remained close

to the initial state and, hence, close to the observed

hydrography, and the mean kinetic energy (not shown)

has been reduced by only about 10% from that of the

initial profile. The apparent slight changes in the verti-

cal structure of s � U however, are significant: the mean

PV gradient has been dramatically reduced (thick line

in the right of Fig. 6), and Fig. 8 (solid line) shows that

the rms eddy velocity has been reduced to about 30

cm s21 at the surface, much more in accord with ob-

served values. Moreover, the steady-state eddy velocity

profile is now very nearly equal to the square root of

the eddy kinetic energies measured by PR00 (crosses in

Fig. 8).

The structure developed in U is, upon inspection,

close to that of the mean buoyancy profile shown in Fig.

5. This occurs precisely because the PV flux is locally

downgradient at all points in the vertical: the PV flux

works against the mean PV gradient, altering U in such

a way that the mean PV stretching term f z 3 Uz=Bzð Þz
is reduced. The stretching term is reduced as the sharp-

est isopycnal slopes flatten, or equivalently as Uz ap-

proaches to Bz. The stretching part of the steady-state

mean PV gradient is thus reduced, and the structure of

the instability accordingly changed. The dashed line in

Fig. 7 shows the growth rate of the equilibrated mean

state. Notably, the small-scale instabilities have been

neutralized, while the largest-scale instability, due to a

zero crossing of a first baroclinic mode component of

the mean PV gradient, has remained intact. Note also

that the neutralization occurs very quickly in the spin-

down of the mean state.

To check that the mean eddy statistics are not af-

fected by the time dependence of the mean state, we

continued the run using the steady-state mean velocity

ÆUæ (z) (the thick line in Fig. 6a; angle brackets denote

a time average) fixed in time, and so not integrating

(3.1). The resulting eddy fluxes (discussed in the next

section), eddy scale, and eddy energy do not change,

consistent with the results of Pavan and Held (1996).

The Doppler-shifted wave speeds found with the hy-

drographic and adjusted mean states indicate that, even

though the instability has evolved, the steering level is

even deeper, having moved from a depth of 900 to 1600

m. Spectra from the simulation (Fig. 9 shows the verti-

cally integrated kinetic and available potential energy

spectra) indicate a well-resolved enstrophy cascade and

a typical eddy radius of about 40 km. The inverse cas-

cade in this simulation is present but short: the eddies

equilibrate at only about three times the deformation

radius. Physical space fields (not shown) indicate that

FIG. 8. The steady-state rms eddy velocity profile for the

central simulation in which the mean state has been adjusted by

eddy fluxes. Also shown are the measurements of eddy velocity

scale (square root of the eddy kinetic energy) measured by

PR00 (values shown are from their measurements in fixed

coordinates).

FIG. 9. The vertically and time-integrated eddy kinetic (solid

line) and available potential (dashed line) energy spectra for the

central simulation with a time-varying mean state.
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the flow is horizontally homogeneous—no jets form—

consistent with a drag-based cascade-halting mecha-

nism (Smith et al. 2002).

4. Simulated versus observed eddy stress and
diffusivity

The usefulness of this type of process model is as a

tool by which to measure the eddy statistics and fluxes

that result from the local instability of the mean state.

Here we review some fundamentals of eddy-driven cir-

culation and compare our results from the equilibrated

model state with the measurements of PR00.

a. Eddy form stress

Eddies influence the interior circulation of the ACC

through form stress, which transfers horizontal momen-

tum vertically. This is most apparent in the residual

mean framework, as discussed in Marshall and Radko

(2003) and Ferreira et al. (2005). Summarizing, the

steady-state, mean cross-stream momentum equation

in residual form is

�f n � ures 5
1

r0

›ts
wind

›z
1 n � u9q9; ð4:1Þ

where ts
wind is the along-stream wind stress at the surface

and n � �ures 5 n � �u� ›z u9b9=Bz

� �	 

is the residual mean

cross-stream velocity. The cross-stream PV flux can be

expressed as the vertical divergence of an eddy stress,

neglecting the contribution of horizontal eddy momen-

tum fluxes (which are small in the ocean and by con-

struction vanish in our model):

n � u9q9 5
1

r0

›ts
eddy

›z
;

where

ts
eddy 5 r0f

n � u9b9

Bz
5 r0f kbn � S ð4:2Þ

is the interfacial form stress; kb is an eddy buoyancy

diffusivity defined by the relation u9b9 5 �kb$B: This is

essentially (3.2) applied to the residual mean framework.

Observed estimates of the eddy form stress (4.2) at

the target location are plotted in Fig. 10. The simulated

result (the solid line) indicates that the peak stress is

near the 1-km depth found in the linear and observa-

tional analyses, but it is significant over depths ranging

from 1 to 3 km. Also shown are two intermediate esti-

mates: the second term in (4.2) assuming a constant

FIG. 10. The eddy stress (N m22) for the central simulation (solid line) and from the

band-passed, shear-coordinate, South Station measurements of PR00 (crosses). Also plotted

are estimates of eddy stress using the second term in (4.2) with a constant diffusivity kb 5 1000

m2 s21 (dashed line) as well as an estimate using the fastest-growing linear mode (dashed–

dotted line). The thin vertical line indicates a typical value of the surface wind stress.

JANUARY 2009 S M I T H A N D M A R S H A L L 61



diffusivity kb 5 1000 m2 s21 (dashed line) and an esti-

mate made by integrating the linear normal-mode ap-

proximation for the PV flux (2.4) up from the bottom

and using the relation (3.2) (dashed–dotted line).

(Note, however, that the linear estimate was adjusted

with a nondimensional constant to give the displayed

result.) The constant diffusivity estimate provides a

useful reference. While the estimate itself is not very

accurate, with a constant diffusivity it reflects exactly

the shape of the isopycnal slope S. Thus, the peak at 1

km reflects a peak in isopycnal slope at that depth.

The stress values from PR00 (crosses in Fig. 10) are

taken from their analysis of the South Station mooring

of the Australian Subantarctic Front (AUSSAF) array

(the South Station data was chosen because it exhib-

ited the highest statistical significance for eddy heat

flux). The plotted values represent their band-passed

data (40 h to 90 days) in shear coordinates—a coordi-

nate frame adjusted daily to account for changes in the

position of the mean jet. The measured values are close

in magnitude to the simulated and estimated values

(0.1–0.2 N m22) and consistent with a presumed balance

between eddy stress and surface wind stress (Johnson

and Bryden 1989). However, the vertical structure is

erratic, and the overall stress is larger. The data suffers

from three unavoidable factors that may diminish its

accuracy: (i) rotational fluxes (see, e.g., Marshall and

Shutts 1981) are not removed, (ii) the length of the

time series may be shorter than necessary to have well-

converged eddy statistics, and (iii) only the temperature

field is considered—salinity effects on buoyancy are

necessarily neglected. The model results, on the other

hand, suffer from the assumptions of quasigeostrophic

dynamics and of horizontally homogeneous statistics.

Despite uncertainties in each approach, the values are

close enough to argue that the simulated results present

a useful estimate of the measured vertical structure of

eddy fluxes.

b. Eddy fluxes and diffusivities of PV and
buoyancy

Taking the model output as a proxy for the actual

eddy fluxes, we consider further the implied diffusivi-

ties of PV and buoyancy. A common and useful as-

sumption is that eddy fluxes result from a downgradient

transfer process. Moreover, as it is PV that is materially

conserved, it makes dynamical sense to think of PV as

being the diffused quantity. Does this make any differ-

ence in the absence of momentum fluxes and, as is the

case here, with b effectively small? In this section we

investigate eddy fluxes and diffusivities for both buoy-

ancy and PV, as well as for a true tracer.

Figure 11 shows the horizontally averaged PV (Fig.

11a, solid line) and buoyancy (Fig. 11b, solid line)

fluxes, along with the simple estimates 21000 n � $Q

and 21000 n � $B, respectively (dashed lines). For

comparison with the observations of Gille (2003), we

note that a cross-stream buoyancy flux of 0.5 3 1025

m2 s23 is equivalent to a heat flux of 10 kW m22,

assuming Cp 5 4000 J Kg21 K21 and a thermal expan-

sion coefficient for water of 2 3 1024 K21. Gille (2003)

finds typical heat fluxes of order 7 kW m22 at a depth

of 900 m, or roughly half of the equivalent typical flux

we find in Fig. 11b. Of course, for the same reasons

discussed at the end of the previous section, one should

not expect an exact correspondence between the simu-

lated results and observations. Moreover, the data of

Gille (2003) represent an average over the circumpolar

region.

Figure 11 shows that eddies flux PV and buoyancy

down their respective mean gradients, and do so nearly

locally with depth. However, we will see that the diffu-

sivities for PV and buoyancy are different from one

another and show strong depth dependence. As is well

known, writing u9q9 5 � kq$Q with kq a constant vio-

lates the kinematic requirement (3.3): if b is not negli-

gible, then
R

$Q dz 6¼ 0 (the stretching part of the mean

PV gradient itself does integrate to zero, if the mean

flow satisfies the same boundary conditions as the ed-

dies). Therefore, kq must be a function of depth. In-

deed, this constraint was used by Marshall (1981) to

help guide the choice of vertical variation of the diffu-

sivity in a zonal-average model of the ACC. Moreover,

in baroclinically unstable flow, $Q must vanish some-

where in the domain, making kq difficult to diagnose

from knowledge of the eddy PV flux and the mean PV

gradient. Defining a buoyancy diffusivity as below

(4.2), on the other hand, poses no problems, as $B need

not be zero anywhere (and in the present case, it is not).

Nevertheless, we shall see that the PV dynamics con-

trols the eddies and best characterizes the mixing in the

fluid.

The diffusivities for PV (kq, solid line) and buoyancy

(kb, dashed line) from the simulation are plotted in

Fig. 12, along with the estimate kq,lin (dotted line with

squares) from the linear theory (2.4), the estimate

keddy 5 0.5Veddy Leddy (dotted line with circles, dis-

cussed below), measurements of the eddy temperature

diffusivity by H. E. Phillips and S. R. Rintoul (2007,

personal communication; crosses in Fig. 12) and the ‘‘ef-

fective diffusivity’’ of an ideal tracer (dashed–dotted

line, discussed below). The PV and buoyancy diffu-

sivities are computed directly from the flux-gradient

relationship (note that in the calculation of kq, wher-
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ever $Q is less than a threshold value of b/10, neigh-

boring values of kq are averaged—only one point, near

z 5 21200 m, required this correction). The results for

the various diffusivities are strikingly different in struc-

ture and magnitude, particularly between kq and kb.

The buoyancy diffusivity kb varies rather smoothly

from about 600 near the surface to 1500 m2 s21 at the

bottom. The PV diffusivity kq, on the other hand, is

sharply peaked just below 1-km depth, reaching values

of over 5000 m2 s21 with values less than 1000 m2 s21 at

the top and bottom (the dashed–dotted line is discussed

in the next subsection).

The linear estimate kq,lin is computed using the same

multiplicative constant used for the linear eddy stress

estimate plotted in Fig. 10. The linear diffusivity esti-

mate is peaked at middepth as expected, but its peak is

lower down than for kq, and its overall structure does

not accurately reflect the simulated structure. It never-

theless does reflect the prominence of eddy mixing at

depth.

The mixing-length estimate keddy 5 0.5Veddy Leddy is

computed using the eddy velocity Veddy, shown in Fig.

8, and an eddy-scale estimate Leddy taken as the inverse

centroid of the kinetic energy spectrum at each depth.

The factor 0.5 is chosen somewhat arbitrarily to fit the

results in scale to those in the figure. This estimate is

largest at the surface (just like the effective diffusivity

estimate, discussed below) but fails to show the peak

that is apparent in the PV diffusivity. The structure

comes from the fact that the eddies are near barotropic

and thus have the same scale at all depths. The resulting

diffusivity estimate thus bears the structure of the eddy

velocity, which is peaked near the surface. This is dis-

cussed further below.

The diffusivity values computed by PR00 are com-

puted by dividing the cross-stream eddy temperature

flux by minus the mean temperature gradient and, so,

actually represent a temperature diffusivity kT. The

values plotted in Fig. 10 are taken from their South

Station, band-passed, shear-coordinate measurements,

consistent with the measured stress values from their

analysis. We reiterate here that the computation of

stress and diffusivity from PR00 as well as of mean

gradients, neglects salinity effects and does not remove

rotational fluxes; therefore, the measured temperature

diffusivity should not be expected to exactly match the

simulated buoyancy diffusivity.

One might wonder whether the simulated diffusivi-

ties kq and kb can possibly be consistent with one an-

other, given their enormous difference in magnitude

and structure. In quasigeostrophic theory, the horizon-

tally averaged eddy buoyancy and PV fluxes are related

FIG. 11. (a) Horizontal and time average of steady-state cross-stream QGPV flux Æu0q0æ � n
(solid line) and (b) the average cross-stream eddy buoyancy flux Æu0b0æ � n (solid line). Note

that as discussed in the text, a buoyancy flux of 0.5 3 1025 m2 s23 corresponds to a heat flux

of 10 kW m22. The dashed lines are estimates of the former averages obtained by assuming

a constant downgradient diffusion with diffusivity 1000 m 2 s21 for each (dashed lines).
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as in (3.2) (recall that a horizontal average is denoted

by an overbar and that relative vorticity fluxes vanish in

this average for homogeneous statistics). Using the re-

lationship between PV and buoyancy fluxes (2.3) and

thermal wind balance yields the relation

kq
›S

›z
� b

f
y

� �
5

›

›z
kbSð Þ: ð4:3Þ

If b is negligible, then a constant kb and constant kq can

be consistent (though they need not be); otherwise,

constant diffusivities cannot be consistent with one an-

other. The lhs and rhs of (4.3) (dotted into S) are plotted

in Fig. 13, showing that the two diffusivity functions are,

indeed, consistent with one another. The dashed–dotted

line shows the lhs of (4.3) without the b term—the de-

viation of this curve from the other two clearly shows that

b is not negligible, so PV and buoyancy diffusion cannot

be approximated as equal to one another.

c. The effective diffusivity

Given such a large difference between PV and buoy-

ancy diffusion, how will a truly passive tracer be mixed?

We address this question by computing the effective

diffusivity of the simulated flow. The effective diffusivity,

pioneered by Nakamura (1996) (see also Shuckburgh

and Haynes 2003; Marshall et al. 2006), is a diagnostic

measure of the enhancement of mixing in high-Peclet

number flows by the advective stretching and folding of

tracer contours. It is an intrinsic measure of the mixing

ability of the flow itself, independent of the tracer.

The effective diffusivity for the simulation discussed

above is computed as follows: a passive tracer is added

to the steady-state flow at each vertical level, obeying

the advection–diffusion equation

›C

›t
1 u9 1 ÆUæð Þ � $HC 5 k=2

HC;

FIG. 12. Simulated, estimated, and measured diffusivities (m2 s21). QGPV diffusivity (kq,

solid line) and buoyancy diffusivity (kb, dashed line) were computed by dividing cross-stream

eddy fluxes by the negative of their cross-stream mean gradients (both plotted in Fig. 11).

Where the QGPV mean gradient is less than b/10, kq is computed by taking a weighted

average of values above and below that level. The dashed–dotted line is the effective

diffusivity keff of the flow computed by transforming an advected tracer into area coordinates

(see text for details). The dotted line with squares is the estimate from (2.4), using the same

multiplicative factor as used in the linear eddy stress estimate in Fig. 10. The dotted line with

circles is an eddy mixing-length estimate, computed as Keddy 5 0.5Veddy Leddy, where Veddy is

shown in Fig. 8, and Leddy is an estimate of the eddy length scale from the kinetic energy

spectrum (Fig. 9). The crosses are band-passed, shear-coordinate estimates from the South

Station measurements of PR00 (consistent with the PR00 stress measurements shown in

Fig. 10).
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where, during this computation, the mean velocity is

held to its steady value ÆUæ (recall that the energy and

scale of the flow do not change after the mean velocity

has adjusted to a steady state). Two different initial

conditions were used: the first was a sinusoidal profile,

Cðx; y; z; t 5 0Þ5 sin
2py

L

� �
� 1

2
;

where L is the horizontal domain extent and $H is the

horizontal gradient operator. The second is based on

the mean PV gradient so as to make the tracer as much

like the PV field as possible. Specifically, we let C(x, y,

z, t 5 0) 5 G(z)y, where GðzÞ 5 n � $Q (i.e., the cross-

stream mean PV gradient rotated to the y direction,

because the mean does not rotate with depth and the

flow is isotropic) and make the substitution C 5 G(f 1

y), where f 5 f(x, y, z, t) solves

›f

›t
1 u9 1 ÆUæð Þ � $Hf 1 y9 1 ÆVæ 5 k=2

Hf;

with f (x, y, z, t 5 0) 5 0. The tracer f is simulated, and

the tracer C is reconstructed from f.

In both cases, the tracer is diffused horizontally with

coefficient k 5 42 m2 s21—this value ensures that the

Batchelor scale
ffiffiffiffiffiffiffiffiffi
k=s

p
is resolved (s is the horizontal

strain rate, computed for the steady state). At each time

and vertical level, the tracer field is converted to area

coordinates A 5 A (C), and the squared equivalent

length (see Shuckburgh and Haynes 2003)

L2
eq 5 L2

eqðAÞ5
1

ð›C=›AÞ2
›

›A

ð
A

$Cj j2 dA

is calculated for a discrete range of 100 tracer values

between the maximum 1/2 and minimum 21/2. Lapla-

cian diffusion erodes the maxima and minima slightly,

but for all tracer contour values near the middle of the

range, the equivalent length rather quickly settles to a

steady-state value, reflecting a balance between stirring

and mixing. From the steady-state range and central

tracer contour values, a mean is taken (denoted by

angle brackets); this value is used to compute the ef-

fective diffusivity via

keff 5 k
ÆLeqæ
Lmin

� �2

;

where Lmin is the minimum tracer contour length—with

the sinusoidal initial condition used here, Lmin 5 2.

Remarkably, both initial conditions (one with knowl-

edge of the mean PV gradient, the other without) pro-

duce nearly identical profiles of effective diffusivity.

FIG. 13. Test of consistency of kq and kb with one another and assessment of the effects of

b on the diffusivities. The solid line is the left-hand side of (4.3) and the dashed line is the

right-hand side of that equation. The dashed–dotted line is the left-hand side of (4.3) with b

set to 0.
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The diffusivity resulting from the initial condition based

on the mean PV gradient is plotted as the dashed–

dotted line in Fig. 12 (resulting from the sinusoidal ini-

tial condition is not shown). Apparently potential vor-

ticity is diffused very much like the passive tracer at

depth, but less so near the surface. On the other hand,

the mixing length estimate keddy is similar to the effec-

tive diffusivity near the surface, but not at depth. One

possible explanation for the difference at the surface is

that the PV mixing is suppressed there since the mean

PV gradient is largest at the surface. The effective dif-

fusivity, on the other hand, results in part from the

energy of the flow, which is largest at the surface. The

effective diffusivity is also large between 1000 and 1500

m depth, where the PV diffusivity has its peak. Here

the mean PV gradient is near zero, which is the cause of

the main instability generating the mixing, and both the

tracer and PV respond. This is a speculative explana-

tion; more locations will be studied in future work to

pin down the generic behavior of the diffusivities.

Overall, the results indicate that (i) PV and buoyancy

are not mixed in the same way, (ii) the mixing of PV

and tracers is similar at depth but differs near the sur-

face and (iii) both tracer and PV mixing are enhanced

near a depth of 1 km, as originally suggested by surface

signals that indicate a steering level at this depth.

5. Discussion and conclusions

Encouraged by the observation that the steering

level of baroclinic waves in the ACC is at significant

depth, we have carried out a detailed stability analysis

of the hydrographic structure of the Southern Ocean.

The steering level of the fastest growing linear mode

is, indeed, found to be consistently at a depth of

1 to 1.5 km in the region of circumpolar flow around

Antarctica.

We proceeded to study the stability properties of one

particular region of the Southern Ocean, corresponding

to the in situ observations from the mooring array of

PR00. Using a fully nonlinear, doubly periodic quasi-

geostrophic model, configured in such a way that the

eddies spawned by it could interact with the mean flow,

we studied the vertical structure of the resulting eddies

and eddy fluxes. We found that

d computed eddy fluxes and statistics are broadly con-

sistent with the observations of Phillips and Rintoul

(2000);
d the steering level is at about 1-km depth in the water

column, in accord with our inference from altimetric

observations;

d eddy diffusivities for potential vorticity (kq) and trac-

ers (keff) are rather similar to one another both in

structure and magnitude: they have a marked vertical

structure and exhibit a significant peak at the steering

level where the diffusivity reaches a magnitude of

about 5000 m2 s21; the linear prediction (2.4) for the

PV diffusivity captures some features of the simu-

lated vertical structure of kq, but not, of course, its

magnitude;
d the eddy diffusivity for buoyancy kb does not exhibit

intense vertical structure and has a magnitude of

about 1000 m2 s21, significantly smaller than the PV

and tracer diffusivities;
d the eddy stress has a relatively simple vertical struc-

ture, increasing from zero at the surface to reach a

maximum value (on the order of the surface wind

stress) at the steering level before decaying again to

zero at depth.

We now conclude by discussing the implications of

these results for (i) the parameterization of eddies and

stirring in large-scale models and (ii) the dynamics of

the ACC and its overturning circulation.

a. Implications for mixing and parameterization

The results presented here have important implica-

tions for the parameterization of eddies in large-scale

models, as summarized in Fig. 12. Current eddy param-

eterization schemes derive from the work of Gent and

McWilliams (1990) and comprise two parts:

(i) the skew component of the eddy buoyancy flux

(i.e., that which is directed along buoyancy sur-

faces) is represented as an advective process and

involves the parameterization of the horizontal

component of the eddy buoyancy flux, u9b9; which

is assumed to be fluxed down the horizontal buoy-

ancy gradient, namely, u9b9 5 � kb$HB; the dif-

fusivity kb is more often than not assumed to

be constant in space (but see Danabasoglu and

McWilliams 1995; Visbeck et al. 1997; Ferreira

et al. 2005); and

(ii) tracer gradients along buoyancy surfaces are mixed

at a rate assumed to be the same as kb.

Our study lends support to elements of Gent and

McWilliams (1990). For example, as shown in Fig. 10,

setting kb to a constant value of 1000 m2 s21, one can

reconstruct the broad features of the vertical variations of

the eddy stress, a key target of any parameterization.

However, (i) the lack of structure found in kb at the

target location studied here may not be a generic fea-

ture of eddying flows and (ii), while it is generally assumed
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that tracers are stirred along buoyancy surfaces with

the same diffusivity as buoyancy, this may be inap-

propriate because here we find that keff is 5 times

larger than kb�
One way forward is to adopt a residual mean per-

spective (Ferreira and Marshall 2006) and parameterize

the eddy potential vorticity flux as a downgradient pro-

cess with eddy diffusivity kq and mix tracers along

buoyancy surfaces at the same rate. The degree to

which one can make use of linear theory to guide in the

prescription of the vertical variation of kq, as argued by

Green (1970) and Killworth (1997), will be the focus of a

future publication.

b. Implications for ACC dynamics

Tracer distributions in the Southern Ocean depend

on both the magnitude and direction of the residual

flow and the vigor by which they are stirred by meso-

scale eddies. The residual circulation is given by, to the

extent that streamwise-average theory is appropriate,

the streamwise residual momentum equation (4.1) (ne-

glecting Reynold stresses), which is equivalent to (inte-

grating vertically and applying boundary conditions

that Cres 5 ts
eddy 5 0 at the top)

r0f Cres 5�ts
wind 1 ts

eddy

as in, for example, Marshall and Radko (2003). In il-

lustration, Fig. 10 shows our predictions of ts
eddyðzÞ:

The sense of the implied residual circulation can be

understood by considering the PV flux itself. Assuming

that the wind stress only penetrates the upper ocean,

(4.1) indicates that the residual velocity will be deter-

mined by the PV flux in the interior (keep in mind that

f , 0). Figure 11a plots n � u9q9 as a function of depth.

We see that yres is directed poleward in the upper part

of the water column and equatorward beneath. This is

in the sense to flatten isopycnals, as is to be expected

since the eddies are obtaining their energy from the

mean APE. The eastward-directed wind stress balances

the process, acting to tilt up the isopycnals and restore

the APE.

We note that the eddy stress ts
eddy in Fig. 10 is of the

same magnitude as the wind stress, typically about 0.1

N m22, as marked with a straight line. If ts
eddy exactly

balances ts
wind; then we have the limit of vanishing re-

sidual mean circulation suggested by Johnson and Bry-

den (1989). This balance is not expected to hold at

every point but rather only in an integral sense. The

local difference between ts
eddy and ts

wind supports a non-

zero residual flow.

The residual flow is sensitive to the vertical structure

of ts
eddy; which tends to peak at the steering level (where

=Q changes sign). In the core of the ACC, the steering

level is rather deep in the water column, consistent

with a first baroclinic mode structure for a deep pyc-

nocline. However, according to our linear analysis,

we see in Fig. 4a that the steering level rises toward

the surface on the equatorial flank of the ACC, so

one might expect the peak in the eddy stress and dif-

fusivity term to follow that pattern, resulting in a re-

sidual flow that exhibits much structure near the

surface. The generally shallow steering level away from

the axis of the ACC might account for the benefit ob-

served in global ocean models of using a diffusivity

that is enhanced near the surface (Ferreira et al. 2005;

Danabasoglu and Marshall 2007). Finally, the sense of

the residual meridional turning circulation is of great

importance and debate. The ‘‘diabatic Deacon cell’’

described in Speer et al. (2000) has equatorward flow in

the upper part of the water column, presumably a direct

consequence of driving by the wind. Lower down in the

water column there is poleward flow. The Marshall and

Radko (2003, 2006) model of the upper cell has the

same general form. The sense of the residual flow driven

by eddies, implied by Fig. 11, is poleward above 1 km

and equatorward below. The ageostrophic flow associ-

ated with the wind (not plotted in Fig. 11) will also be

directed equatorward. The deeper equatorward flow

may be capturing part of the deep overturning cell,

which has the opposite sign to the upper cell—see Fig.

1 of Marshall and Radko (2006). However, it is impor-

tant to remember that it is not possible to extrapolate

from one vertical profile of cross-stream eddy PV flux or

stress. It is necessary to repeat our calculations at many

points in the Southern Ocean to build a climatology.

Such calculations are ongoing.
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