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ABSTRACT

Several recent studies diagnose lateral stirring and mixing in the upper ocean using altimetry-derived ve-

locity fields to advect ‘‘virtual’’ particles and fields offline. However, the limited spatiotemporal resolution of

altimetric maps leads to errors in the inferred diagnostics, because unresolved scales are necessarily imper-

fectly modeled. The authors examine a range of tracer diagnostics in two models of baroclinic turbulence: the

standard Phillips model, in which dispersion is controlled by large-scale eddies, and the Eady model, where

dispersion is determined by local scales of motion. These models serve as a useful best- and worst-case

comparison and a valuable test of the resolution sensitivity of tracer diagnostics.

The effect of unresolved scales is studied by advecting tracers using model velocity fields subsampled in

space and time and comparing the derived tracer diagnostics with their ‘‘true’’ value obtained from the fully

resolved flow. The authors find that eddy diffusivity and absolute dispersion, which are governed by large-

scale dynamics, are insensitive to spatial sampling error in either flow. Measures that depend strongly on small

scales, such as relative dispersion and finite-time Lyapunov exponents, are highly sensitive to spatial sampling

in the Eady model. Temporal sampling error is found to have a more complicated behavior because of the

onset of particle overshoot leading to scrambling of Lagrangian diagnostics. This leads to a potential re-

striction on the utility of raw altimetry maps for studying mixing in the upper ocean. The authors conclude that

offline diagnostics of mixing in ocean flows with an energized submesoscale should be viewed with some

caution.

1. Introduction

The problem of effectively diagnosing and parame-

terizing eddy processes in oceanic mesoscale turbulence

remains a critical limitation upon our ability to accu-

rately model the ocean’s large-scale circulation. Quan-

tifying lateral mixing in the upper ocean in particular is

crucial not only for the development of more skillful

eddy parameterization schemes but also for the under-

standing of observed temperature and chlorophyll dis-

tributions (Mahadevan and Campbell 2002), pollutant

dispersal (Hazell and England 2003), and plankton

dynamics (Martin 2003). However, although valuable

data on horizontal dispersion and mixing are provided

by in situ observations of surface drifters and controlled

tracer release experiments (e.g., LaCasce and Ohlmann

2003; Lumpkin and Elipot 2010), the considerable cost

and logistical difficulties of large-scale field observations

limit their effectiveness, whereas satellite imagery of sea

surface temperature and ocean color (e.g., Abraham et al.

2000; Isern-Fontanet et al. 2006) are currently unable to

provide continuous, global monitoring of the ocean sur-

face.

Altimetric measurements of sea surface height (SSH)

anomalies, provided by Jason-1, Ocean Topography Ex-

periment (TOPEX)/Poseidon, and other satellite mis-

sions are now routinely used to estimate geostrophic

velocities at the ocean surface (Fu 2010). In recent years,

a number of studies have made use of altimetry-derived
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velocity fields to diagnose lateral mixing and transport

in the upper ocean on both regional and global scales,

using time series of the observed surface flow to advect

virtual tracers, from which the relevant Eulerian or

Lagrangian diagnostics can be computed. Diagnostics

calculated from the trajectories of virtual particles (rel-

ative dispersion, finite-time, and finite-scale Lyapunov

exponents) have been used to characterize mixing in

the Tasman Sea (Abraham and Bowen 2002; Waugh

et al. 2006), the Algerian basin (d’Ovidio et al. 2009),

the Agulhas Current (Beron-Vera et al. 2008), and the

World Ocean (Waugh and Abraham 2008), as well as

to examine the role of geostrophic stirring on phyto-

plankton blooms in the northeast Atlantic (Lehahn

et al. 2007) and the interaction between mixing and

biological production in eastern Atlantic upwelling

zones (Rossi et al. 2008). Similarly, virtual scalar fields

have been used to infer diffusivities in the Antarctic

Circumpolar Current (Marshall et al. 2006; Shuckburgh

et al. 2009a,b).

The velocity fields inferred from satellite altimetry

are, however, subject to inevitable inaccuracies due to

nonuniform satellite coverage and spatial and temporal

sampling resolutions that are strongly limited by the or-

bital characteristics of the satellite itself, resulting in ef-

fective spatial resolutions of about 100 km and temporal

resolutions on the order of 10 days. Although gyre-scale,

subbasin-scale, and some mesoscale processes can be

expected to be captured by this range, the effect of un-

resolved scales on eddy transport processes has not been

fully quantified. The limited resolution of altimetry pro-

ducts allows for model error arising from the fact that an

imperfect model is used to represent the effect of the

unresolved flow in mixing and transport at larger scales,

whether this model is implicit (e.g., the unresolved ve-

locity field is omitted) or explicit (e.g., the effect of the

unresolved field on a virtual tracer is modeled as an eddy

diffusivity).

The transport properties of a turbulent flow can be

significantly altered by filtering out motions on fast

space and time scales. Bennett (1984) argued that the

relative dispersion of balloons in the stratosphere de-

pends sensitively on the slope of the kinetic energy (KE)

spectrum and identified two dynamical regimes gov-

erning the evolution of advected quantities. For self-

similar kinetic energy spectra of the form E(k) } k2a,

where k is the horizontal wavenumber, particle disper-

sion will be governed by eddies on the energy-containing

scale when a . 3 (spectrally nonlocal dynamics) and by

eddies on the scale of dispersion when a , 3 (spectrally

local dynamics). This transition from local to nonlocal

dynamics is apparent in the scale dependence of the

characteristic turbulent time scale,

t(k) 5

� ðk

p2E(p)dp

�21/2

, (1)

where k is the magnitude of the horizontal wave vector

(Babiano et al. 1985; Shepherd et al. 2000). The time

scale t represents the local distortion time due to the ef-

fective mean shear from wavenumbers p # k (Kraichnan

1971). For steep kinetic energy spectra with a . 3, the

integral in (1) is dominated by the large scales (small p)

and is effectively independent of the local wavenumber

k. In the nonlocal case, then, particle dispersion is con-

trolled by the velocity field at the largest scales, typically

the energy-containing scales. Conversely, for sufficiently

shallow kinetic energy spectra with a , 3, the time scale in

(1) is a function of the local horizontal wavenumber and

particle dispersion on a given horizontal scale is controlled

by the velocity field on that scale. For the marginal case

of a , 3, the time scale t(k) depends only logarithmically

on the horizontal wavenumber and particle dispersion is

weakly nonlocal.

The distinction between regimes of local and nonlocal

spectral dynamics places an important constraint on our

ability to diagnose mixing from low-resolution velocity

datasets. In particular, the paradigm of chaotic advec-

tion is a special case of nonlocal dynamics in which

smoothly varying, quasi-periodic velocity fields gener-

ate chaotic mixing on small scales (Ottino 1990). Con-

versely, chaotic advection is inconsistent with local

dynamics, suggesting that mixing in this regime is highly

sensitive to the spatial and temporal resolution of the

velocity field. As such, the reliability of diagnostics of

mixing based on low-resolution velocity fields is in-

trinsically linked to the steepness of the kinetic energy

spectrum, a point made independently by Bartello (2000)

and Shepherd et al. (2000) in the context of the atmo-

sphere. Motivated by simulations of atmospheric tur-

bulence exhibiting kinetic energy spectra with a . 3,

a ’ 3, and a , 3 in the stratosphere, extratropical tro-

posphere, and mesosphere, respectively, these authors

concluded that in the stratosphere relatively coarsely re-

solved winds can be used to accurately advect tracers and

Lagrangian particles and consequently that offline diag-

nostics (tracer variance, correlation times, and Lyapunov

exponents) based on the temporal evolution of these fields

are fairly reliable measures of mixing in the stratosphere.

In contrast, care must be taken in extending these diag-

nostics to winds in the mesosphere and, to a lesser extent,

the extratropical tropopause, because they are likely to be

resolution dependent.

Measurements of the submesoscale kinetic energy

spectrum of the upper ocean are more limited than in

the atmosphere (for a recent review, see Ferrari and

Wunsch 2009). Stammer (1997) analyzed midlatitude
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sea surface height and surface velocity data from the

TOPEX/Poseidon satellite and found a spectral expo-

nent of a ’ 3 over the mesoscale–submesoscale range,

a result that is apparently consistent with a picture

of geostrophic turbulence driven by baroclinic insta-

bility (Charney 1971; Salmon 1980; Smith and Vallis

2002). However, calibration error and noise dominate

the TOPEX/Poseidon signal on scales smaller than about

100 km, so measurements of power-law exponents from

this range should be viewed with caution (Ferrari and

Wunsch 2009). More recently, attention has focused on the

role of surface trapped modes that act to flatten the kinetic

energy spectrum at high wavenumbers. A growing body of

evidence suggests that these modes are crucial to the un-

derstanding of submesoscale dynamics and transport in the

upper ocean: these include drifter trajectories (Lumpkin

and Elipot 2010) and more recent satellite measurements

(Scott and Wang 2005; Le Traon et al. 2008) as well as

high-resolution primitive equation ocean models (Klein

et al. 2008). The results of these studies suggest a sig-

nificantly shallower (a ’ 2) kinetic energy spectrum in

the mesoscale–submesoscale range, raising important

questions about the robustness of altimetry-inferred

mixing diagnostics in the upper ocean.

A central goal of this study is to explicitly evaluate the

importance of surface trapped modes and other sub-

mesoscale dynamics on spatial and temporal resolution

sensitivity. To that end, we employ two phenomenolog-

ical models of quasigeostrophic turbulence: the classi-

cal two-layer Phillips model of geostrophic turbulence

(Phillips 1954) and the nonlinear Eady model, in which

the dynamics is driven by temperature anomalies on up-

per and lower surfaces bounding a region of constant

potential vorticity (Blumen 1978). In each model, ki-

netic energy is injected at small wavenumber via baro-

clinic instability. However, the nonlinear (turbulent)

dynamics of the two models are quite distinct, with the

Eady model exhibiting a kinetic energy spectral expo-

nent of a 5 5/3 at its surfaces, in contrast to the well-

known a 5 3 forward cascade of the two-layer Phillips

model (Blumen 1978; Held et al. 1995; Tulloch and

Smith 2009). The Phillips model and the nonlinear Eady

model are complementary, highly simplified models of

the real ocean exemplifying either nonlocal or local

spectral dynamics. As such, they provide a best- and

worst-case comparison and serve as a valuable stress test

of the sensitivity of altimetry-inferred diagnostics to the

unresolved scales.

Our methodology is to subsample the model flow

fields at different spatial and temporal resolutions and

to then use these subsampled velocities to advect, off-

line, virtual particles and fields, from which a suite of

widely used Eulerian, Lagrangian, and quasi-Lagrangian

diagnostics of mixing and stirring can be calculated: eddy

diffusivity, absolute (single particle) diffusivity, relative

(two particle) diffusivity, finite-time Lyapunov expo-

nents (FTLEs), and effective diascalar diffusivity. The

range of diagnostics facilitates an intercomparison of

their respective sensitivities to sampling resolution in a

tightly controlled context, setting the stage for both building

theoretical connections between measures of mixing and

stirring and for designing strategies to ameliorate errors in

their application to sparse observations of the underlying

turbulent flow.

This approach is similar to that of the studies by

Bartello (2000) and Shepherd et al. (2000) in the context

of atmospheric mesoscale mixing. Likewise, a number of

previous studies have examined the reliability of di-

agnostics inferred from altimetry in regional contexts:

Beron-Vera et al. (2008) tested calculations of FTLEs in

the South Atlantic using satellite-tracked drifter data;

Rossi et al. (2008) tested the sensitivity of FTLEs in

a number of eastern Atlantic upwelling zones to obser-

vational noise by adding random perturbations of the

velocity field at each grid point; and Shuckburgh et al.

(2009a) calculated effective diffusivities inferred from

virtual tracer experiments in the Southern Ocean and

tested their dependence on spatial sampling resolution

and the value of the numerical diffusivity. We emphasize

that the present study differs from previous analyses of

resolution dependence of mixing diagnostics in ocean

models (Iudicone et al. 2002; Griffa et al. 2004; Bracco

et al. 2004; Poje et al. 2010). These studies typically

concentrate on the role of spatial rather than temporal

resolution, because the former represents a more costly

investment of computational resources. Because both

the temporal and spatial resolutions of altimetry prod-

ucts are constrained by orbital considerations, tracer-

based diagnostics inferred from satellite altimetry can

have nontrivial, overlapping dependencies on the space

and time sampling rates: the combined effects of tem-

poral and spatial subsampling are studied here in the

same controlled context.

We also show that the estimates of mixing diagnostics

from altimetry maps with limited temporal resolution

can depend significantly on how the derived velocity

fields are used to advect virtual tracers. Two natural

approaches are (i) treating the velocity field as piecewise

constant in time, changing discontinuously when data

become available, and (ii) interpolating the velocity

linearly in time between successive times of data ac-

quisition. Because the sampling times are, in practice,

not small compared to the relevant time scales of tracer

advection, these approaches create differences in the

inferred statistical properties of the tracers. Moreover, for

the same reason, the inferred mixing diagnostics depend
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somewhat on the temporal resolution of the interpolated

data, unless the time step is short compared to the tracer

advection time scale. These issues are of relevance to the

utility of altimetry products such as Archiving, Valida-

tion, and Interpretation of Satellite Oceanographic data

(AVISO) and the proposed Surface Water Ocean To-

pography (SWOT) mission.

The paper proceeds as follows: In section 2, we outline

and contrast the Phillips and Eady models of quasigeo-

strophic turbulence. In section 3, we describe a range of

diagnostics of mixing and stirring and discuss their prop-

erties in both local and nonlocal turbulent flows, whereas

in section 4 we examine the dependence of these diag-

nostics on the spatial and temporal sampling resolutions.

We discuss the interplay of spatial and temporal sampling

resolution sensitivity as well as temporal interpolation of

observations in section 5. Finally, in section 6, we sum-

marize our results.

2. Eddy velocity field models

To study the effects of submesoscale activity on mea-

sures of eddy mixing, we generate two synthetic velocity

fields that are substantially similar near the deformation

scale (the mesoscale) but differ on smaller scales (the

submesoscale). The velocity fields are generated from

two standard quasigeostrophic models of baroclinic tur-

bulence: the Phillips model (e.g., Phillips 1954; Haidvogel

and Held 1980), which is comprised of two immiscible

layers, and the Eady model (e.g., Blumen 1978), which

advects the buoyancy fields at the upper and lower sur-

faces and sets the interior potential vorticity to zero. The

turbulent dynamics of the two-layer Phillips model are

consistent with the predictions of geostrophic turbulence

theory (Charney 1971), producing an inverse cascade of

kinetic energy in the barotropic mode, with a 25/3 kinetic

energy spectral slope and a forward potential enstrophy

cascade with a steep 23 kinetic energy spectral slope. The

turbulent dynamics of the Eady model are similar in the

inverse cascade range (above the deformation scale) but

differ in the forward cascade. Because the upper and

lower surfaces are effectively decoupled at scales below

the deformation scale, the forward cascade at the surfaces

is determined by conservation of buoyancy variance

rather than by conservation of potential enstrophy. This

results in a 25/3 spectral slope of kinetic energy in the

forward cascade near the surfaces.

Given the discussion following (1), we therefore ex-

pect that, in the submesoscale range, the Phillips model

will exhibit nonlocal spectral dynamics, whereas the

Eady model (near the upper surface) will exhibit local

spectral dynamics. Because we are primarily interested

in the submesoscale (forward cascade) range, we choose

the domain scale, deformation scale, and drag parameters

for the two numerical models to give mesoscale eddy

fields that have nearly the same energies and horizontal

scales and allow only a small inverse cascade. Thus, the

eddy scale is only slightly larger than the deformation

scale, leaving most of our model resolution available to

represent the forward cascade. The details of the models

and their numerical implementations are discussed next.

The homogeneous Phillips model on the f plane con-

sists of an advection–diffusion equation for the potential

vorticity qi in each layer and an inversion relation that

relates the potential vorticity to the layer-wise stream-

functions ci,

›tq11 J(c1, q1) 1 U›xq11 Qy›xc1 5 D1,

q1 5 =2c11
1

2
k2

D(c2 2 c1),

›tq21 J(c2, q2) 2 U›xq2 2 Qy›xc2 5 D2,

q2 5 =2c2 2
1

2
k2

D(c2 2 c1), (2)

where U is the baroclinic shear velocity, Qy 5 k2
DU is

the upper-level gradient of the mean potential vorticity,

and kD 5 2pf/NH is the deformation wavenumber as-

sociated with Coriolis parameter f, buoyancy frequency

N, and fluid depth H. The term Di represents dissipation

of potential vorticity on small scales (via an exponential

filter with high-wavenumber cutoff) and on large scales

(via an Ekman drag term).

The Eady model consists of advection–diffusion

equations for the buoyancy fields bi on the upper and

lower surfaces,

›tb1 1 J(c1, b1) 1 U›xb1 2 By›xc1 5 D1,

›tb2 1 J(c2, b2) 2 U›xb2 2 By›xc2 5 D2,

(=2 1 f 2/N2›2
z)c 5 0, b1 5 f0›zcj1, b2 5 f0›zcj2, (3)

where By 5 2fU/H is the imposed mean buoyancy gra-

dient on the upper and lower surfaces. The streamfunc-

tion is found by setting to zero the three-dimensional

quasigeostrophic potential vorticity q 5 =2c 1 ›z( f 2/

N2›zc) and solving this homogeneous elliptic problem

with boundary conditions given by the buoyancy field

on each surface. When the buoyancy frequency N is

constant, this inversion can be computed analytically

(see, e.g., Tulloch and Smith 2009).

In the Eady model, the quadratic invariants are the

total depth-integrated energy density, which is pro-

portional to hcb1 2 c2b2i, and the buoyancy variance on

each surface hb2
i i, which are each proportional to the

kinetic energy density on its respective surface. This

can be contrasted to the two-layer case, in which the
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quadratic invariants of the system are (potential) ens-

trophy hq2i and energy 2hcqi. In both models, bar-

oclinic instability stirs the fluid at approximately the

deformation wavenumber, and the injected energy cas-

cades to larger scale, where it is removed by Ekman drag.

On the other hand, in the two-layer model, potential

enstrophy cascades to smaller scale, whereas in the Eady

model it is buoyancy variance (near the surfaces) that

cascades to smaller scale. Scaling analysis yields a k25/3

surface kinetic spectrum in the forward cascade (Blumen

1978; Pierrehumbert et al. 1994; Held et al. 1995). Thus,

the submesoscale spectral dynamics of the Eady model

will be local, and we expect tracer mixing to be controlled

by the local scale and therefore strongly dependent on the

sampling resolution of the velocity field.

The Phillips and Eady model equations in (2) and (3)

were simulated in a doubly periodic domain using a

pseudospectral solver with a horizontal grid scale of

1 km 3 1 km in each layer. In each simulation, the do-

main was 1024 km 3 1024 km 3 0.88 km. The model

parameters H, f, and N (listed in Table 1) were chosen to

give a deformation wavelength of LD ’ 85 km, relevant

to midlatitude open-ocean eddies. In both the Phillips

and Eady models, the imposed shear across the two layers

excites baroclinic instability that transfers energy to the

deformation scale k21
D , which then cascades to larger

scales, where it is removed via Ekman drag. As discussed

above, the drag and domain scales are chosen to suppress

the inverse cascade and yield eddy fields that have scales

only slightly larger than the deformation scale. For the

Phillips model, a symmetric top and bottom Ekman drag

(Arbic 2000) was used, which, although unrealistic, has the

benefit of halting the inverse cascade of energy at some

eddy scale LE 5 256 km (here defined as the peak in the

kinetic energy spectrum) in the absence a gradient in the

planetary vorticity (Held and Larichev 1996; Lapeyre and

Held 2003; Thompson and Young 2006). The Eady model

was found to be somewhat more sensitive to the drag

term, so only a weak bottom drag was needed to arrest

the cascade at the eddy scale LE 5 256 km (see Fig. 1).

The forward cascades in each model are absorbed by an

exponential cut-off dissipation that ensures that the flow is

smooth at the grid scale. For more details of the numerical

representation of the nonlinear Eady model, see Tulloch

and Smith (2009).

The upper-level kinetic energy spectra and surface

vorticity probability density functions (PDFs) for the

two central simulations are shown in Fig. 1. The spectra

are nearly identical for scales near the deformation scale

and larger (note that, consistent with our design, the

inverse cascade subrange between the deformation

wavenumber kD and the spectral peak kE is quite small)

but diverge completely at smaller scales. As predicted,

the Phillips model exhibits a steep spectrum (actually

somewhat steeper than k23), whereas the Eady model

spectrum is much more energetic, with an approximately

k25/3 spectrum in the submesoscale range. Likewise, the

surface vorticity PDFs for the two models illustrate that

the Eady model possesses a highly energized submesoscale

range with strongly non-Gaussian surface vorticity tails.

The transition in the Phillips model from a steep kinetic

energy spectrum at small scales to a shallow spectrum at

large scales suggests that the submesoscale spectral dy-

namics in this model will be nonlocal and tracer mixing will

be controlled by scales on the order of k21
D and larger. In

contrast, the submesoscale spectral dynamics of the Eady

model will be local, and we expect tracer mixing to be

controlled by the local scale and therefore strongly de-

pendent on the sampling resolution of the velocity field.

3. Tracer mixing in local and nonlocal turbulent
flows

Broadly speaking, diagnostics of mixing calculated

using altimetric datasets can be categorized as Eulerian,

Lagrangian, or quasi Lagrangian. In the Eulerian

framework, the mixing and transport properties of the

flow are characterized by the temporal evolution of

a passively advected scalar field at a fixed point, such as

a single moored buoy or a grid point. The general form

of the advection–diffusion equation for a scalar con-

centration C(x, t) is

›C

›t
1 u � $C 5 k=2C 1 S, C(x, t0) 5 C0(x), (4)

where S represents the combined effect of sources and

sinks of the tracer concentration and k is the molecular

diffusivity. The advection–diffusion equation in (4) is

augmented by the initial distribution C0(x) and solved

here using a pseudospectral scheme. The most widely

used Eulerian diagnostic is the eddy diffusivity, wherein

the effect of the eddy field on the large-scale, long-time

evolution of the tracer is represented as an enhancement

TABLE 1. Model parameters.

Model parameter Phillips model Eady model

Domain scale L0 1024 km 1024 km

Domain depth H 0.878 km 0.878 km

Deformation wavelength LD 85.3 km 85.3 km

Eddy scale LE 256 km 256 km

Coriolis parameter f 1.03 3 1024 s21 1.03 3 1024 s21

Buoyancy frequency N 0.01 s21 0.01 s21

Baroclinic shear velocity U 0.82 cm s21 0.15 cm s21

rms eddy velocity urms 10.82 cm s21 2.44 cm s21

Eddy turn-over time Tto 15.2 days 15.1 days
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of the molecular diffusivity (Tennekes and Lumley 1972;

Majda and Kramer 1999; Vallis 2006).

In the Lagrangian framework, the position xa(t) of a

particle satisfies the evolution equation

d

dt
x

a
(t) 5 u

a
(t), a 5 x

a
(0), (5)

where ua(t) [ u(xa, t) is the fluid velocity interpolated to

particle’s position. For convenience, each particle is la-

beled by its initial condition. In both model flows, parti-

cles were initialized at every grid point in the upper layer

(a total of 10242 particles per model). A bicubic in-

terpolation scheme was used to calculate the model flow

at the particle position, and the particles were advected

by solving (5) using a fourth-order Runge–Kutta scheme

with a time step matching that of the model (roughly 7

and 3 min for the Phillips and Eady models, respectively).

The resulting Lagrangian trajectories can then be ana-

lyzed to obtain a statistical description of the dynamics of

single particles (absolute diffusivity) and particle pairs

(relative diffusivity and finite-time Lyapunov exponents).

Finally, quasi-Lagrangian diagnostics are calculated

in a frame that is neither fixed nor comoving with fluid

parcels. This is the case for the ‘‘effective diascalar dif-

fusivity,’’ which measures the instantaneous scalar flux

across tracer isocontours as measured in a coordinate

system chosen to coincide with an advected–dissipated

scalar field C(x, t) (note that this coordinate system

is not quite Lagrangian because tracer contours will

slip with respect to streamlines owing to the effect of

diffusion).

We review the basic properties of each diagnostic

below.

a. Absolute diffusivity

The simplest diagnostic of mixing derived from virtual

particle trajectories is the absolute diffusivity, which is

defined as the rate of change of the absolute dispersion

Dabs,

Kabs(t) 5
1

2

d

dt
Dabs(t), Dabs(t) 5 hjd

a
(t)j2i

a
, (6)

where da(t) 5 xa(t) 2 a is the absolute displacement of

particle a from its initial position and h�ia denotes av-

eraging with respect to particle index. Equation (6) can

also be expressed in terms of the Lagrangian velocity

autocorrelation function as

Kabs(t) 5

ðt

0
dshu

a
(t) � u

a
(t 2 s)i

a
. (7)

Figure 2 shows Kabs(t) for the Phillips and Eady models.

On short times, we expect the Lagrangian velocity auto-

correlation function to be constant and approximately

equal to twice the mean kinetic energy 2E so that Kabs } t,

as shown. Thus, particle displacements increase ballisti-

cally and da(t) ’ ua(t)t. On long times, the displacement is

expected to grow as a random walk so that Dabs } t and

Kabs is constant.

b. Eddy diffusivity

In the continuum limit, the probability distribu-

tion function of particle positions is equivalent to the

FIG. 1. (left) Equilibrium energy spectra in the Phillips and Eady models. The most energetic eddy wavenumber

kE 5 2p/LE and the deformation wavenumber kD 5 2p/LD are indicated (where LE and LD are the nondimensional

eddy scale and deformation radius, respectively). Also shown are spectral slopes of k25/3 and k23 for comparison.

(right) Surface vorticity probability distribution functions for the two models. Also shown is a Gaussian distribution

with the same mean and variance as the Eady model flow.
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concentration of a passively advected tracer field. Under

statistically homogeneous and stationary random stir-

ring, the absolute diffusivity reproduces the familiar eddy

diffusivity emerging from mixing length arguments or

homogenization theory (Taylor 1921; Majda and Kramer

1999). The eddy diffusivity can be calculated by decom-

posing the total concentration field into a large-scale

mean gradient and a rapidly varying small-scale compo-

nent,

C(x, t) 5 G � x 1 c(x, t). (8)

The (source free) tracer evolution equation is then

›tc 1 u � $c 1 G � u 5 kDc. (9)

Note that the mean gradient term G � u in (9) plays the

role of the time-varying source–sink in (4). The turbu-

lent flux of scalar c can be expressed in terms of the eddy

diffusivity tensor via the usual flux–gradient relation,

huci5 2KeddyG. (10)

Figure 2 shows the trace Keddy of the full eddy diffu-

sivity tensor—calculated using two scalar fields with

orthogonal mean gradients—superimposed on the ab-

solute diffusivity Kabs. For both the Phillips and Eady

models, the two diffusivities are essentially indistin-

guishable. Thus, we conclude that the number of particles

used is sufficient to accurately calculate both Eulerian

and Lagrangian quantities and does not introduce any

additional sources of model error, and we henceforth

treat Kabs and Keddy as equivalent.

c. Relative diffusion

The relative diffusivity is defined as the rate of change

of the relative dispersion Drel,

Krel(R0, t) 5
1

2

d

dt
Drel(R0, t),

Drel(R0, t) 5 hjr
ab

(t)j2ija2bj5R
0
, (11)

where rab(t) 5 xa(t) 2 xb(t) 5 da(t) 2 db(t) 1 R0 is

the relative separation of particles a and b at time t and

h�ija2bj5R0
denotes averaging with respect to particles

initially separated by a distance R0 5 jR0j. The rate of

change of the particle separation is given by

d

dt
r

ab
(t) 5 v

ab
(t) 5 u

a
(t) 2 u

b
(t), (12)

so that (11) becomes

Krel(R0, t) 5 hR0 � vab
(t)ija2bj5R

0

1

ðt

0
dshv

ab
(t) � v

ab
(t 2 s)ija2bj5R

0
(13)

For spatially homogeneous flows, the first term on the

right-hand side of (13) vanishes (Babiano et al. 1990).

Using (7) and (12), it can then be shown that

Krel(R0, t) 5 2Kabs(t) 2 2Q(R0, t), (14)

where

Q(R0, t) 5

ð
hu

a
(t) � u

b
(t 2 s)ija2bj5R

0
ds (15)

FIG. 2. Log–log plot of the absolute and relative diffusivities and the trace of the eddy diffusivity tensor vs time for

the Phillips and Eady models. Relative diffusivities were calculated for initial particle separations of (from bottom to

top) R0 5 1, 2, 4, 8, 16, and 32 km. Dotted lines indicate predicted short time scaling of t and, for the Eady model, the

predicted inertial-range scaling of t2.
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is the two-particle, two-time Lagrangian velocity auto-

correlation function. On sufficiently long time scales,

particles that are initially close together will become

decorrelated and Krel will be approximately twice the

absolute diffusivity, as shown in Fig. 2. The closer the

particles are initially separated, the more slowly Q ap-

proaches zero. On short times, the separation velocity

vab is approximately constant so that Krel } t as for the

absolute diffusivity. This behavior can also be seen in

Fig. 2.

On intermediate time scales, the temporal evolution

of the relative diffusivity is dependent on the slope of

the kinetic energy spectrum E(k) } k2n. For sufficiently

shallow spectral slopes 1 , n , 3, the separation ve-

locity is determined by the instantaneous separation of

the particles and particle dispersion is spectrally local.

Standard scaling arguments (Morel and Larcheveque

1974; Bennett 1984; Babiano et al. 1985) and stochastic

flow models (Majda 1993, 1994; Majda and Kramer 1999;

Piterbarg 2005) predict an inertial-range scaling of

Drel } t4/(32n), Krel } t(n11)/(32n), 1 , n , 3: (16)

For the Eady model, n 5 5/3 and (16) reproduces the well-

known Richardson scaling law (Richardson 1926),

Drel } t3, Krel } t2 (Eady model). (17)

For steep spectral slopes n $ 3, the separation velocity is

controlled by eddies on the energy-containing scale so

that particle dispersion is spectrally nonlocal (Batchelor

1952),

Drel } egt, Krel } egt, n $ 3 (Phillips model). (18)

d. Lyapunov exponents

The FTLE is calculated by considering how an in-

finitesimally small, initially circular patch of tracer cen-

tered on the particle a is deformed into an ellipse as it

is rotated and stretched by the flow, where the rate of

deformation is given by the Jacobian for the local flow

Sij
a 5 ›

i
uj

a. The FTLE for the particle trajectory indexed

by a at time t is given by

l
a

(t) 5 lnm
1

/2t, (19)

where m1(t) is the square of the semimajor axis of the

elliptical tracer patch (Abraham and Bowen 2002). For

each time t, (19) provides a measure of the integrated

strain along the trajectory of particle a and can be plotted

at the starting point of each particle.

Figure 3 shows 1024 km 3 1024 km snapshots of the

finite-time Lyapunov exponent field calculated using

particle trajectories integrated for 64 days. These snap-

shots are remarkably dissimilar. The FTLE field of the

Phillips model is characterized by filaments of roughly

the same scale, consistent with nonlocal straining at the

dominant eddy scale due to a steep submesoscale kinetic

energy spectrum. On the other hand, the Eady model

exhibits a large number of low-FLTE ‘‘voids’’ on every

scale, separated by high-FTLE filaments. These voids

are caused by long-lived vortices that trap particles

within them leading to very low integrated straining

within vortex cores, whereas particles in the inter-eddy

FIG. 3. 1024 km 3 1024 km snapshots of FTLE field for (left) Phillips and (right) Eady models after 64-day

integration time.
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regions experience much more straining along their

trajectories and so carry much larger FTLE values.

Differences can also be seen in the probability density

functions of the FTLEs in the two models, shown in

Fig. 4, although they are not as immediately apparent as

in the snapshots of the full FTLE field. As is typical of

turbulent and chaotic flows, the FTLE distributions

depicted in Fig. 4 are initially close to a Rayleigh dis-

tribution: indeed, if the components of the straining field

were independent Gaussian random variables, then the

rms strain and hence the instantaneous FTLE field

would have a Rayleigh distribution (Conradsen et al.

1984). As the integration time increases, the PDF be-

comes more Gaussian and the mean of the distribution

decreases. The Gaussianity results from an effective

central limit theorem as the tracer experiences a large

number of essentially independent, statistically identical

strains. The decrease of the mean arises because any

choice of infinitesimal circular patch of tracer will not be

consistently stretched by the flow along the major axis of

the ellipse into which it evolves, so the time-averaged

effect of the stretching will fall below the spatially (or

ensemble) averaged infinitesimal stretching rates, which

is what determines the FTLE at very short times. In the

very long time limit, the distribution tends toward a

delta function centered on the global Lyapunov expo-

nent for the system.

Recently, Waugh and Abraham (2008) analyzed FTLE

distributions derived from virtual particles advected by

altimetric velocity fields and found that the PDFs were

typically well approximated by a Weibull distribution,

P(l) 5
b

a

�
l

a

�b21

exp

�
2

�
l

a

�b�
, (20)

where a is the scale parameter (determining how

stretched out the distribution is and closely related to

the mean of the PDF) and b is the shape parameter,

which can take values of 1 (exponential distribution), 2

(Rayleigh distribution), 3.6 (approximately Gaussian),

or any value in between (Conradsen et al. 1984). In Fig.

4, the relevant best-fit Weibull distributions are shown

by dashed lines. The dependence of the fitted parame-

ters on the integration time is shown in Fig. 5. The en-

semble mean of the FTLE distribution fwhich in the

Weibull distribution [(20)] is simply aG(1 1 b21), where

G is the gamma functiong behaves very like the scale

parameter a (not shown), asymptotically decaying from

a peak at t 5 0 to a constant value in the ergodic limit as

particles randomly sample the entire flow. On finite

time, as the FTLE PDF narrows and moves toward smaller

mean values, the shape parameter b likewise increases

toward the limit 3.6, corresponding to a Gaussian distri-

bution, as seen in Fig. 5. Although the fitted parameters for

the two models are very similar, the shape parameter b is

systematically smaller in the Eady model than in the

Phillips model, corresponding to a more skewed distribu-

tion and again reflecting the large population of long-lived

vortices with low-FTLE cores.

e. Effective diascalar diffusivity

The effective diascalar diffusivity exploits the fact that,

on transforming to a quasi-Lagrangian coordinate system

defined by the area A(C, t) enclosed by the tracer iso-

contour C*(x, t) 5 C, the advection diffusion equation

[(4)] with S 5 0 reduces to the following one-dimensional

diffusion equation (Nakamura 1996; Shuckburgh and

Haynes 2003; Nakamura 2008),

›

›t
C 5

›

›A

�
D(C, t)

›C

›A

�
,

D(C, t) 5 k

�
›A

›C

�2
›

›A

ð
C*#C

dAj$C*j2. (21)

FIG. 4. FTLE distributions for the (left) Phillips and (right) Eady models after 16-, 32-, 48-, and 64-day integration

times. Thin lines indicate best-fit Weibull distributions.
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Here, D(C, t) is a positive–definite diffusion coefficient

measured in area coordinates and therefore has units

of (area)2/(time) rather than the usual (length)2/(time).

Commonly, D(C, t) is normalized by some characteristic

area in the system, such as that of the domain, A0 5 L2
0,

to give the instantaneous effective diascalar diffusivity

across the tracer isocontour C* 5 C,

Keff(C, t) 5 D(C, t)/L2
0. (22)

The effective diascalar diffusivity Keff(C, t) offers a

number of appealing properties as a diagnostic of mix-

ing: it provides a measure of the instantaneous diascalar

flux arising from the combined effects of molecular dif-

fusion and the stretching of tracer filaments by the stirring

field and thus requires no spatial or temporal averaging to

compute; it captures nonconservative, irreversible pro-

cesses only, filtering out the reversible undulations of the

tracer isocontour that contribute nothing to the overall

transport; and it is a natural diagnostic for identifying

transport barriers and their effect on the global transport

properties of the flow (Nakamura 2001; Shuckburgh and

Haynes 2003; Nakamura 2008).

To calculate the effective diascalar diffusivity in the

Phillips and Eady models, an initially circular patch of

tracer concentration with Gaussian cross section is re-

leased in the center of the domain (Fig. 6). As time

evolves, the tracer isocontours are deformed by the

underlying flow (Fig. 7) and dissipated on small scales

via a Laplacian diffusion term k=2C with numerical

diffusivity k 5 1 3 1025 cm2 s21 for the Phillips flow and

k 5 2 3 1027 cm2 s21 for the Eady flow. These values

were chosen such that (i) they are large enough to ensure

numerical stability of the tracer advection scheme and

(ii) they are small enough that the effective diascalar

diffusivity is essentially independent of the precise value

of the numerical diffusivity in mixing regions (Shuckburgh

and Haynes 2003). Thus, even though the numerical

diffusivities differ by two orders of magnitude, it is still

meaningful to compare effective diascalar diffusivities

in the two models because they are not dependent on the

subgrid-scale diffusion.

Again, strong differences in the nature of the stirring

are visible in the tracer snapshots, with the Phillips flow

(Fig. 7, left) dominated by large-scale eddies and the

Eady flow (Fig. 7, middle) exhibiting stirring of the

tracer isocontours on all scales. For each instantaneous

snapshot of the tracer field Ct(x) 5 C(x), the area A(C)

enclosing values of tracer concentration equal to or less

than C is a monotonically increasing function of C with

values between A(Cmin) 5 0 and A(Cmax) 5 A0. Thus,

given C(x, t), it is straightforward to calculate j$Cj, A(C,

t), and ›A/›C at each instant and hence to calculate

Keff(C, t) for each tracer isocontour using (21) and (22).

The results of this calculation are shown in Fig. 7 (right).

In both flows, the strongest mixing (characterized by

the largest values of the effective diascalar diffusivity)

tends to occur where the diascalar gradient is steepest

and the tracer contours are closely spaced. As time

evolves, there is an initial adjustment phase of several

eddy turnover times as the tracer isocontours align with

the flow and Keff increases with time (Fig. 8). On very

FIG. 5. Properties of FTLE distribution as a function of integration time: (left) mean FTLE l and (right) Weibull

shape parameter b.
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long times, the tracer field must ultimately decay to zero

in the absence of a source. For the purposes of this study,

we focus our attention on the initial adjustment phase

(up to 64 days, roughly four turnover times) as we did

with the relative dispersion of particle pairs.

4. Resolution dependence of mixing diagnostics in
quasigeostrophic turbulence

The mixing and stirring diagnostics discussed in the

preceding section were measured using tracers advected

with velocity fields available at every grid point (a spatial

resolution of Dx 5 2 km) and every model time step

(temporal resolutions of Dt 5 7 min for the Phillips

model and 3 min for the Eady model). These diagnostics

constitute a truth signal against which we now compare

the same diagnostics obtained from velocity fields sub-

sampled in space and time. To quantify the model error

arising from spatial and temporal subsampling, we cal-

culate the normalized error of a given mixing diagnostic

viz,

normalized error

5 1 2
diagnostic measured with subsampled flow

diagnostic measured with true flow
.

(23)

a. Spatial resolution dependence

Spatial subsampling of the flow was achieved by

truncating the Fourier spectrum of the streamfunction c

at high wavenumbers jkj $ kcut, effectively filtering out

features of the velocity field on scales smaller than Dx 5

2p/kcut. In this way, velocity fields with spatial resolu-

tions of Dx 5 8, 16, 32, 64, and 128 km were obtained and

used to advect tracers every model time step (recall that

the deformation radius for both models is approximately

85.3 km). Note that Fourier truncation is not the same as

subsampling spatial grid points, because in the latter

case high-wavenumber fluctuations will be aliased into

the low-wavenumber band. Fourier truncation throws

away these aliased fluctuations, resulting in a decrease in

the total energy of the observed flow. On the other hand,

Fourier truncation leaves unchanged the lowest wave-

numbers, whose temporal evolution remains dynami-

cally consistent with the fully resolved simulation. In this

way, we are able to directly compare tracer mixing in the

fully resolved flow with mixing due to large scales alone.

The role of spatial subsampling and aliasing on alti-

metric velocity fields is explored in a companion article

(S. R. Keating et al. 2010, unpublished manuscript).

Figure 9 shows the normalized error versus sampling

resolution Dx for the suite of diagnostics considered. In

both the Phillips and Eady models, we find that the ab-

solute diffusivity is fairly insensitive to the spatial reso-

lution of the advecting velocity field, a result that is

consistent with the intuition that absolute diffusion is

controlled by the slowly evolving large-scale modes

(Taylor 1921; Davis 1982), which are likely to be cap-

tured even at very poor spatial resolution.

In contrast, the Phillips and Eady models display very

different behavior for the relative diffusivity (calculated

at t 5 16, 32, 48, and 64 days, with an initial separation of

R0 5 1 km). In the Phillips model, the normalized error

remains fairly small for all spatial resolutions Dx up to

roughly the deformation scale. That is, two-particle

dispersion in the Phillips model is found to be quite in-

sensitive to truncation of the local scales of motion,

consistent with the paradigm of spectrally nonlocal dis-

persion in which particle dispersion is controlled by the

low-wavenumber energy-containing scales. Above the

deformation radius, a sharp increase in the normalized

error is observed that can be accounted for by a transi-

tion from a steep k23 kinetic energy spectrum in the

FIG. 6. Initial tracer (left) distribution and (right) profile used to calculate the effective diascalar

diffusivity Keff. The dashed box indicates the region of the domain depicted in Fig. 7.

1522 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



FIG. 7. Snapshots of tracer concentration in the Phillips and Eady model at 16, 32, 48, and 64 days after the initial

tracer release. The region shown corresponds to the northeast quadrant of the full domain, indicated by the dashed

box in Fig. 6. The color map in each figure is the same as that used in Fig. 6. (right) The effective diascalar diffusivity

Keff, normalized by the molecular diffusivity k at each snapshot time as a function of tracer concentration for the

Phillips (solid line) and Eady (dashed line) models.
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forward cascade range to a shallow k25/3 spectrum in the

inverse cascade, with an associated switch from nonlocal

to local dispersion and an increase in the sensitivity to

the filtered scales. These same qualitative features are

seen for the relative diffusivity in the Phillips model at

t 5 16, 32, 48, and 64 days from release. As time in-

creases, the normalized error decreases as the particle

pair becomes decorrelated and the relative diffusivity,

like the absolute diffusivity, becomes more and more

controlled by the large-scale slow modes.

In the Eady model, the normalized error for the rel-

ative diffusivity is considerably larger than that of the

Phillips model at every sampling resolution. Moreover,

the error increases steadily as Dx increases, with no sud-

den jump in error at the deformation scale, as in the

Phillips model. Again, this is consistent with the picture of

local dispersion in which the relative diffusivity is con-

trolled by turbulent eddies on the scale of the particle pair

separation and hence is highly sensitive to truncations of

the kinetic energy spectrum that do not resolve these

scales. Likewise, the normalized error decreases with in-

creasing time as the pair separation grows toward larger

(resolved) scales and the relative diffusivity asymptotes

toward twice the value of the absolute diffusivity.

Qualitatively very similar results are seen for the ef-

fective diascalar diffusivity Keff across the C 5 0.5Cmax

tracer concentration isocontour and the mean of the

FTLE distribution l (each shown for t 5 16, 32, 48, and

64 days). In the Phillips model, these diagnostics are

found to be weakly sensitive to the spatial sampling res-

olution up to roughly the deformation radius, where

a sudden increase in the normalized error is observed,

consistent with a transition from nonlocal dispersion on

small scales to local dispersion on large scales. The nor-

malized errors are noticeably larger in the Eady model

and again increase steadily as the spatial resolution is

coarsened, with no sharp jump at the deformation radius

observed. Once again, this is consistent with the paradigm

of spectrally local dispersion in both the forward and in-

verse cascade ranges.

To characterize their sensitivity to the spatial resolu-

tion, the FTLE distributions obtained from the particle

trajectories and straining fields calculated using the

subsampled velocity fields were fitted with a Weibull

distribution. The normalized error for the Weibull scale

parameter a (not shown) was found to have a very

similar behavior as that of the mean FTLE hli, as could

be expected from the close relationship between these

quantities: namely, hli 5 aG(1 1 b21), where G is the

gamma function. In contrast, the Weibull shape pa-

rameter b shows little variation with spatial resolution

for both the Phillips and Eady models, although the

Eady model shows a more consistent decrease in this

parameter as the spatial resolution is coarsened.

b. Temporal resolution dependence

The flow was temporally subsampled by using snap-

shots of the flow taken every Dt 5 1, 2, 4, 8, or 16 days

(recall that the eddy turnover time for both models is

approximately 15 days). Typically, altimetry-derived

velocity snapshots are linearly interpolated in time to form

velocity time series with a higher frequency; for instance,

FIG. 8. Time evolution of the effective diascalar diffusivity Keff, normalized by the numerical diffusivity k, for the

Phillips and Eady models. The values of Keff/k shown correspond to the tracer isocontours C 5 0.25, 0.5, and 0.75.
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FIG. 9. Normalized error vs spatial sampling resolution Dx for mixing diagnostics in the

(left) Phillips and (right) Eady models.
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two successive snapshots of the flow separated in time by

8 days will be linearly interpolated to form 9 different

daily snapshots (days 0 through 8), which are then used to

advect the tracers once per day. However, this method

potentially introduces a new source of error arising from

the fact that the linearly interpolated snapshots will not in

general be solutions to any given nonlinear equation of

motion.

To elucidate these possibly competing sources of model

error arising from temporal subsampling and linear inter-

polation in time we considered two subsampling strate-

gies, respectively:

1) Tracers are advected with snapshots of the velocity

field taken every Dt days: that is, only the observed flow

is used to advect tracers, without any interpolation.

2) Tracers are advected every model time step (as in the

truth signal) by linearly interpolating between succes-

sive observations of the velocity field to form snap-

shots every 7 (for the Phillips model) or 3 min (for the

Eady model).

In this way, we can examine the effect of temporal sub-

sampling alone and then compare these results with those

obtained by interpolating the velocity field to the same

frequency as the truth signal.

For both of the temporal subsampling schemes con-

sidered, we found strong numerical instability in the

pseudospectral time stepper used to advect the scalar

fields. This is unsurprising given the extremely long time

steps (up to 16 days) used to advect the fields with ve-

locity fields with strong small-scale gradients.

The results for sampling strategy 1 (no interpolation in

time) for particle-based diagnostics are shown in Fig. 10.

As in the case of spatial subsampling, the absolute dif-

fusivity is found to be the least sensitive to the sampling

resolution of the diagnostics considered, although some-

what more sensitivity is seen in the Phillips model than in

the Eady model. For the remaining particle-based di-

agnostics, it is difficult to discern any strong distinction

between the two models in the behavior of the normal-

ized error versus temporal resolution. The relative dif-

fusivity shows, for both models, a general increase in the

normalized error as Dt is lengthened, but the behavior is

nonmonotonic and in some cases there appears to be an

improvement in the error for poorer temporal resolu-

tions. Likewise, the normalized error for the fitted Wei-

bull shape parameter displays a nonmonotonic behavior

in its temporal resolution dependence, alternately in-

creasing and decreasing with Dt, although the range of

variation is not as strong as that of the relative diffusivity.

The mean of the FTLE distribution (as well as the fitted

Weibull scale parameter; not shown) shows a clearer

trend in the temporal resolution dependence of the

normalized error; in this case, the mean is found to in-

crease with respect to the truth signal, precisely the op-

posite tendency than was observed for the spatial

resolution dependence and apparently independent of

the spectral locality of the underlying turbulent flow.

We speculate that this complex dependence on the

temporal sampling resolution is a consequence of the

fact that such a long time step (up to 16 days) is used to

advect particles in a highly resolved turbulent flow. In

particular, it is expected that particles will ‘‘overshoot’’

or deviate from their true trajectories, resulting in

a ‘‘scrambling’’ or randomization of the derived La-

grangian diagnostics. This effect is strongly suggested by

Fig. 11, which shows 256 km 3 256 km snapshots of the

64-day FTLE field derived from particle trajectories in

the Eady model with Dx 5 2 km and Dt 5 3 min (the

truth signal), Dx 5 128 km and Dt 5 3 min (worst spatial

resolution), Dx 5 2 km and Dt 5 16 days (worst tem-

poral resolution and no interpolation), and Dx 5 2 km,

Dt 5 16 days (worst temporal resolution, maximum

interpolation), respectively. Each of these figures de-

picts the same region of the flow, corresponding to the

bottom-left corner of the FTLE field shown in Fig. 3.

The FTLE field derived from the truth signal again

clearly indicates a number of long-lived coherent struc-

tures (vortices) as low-FTLE regions where particles are

trapped for long periods and high-FTLE inter-eddy

straining regions. Unsurprisingly, this finescale structure

is entirely lost as the spatial resolution is coarsened (worst

spatial resolution). In addition, the magnitude of the FTLE

field decreases significantly as small-scale straining regions

are filtered out. The FTLE field calculated using this

coarse spatial resolution is essentially independent of the

temporal resolution used, with little difference seen as Dt is

varied between 3 min and 16 days, a range of almost four

orders of magnitude.

On the other hand, the FTLE field derived from poor

temporal resolution velocity fields without interpolation

has similar magnitudes to that of the truth signal but

little of the spatial structure, except on the largest scales.

This can be understood as a consequence of the fact that,

when Dt for these observations is so long that the dis-

tance traveled by a particle in one time step is much

longer than the correlation length of the underlying

flow, the particle experiences what is basically a random

straining field and the measured FTLE value is an inte-

grated version of this scrambled field. Thus, the resulting

FTLE field is a patchwork of scrambled ‘‘chaotic’’ regions

where Dt is too long to resolve rapid changes in the flow

and more quiescent, less noisy regions associated with

long-lived eddies, which are better resolved by the velocity

field. In section 5, we will build on this simple intuition and

construct a rudimentary Courant–Friedrichs–Lewy style
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FIG. 10. Normalized error vs temporal sampling resolution Dt for mixing diagnostics in the (left) Phillips and (right)

Eady models with no interpolation in time.
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criterion for particle overshoot, which will then used to

synthesize the spatial and temporal resolution depen-

dencies of virtual particle-based diagnostics.

The role of particle overshoot on dispersion can be

illustrated using the so-called Lyapunov exponents of

the second kind (Boffetta et al. 2000; Iudicone et al.

2002). This diagnostic quantifies the predictability of

Lagrangian trajectories by measuring the rate of sepa-

ration of a particle pair in which one member is advected

by the true flow and the other is advected by an ap-

proximation (or subsample) of that flow,

lII(t) 5 log
hjr

ab
(t)ji

R0

, (24)

where rab(t) is the separation between two particles ini-

tially separated by a distance R0. Note that (24) is a slightly

different formulation of the FTLE described in section 3,

because here we are comparing true and approximate

particle trajectories rather than the deformation of an

infinitesimal circular patch of tracer comoving with a

particle.

Figure 12 shows lII(t) for the Eady model with one

particle advected by the true flow and one advected

using 16-day snapshots of the flow with no interpolation

in time. For comparison, we also plot the FTLEs of the

first kind lI(t) (with both particles advected by the true

flow). In all cases, the particle pairs are released at every

grid point and initially separated by 1 km with half

aligned along the east–west axis and half along the

north–south axis. As can be seen, the 16-day snapshots

produce more rapid separation of true and approximate

trajectories than is the case when both particles are

FIG. 11. Snapshots of the 64-day FTLE field derived from the Eady model flow with (top) full resolution (truth

signal) and worst spatial resolution and (bottom) worst temporal resolution without and with linear interpolation in

time.
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advected by the true flow, indicating a loss of Lagrangian

predictability due to temporal subsampling.

A natural strategy for ameliorating the effect of par-

ticle overshoot is to artificially shorten the advection

time step Dt by linearly interpolating between successive

observations of the velocity field to form snapshots of

a higher frequency. To demonstrate the effects of tem-

poral interpolation, Fig. 12 also shows lII(t) for particle

pairs in which the approximate particle trajectory is

calculated with 16-day snapshots linearly interpolated to

the model time step (3 min). Although the separation of

true and approximate trajectories is again much stronger

than when both particles are advected by the true flow,

temporal interpolation does indeed reduce the rate of

separation and improve predictability.

As we have discussed, temporal interpolation poten-

tially introduces a new source of model error due to the

lack of a superposition property for nonlinear flows. This

model error will be in addition to the underlying error

due to temporal underresolution but replaces the error

due to particle overshoot. To quantify the error we re-

peat the analysis carried out for flows that were spatially

subsampled and temporally subsampled (without inter-

polation), now interpolating the velocity field observa-

tions so that particles are advected every model time step.

The normalized errors for the particle-based diag-

nostics are shown in Fig. 13. Once again, the absolute

diffusivity is found to be highly insensitive to the temporal

sampling resolution. The relative diffusivities show a

monotonic increase in the normalized error with Dt and

an improvement over the case with no interpolation in

time. The relative diffusivity in the Eady model tends to

have higher normalized error than in the Phillips model,

although there is no strong difference in the sensitivity of

the error to the temporal sampling resolution (i.e., the

rate of increase with Dt) in the two models. This would

seem to suggest that there is no simple analog of the local/

nonlocal dispersion paradigm that was used to explain the

observed spatial resolution sensitivity of derived mixing

diagnostics. The normalized errors for the mean FTLE,

fitted Weibull scale parameter (not shown), and shape

parameter are very similar to those found in the case with

no temporal interpolation. We suspect this is because

particle overshoot effectively scrambles the spatial dis-

tribution of the FTLEs but leaves its mean and PDF

unchanged. This insensitivity to Lagrangian scrambling

suggests that FTLE statistics are likely to be more ro-

bust measures of mixing than the spatial distribution of

Lyapunov exponents, because they will average out the

effects of particle scrambling. Thus, temporal interpo-

lation has little effect on the FTLE statistics, whereas

interpolation reproduces more of the fine spatial struc-

ture of the FTLE field, even when the temporal reso-

lution is as poor as Dt 5 16 days, as can be seen in Fig. 11.

5. Discussion

We saw in the previous section that using a long time

step to advect particles in velocity fields with finescale

structure led to significant overshooting of particle tra-

jectories because the distance traveled by the particle

during one time step is longer than the correlation

length scale of the underlying flow (particularly the

spatial gradients of the velocity field). In this situation,

the particles experience what is effectively a random

straining field and the resulting Lagrangian mixing di-

agnostics represent a scrambled version of the truth

signal. We can make a prediction for the onset of over-

shoot by constructing a simple Courant–Friedrichs–

Lewy style criterion (see, e.g., Durran 1999): namely,

D x

Dt
� ymax(D x), (25)

where Dx and Dt are the spatial and temporal resolutions

and ymax is the maximum observed velocity (in principle

a function of the scale Dx). When the maximum distance

a particle can travel in a single time step ymaxDt is much

greater than Dx, the particle will overshoot features of

this size or smaller (or rather features with correlation

FIG. 12. FTLEs of the second kind vs integration time for particle

pairs in which one particle is advected by the true flow and one

particle is advected using 16-day snapshots of the flow with no

temporal interpolation (triangles) and with linear interpolation to

the model time step (squares). Also shown for comparison is the

FTLE of the first kind in which both particles are advected with the

true flow (filled circles).
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FIG. 13. Normalized error vs temporal sampling resolution Dt for mixing diagnostics in the (left) Phillips and (right)

Eady models, with velocity fields interpolated to every model time step.
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length scales of the size or smaller). Thus, a particle

traveling a distance ymaxDt�Dx in a single time step will

escape vortices of radius on the order of Dx, leading to

significantly less particle trapping within vortices and

spuriously high dispersion as shown in Fig. 12.

The relevant overshoot criterion for the Phillips and

Eady models is depicted graphically in Fig. 14. The

maximum magnitude for the velocity field ymax was

measured for each flow at each spatial resolution and

plotted against the corresponding threshold temporal

resolution Dtcrit 5 Dx/ymax(Dx). For values of Dt� Dtcrit,

the time step is too long to accurately advect particles in

the observed velocity field and overshoot becomes an

increasingly significant source of model error. As can be

seen, ymax was found to have a fairly weak dependence

on Dx and the overshoot criterion is well approximated

by a linear function of Dx (solid lines shown in Fig. 14).

Note that the maximum velocity (typically a few times

the rms velocity in each flow) is about 40 cm s21 for

the Phillips model, somewhat larger than that for the

Eady model, about 12 cm s21, but both are in the ball

park for typical eddying currents. However, both are

smaller than the largest measured velocities obtained

from drifters in the real ocean (on the order of meters per

second in, e.g., the Gulf Stream). Thus it is likely that, in

strongly eddying regions of the ocean, the overshoot

criterion might be even more restrictive than shown here.

A crucial feature of Fig. 14 and the overshoot criterion

[(25)] is that it is the spatial sampling resolution that sets

the threshold value required of the temporal sampling

resolution to avoid model error due to particle over-

shoot. More precisely, it is the length scale of the smallest

relevant structures that determines the particle overshoot

criterion, and typically the available spatial resolution is

not sufficient to fully resolve the flow, so the relevant

length scale from the dataset is indeed the spatial reso-

lution. Therefore, the spatial and temporal resolutions

are not independent but rather are coupled in the sense

that if Dt is larger than the critical value dictated by Dx

then particle-based diagnostics will be, to a greater or

lesser degree, scrambled, whereas if Dt falls below the

threshold the excess temporal resolution does not provide

any added value and constitutes an inefficient use of re-

sources, at least in the context of the virtual particle-based

diagnostics of interest here.

Also shown in Fig. 14 are spatiotemporal resolutions

of two operational altimetry datasets: the first is the widely

used AVISO product, which merges data from multiple

altimeters and publishes the gridded geostrophic stream-

function and currents; the second is the anticipated

SWOT mission, which represents the next generation of

satellite-mounted altimeters with significantly higher

spatial resolutions. The relevant values for Dx and Dt

correspond approximately to best spatial and temporal

correlation scales of the altimetry mapping procedure

used by AVISO (Ducet et al. 2000) and the minimum

science requirements proposed for SWOT (see http://

swot.jpl.nasa.gov/science). As can be seen, both of these

datasets, particularly the SWOT mission, lie in the

overshoot regime, suggesting that using the raw datasets

to advect particles could lead to model error that will

degrade the accuracy of inferred Lagrangian mixing

diagnostics, particularly in regions of high eddy kinetic

energy.

As we have discussed, an appealing strategy for

ameliorating the impact of overshoot on virtual particle-

based diagnostics is to artificially decrease Dt by linearly

interpolating the observed velocity fields in time. This

approach is widely used in the oceanographic literature

where, for example, AVISO velocity datasets available

every 7 days are linearly interpolated to form daily

snapshots of the upper ocean geostrophic flow field. As

pointed out earlier, this strategy also gives rise to addi-

tional model error arising from using an unphysical ve-

locity field to advect particles and fields. However, this

error is small when compared with the underlying error

due to temporal subsampling and is typically justified by

a compensatory increase in Lagrangian predictability.

The overshoot criterion (25) provides a quantitative

estimate of how much temporal interpolation is required

to make use of AVISO or SWOT data for offline mixing

studies.

FIG. 14. Threshold temporal resolution for particle overshoot

Dtcrit 5 Dx/ymax(Dx). Solid and dashed lines correspond to the

threshold temporal resolution calculated using yrms rather than

ymax for the Phillips and Eady model, respectively. Also shown are

approximate spatial and temporal resolutions for the SWOT and

AVISO products.
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It is important to bear in mind that both approaches—

advection with and without temporal interpolation—

necessarily refer to an artificial velocity field that is

piecewise constant in time. Temporal interpolation re-

duces the time intervals over which the velocity field is

treated as artificially steady but could introduce other

artifacts resulting from a linear interpolation strategy for

a nonlinearly evolving flow. If the interpolation is per-

formed sufficiently finely in time to meet the criterion

[(25)] for avoiding particle overshoot, then at least the

computed tracer statistics are accurately representing

the tracer dynamics in this artificial velocity field. Oth-

erwise, not only is the effective velocity field artificial but

the tracer statistics are not even being computed consis-

tently for any specifiable velocity field.

A more sophisticated approach to working with limited

spatial and temporal resolution is to attempt to augment

the observed data with a model for the unresolved scales.

Such schemes, which run the gamut from the family of

Lagrangian stochastic models (e.g., Griffa 1996; Berloff

and McWilliams 2002; Berloff et al. 2002; Berloff and

McWilliams 2003) to fully data-assimilating regional ocean

models such as the Massachusetts Institute of Technology

general circulation model (MITgcm; Marshall et al.

1997a,b), of course substitute one kind of model error

(particle overshoot) for another (a subgrid-scale parame-

terization for the unresolved scales). However, it is hoped

that these new sources of model error can be limited or at

least judiciously chosen so that an accurate reconstruction

of the mixing and stirring properties of observed velocity

fields can be inferred (for an in-depth discussion of some of

these issues, see Majda et al. 2010). We will address some

of these issues in a companion article (S. R. Keating et al.

2010, unpublished manuscript).

6. Conclusions

In this study, we have sought to elucidate the over-

lapping effects of spatial and temporal resolution of

velocity fields on diagnostics of mixing and stirring de-

rived from virtual tracer particles and fields. We have

examined a suite of widely used Eulerian, Lagrangian,

and quasi-Lagrangian diagnostics in a pair of closely

related but contrasting models of quasigeostrophic tur-

bulence: the Phillips model, which exhibits a steep k23

submesoscale kinetic energy spectrum and in which par-

ticle dispersion is strongly controlled by the large-scale

modes, and the Eady model, which has a shallow k25/3

spectrum and in which dispersion is governed by the

local scales of motion. Although these models are highly

idealized, they constitute a valuable best- and worst-case

comparison incorporating many of the dynamical fea-

tures in play in the real ocean: eddies generated by

baroclinic instability, interior or surface-trapped modes,

a quiescent or energized submesoscale, nonlocal or local

spectral dynamics, and the presence or absence of long-

lived submesoscale coherent vortices.

Virtual tracer diagnostics were calculated in both models

at full resolution and compared with the same quantities

calculated from particles and fields advected by spatial and

temporal subsamples of the truth signal. The discrepancy

between these two measurements quantifies the model

error arising from spatiotemporal subsampling. Tracer di-

agnostics in the Phillips model are found to be generally

insensitive to spatial smoothing of the stirring field, as long

as the deformation scale is resolved. Tracer mixing in the

Eady model, which exhibits an energized submesoscale

spectrum, shows much stronger dependence on the spatial

resolution scale, as do tracer diagnostics in the Phillips

model with an unresolved deformation scale. This behav-

ior is consistent with the paradigm of local and nonlocal

spectral dynamics and reproduces similar findings by

Bartello (2000) and Shepherd et al. (2000) in the context

of atmospheric mesoscale mixing and Beron-Vera et al.

(2008), Rossi et al. (2008), Shuckburgh et al. (2009a),

and Poje et al. (2010) in regional ocean studies.

We also systematically studied the temporal depen-

dence of diagnostics, which is of particular interest for

mixing studies using altimetric maps because both spa-

tial and temporal resolution are constrained by the sat-

ellite orbit. In contrast, previous studies of mixing in

ocean models have typically focused on spatial resolu-

tion dependence alone, because of the larger computa-

tional investment. We find that the temporal sampling

error has a complicated behavior because of the onset of

particle overshoot in which an excessively long time step

is used to advect particles in a velocity field with strong

small-scale gradients. We have shown that this effect

leads to a reduction in particle trapping within coherent

vortices, spuriously high particle dispersion, and a

scrambling of Lagrangian diagnostics. A simple crite-

rion for particle overshoot was formulated that provides

for a given spatial resolution an estimate of the temporal

resolution required to avoid overshoot. Although tem-

poral interpolation and subgrid-scale models of the un-

resolved flow can, at a cost, ameliorate this effect,

overshoot nonetheless places a potentially stringent re-

striction on the ability of raw altimetry velocity fields to

accurately advect particles and fields.

We conclude that virtual tracer-based diagnostics

are considerably more robust in turbulent flows with a

steep submesoscale KE spectrum, whereas the applica-

bility of these diagnostics to flows with an energized

submesoscale should be viewed with some caution. Of

the tracer-based diagnostics we consider, we find the

absolute (or eddy) diffusivity to be the most robust to
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undersampling in space and time. This is because the

absolute diffusivity is governed by the slowly evolving

large-scale modes, which are captured even at very low

spatial and temporal resolution (Taylor 1921; Davis

1982). This is an encouraging result, because absolute

diffusivity is the most straightforward diagnostic to in-

corporate into an ocean general circulation model. We

anticipate that offline mixing studies using altimetric

maps will continue to guide the development of more

skillful parameterization schemes for oceanic mesoscale

mixing.
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Lehahn, Y., F. d’Ovidio, M. Lévy, and E. Heifetz, 2007: Stirring of

the northeast Atlantic spring bloom: A Lagrangian analysis

based on multisatellite data. J. Geophys. Res., 112, C08005,

doi:10.1029/2006JC003927.

Le Traon, P., P. Klein, and B. L. Hua, 2008: Do altimeter wave-

number spectra agree with the interior or surface quasigeo-

strophic theory? J. Phys. Oceanogr., 38, 1137–1142.

Lumpkin, R., and S. Elipot, 2010: Surface drifter pair spreading in

the North Atlantic. J. Geophys. Res., 115, C12017, doi:10.1029/

2010JC006338.

Mahadevan, A., and J. W. Campbell, 2002: Biogeochemical patchi-

ness at the sea surface. Geophys. Res. Lett., 29, 1926, doi:10.1029/

2001GL014116.

Majda, A. J., 1993: Explicit inertial range renormalization theory

in a model for turbulent diffusion. J. Stat. Phys., 73 (3–4),

515–542.

——, 1994: Random shearing direction models for isotropic tur-

bulent diffusion. J. Stat. Phys., 75 (5–6), 1153–1165.

——, and P. R. Kramer, 1999: Simplified models of turbulent dif-

fusion: Theory, numerical modelling, and physical phenom-

ena. Phys. Rep., 314, 237–574.

——, J. Harlim, and B. Gershgorin, 2010: Mathematical strategies

for filtering turbulent dynamical systems. Discrete Contin.

Dyn. Syst., 27, 441–486.

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey,

1997a: A finite-volume, incompressible Navier-Stokes model

for studies of the ocean on parallel computers. Geophys. Res.

Lett., 102, 5753–5766.

——, C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic,

quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geo-

phys. Res., 102 (C3), 5733–5752.

——, E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and

implications of surface eddy diffusivity in the Southern Ocean

from tracer transport. J. Phys. Oceanogr., 36, 1806–1821.

Martin, A., 2003: Phytoplankton patchiness: The role of lateral

stirring and mixing. Prog. Oceanogr., 57, 125–174.

Morel, P., and M. Larcheveque, 1974: Relative dispersion of

constant-level balloons in the 200-mb general circulation.

J. Atmos. Sci., 31, 2189–2196.

Nakamura, N., 1996: Two-dimensional mixing, edge formation,

and permeability diagnosed in an area coordinate. J. Atmos.

Sci., 53, 1524–1537.

——, 2001: A new look at eddy diffusivity as a mixing diagnostic.

J. Atmos. Sci., 58, 3685–3701.

——, 2008: Quantifying inhomogenous, instantaneous, irreversible

transport using passive tracer field as a coordinate. Transport

and Mixing in Geophysical Flows, J. B. Weiss and A. Pro-

venzale, Eds., Vol. 744, Lecture Notes in Physics, Springer,

137–164.

Ottino, J., 1990: Mixing, chaotic advection, and turbulence. Annu.

Rev. Fluid Mech., 22, 207–253.

Phillips, N., 1954: Energy transformations and meridional circula-

tions associated with simple baroclinic waves in a two-level,

quasigeostrophic model. Tellus, 6, 273–286.

Pierrehumbert, R., I. Held, and K. Swanson, 1994: Spectra of local

and nonlocal two-dimensional turbulence. Chaos Solitons

Fractals, 4, 1111–1116.

Piterbarg, L. I., 2005: Relative dispersion in 2D stochastic flows.

J. Turbul., 6 (4), 1–19.
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