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ABSTRACT

Attempts to monitor ocean eddy heat transport are strongly limited by the sparseness of available obser-

vations and the fact that heat transport is a quadratic, sign-indefinite quantity that is particularly sensitive to

unresolved scales. In this article, a suite of stochastic filtering strategies for estimating eddy heat transport are

tested in idealized two-layer simulations of mesoscale oceanic turbulence at high and low latitudes under

a range of observation scenarios. A novel feature of these filtering strategies is the use of computationally

inexpensive stochastic models to forecast the underlying nonlinear dynamics. The stochastic model param-

eters can be estimated by regression fitting to climatological energy spectra and correlation times or by

adaptively learning these parameters ‘‘on-the-fly’’ from the observations themselves.

The authors show that, by extracting high-wavenumber information that has been aliased into the low

wavenumber band, ‘‘stochastically super-resolved’’ velocity fields with a nominal resolution increase of

a factor of 2 or more can be derived. Observations of the upper-layer streamfunction are projected onto an

empirical orthogonal function basis for the vertical structure to produce filtered estimates for both upper- and

lower-layer streamfunctions and hence net heat transport. The resulting time-mean poleward eddy heat

transport is significantly closer to the true value when compared with standard estimates based upon optimal

interpolation. By contrast, the temporal variability of the heat transport is underestimated because of poor

temporal resolution. Implications for estimating poleward eddy heat transport using current and next-

generation altimeters are discussed.

1. Introduction

The poleward redistribution of heat by the ocean is

a primary constituent of the global heat balance, com-

parable in magnitude to that in the atmosphere, yet it

remains one of the most poorly constrained features of

the ocean general circulation. The principal uncertainty

is the contribution from ocean eddies, which can drive

a rectified flux of heat due to temporal correlations be-

tween buoyancy fluctuations and the eddy velocity. Hall

and Bryden (1982) estimated that the eddy-driven flux

contributes as much as 25% of the time-mean transport

across 248N and was the largest source of uncertainty in

their study. Likewise, eddy-permitting ocean models

(Jayne and Marotzke 2002) and data-assimilation

products (Volkov et al. 2008) indicate a significant eddy

contribution to the time-mean transport in the Antarctic

Circumpolar Current, the Kuroshio, and the tropics, and

up to one-third of the global heat transport variability.

However, efforts to constrain poleward eddy heat transport

are limited by the difficulty in obtaining observations of the

full water column with sufficient spatial and temporal detail

to resolve the eddy field (Wunsch 1999; Ganachaud and

Wunsch 2000), while estimates of the time-mean heat

transport based upon one-time hydrographic sections are

valid only where eddy variability is small compared to the

total heat transport variability (Volkov et al. 2008).

A picture of the surface ocean eddy field is provided by

satellite measurements of sea surface height anomalies

relative to the geoid. Under the assumption of geostrophic

balance, the current u at the surface is given by

f u 5 gẑ 3 $h, (1.1)

where f is the Coriolis parameter, g is gravitational accel-

eration, and h is the sea surface height anomaly. As shown

in the appendices, however, the subsurface geostrophic
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current has additional contributions from the hori-

zontal gradient of the hydrostatic density field. Thus, in

the absence of a model for the interior pressure field,

the full three-dimensional eddy velocity cannot be de-

termined from observations of the surface geostrophic

current alone (Wunsch and Stammer 1998). Conse-

quently, recent attempts to calculate net heat transport

from satellite altimetry have incorporated estimates

of the vertical structure provided by ocean sections or

profiling floats (Roemmich and Gilson 2001; Qiu and

Chen 2005). Even so, current-generation altimetry maps

are capable of resolving only the largest eddy scales and

can depend sensitively on the kinetic energy spectrum

of the unresolved flow (Bennett 1984; Poje et al. 2010;

Keating et al. 2011). In particular, turbulent mixing in

regions with an energetic submesoscale, such as the

subtropics (Tulloch et al. 2011), is strongly resolution

dependent, and so estimates of eddy heat transport

based upon altimetry in these regions should be viewed

with some caution.

In this article, we examine novel methods for esti-

mating eddy heat transport using sparse, noisy obser-

vations of the upper-ocean velocity field. Our ‘‘truth

signal’’ is provided by numerical simulations of the two-

layer Phillips model under parameter regimes typifying

baroclinic turbulence at low and high latitudes. We

study a range of observation scenarios, allowing us to

explore the interplay of eddy length and time scales with

the spatiotemporal resolution capability of satellite

observations. Although the Phillips model is a highly

idealized representation of oceanic turbulence, these

scenarios nonetheless provide stringent test cases in-

corporating several key challenges to any filtering

strategy, in particular: sparseness in vertical space, due to

the fact that observations of the upper-layer velocity

field alone are not sufficient to calculate the heat trans-

port; sparseness in horizontal space, since much of the

ocean’s eddy kinetic energy resides at scales below the

resolution of current-generation altimetry products; and

sparseness in time, because the satellite orbit configu-

ration generally limits the temporal resolution capability

of altimeters to no more than an eddy turnover time.

Finally, even in this minimal model, there is an enor-

mous range of interacting scales as well as stiff dynamics

due to small Rossby radius, a regime that poses severe

practical difficulties for contemporary ensemble-based

filtering approaches (Harlim and Majda 2010).

As we shall show, these issues pose a severe challenge

to attempts to estimate the turbulent eddy field in the

Phillips model, and, by extension, the real ocean. The

difficulty is compounded by the fact that eddy heat

transport is a sign-indefinite quadratic quantity, and so

is particularly sensitive to model error at unresolved

scales. In this study, we filter sparse observations of the

upper ocean through a dynamical forecast model to

obtain an estimate of the eddy transport. Our approach

is similar to that of Harlim and Majda (2010), who tested

a suite of turbulent filtering algorithms in quasigeo-

strophic simulations mimicking baroclinic turbulence in

the atmosphere and the ocean, with the latter scenario

providing a particularly rigorous test case with small

Rossby radius and stiff model dynamics. A powerful

feature of these filtering strategies is the use of cheap

stochastic models to forecast the underlying nonlinear

dynamics. This ‘‘judicious’’ model error avoids the so-

called curse of dimensionality while preserving the es-

sential structure of the turbulent signal through the use

of a mean stochastic model that is regression fitted to

reproduce climatological energy spectra and correlation

times. Harlim and Majda (2010) also tested an alterna-

tive scheme, the stochastic parameterized extended

Kalman filter, in which the forecast model parameters

are learned adaptively from the observations by incor-

porating them into the state vector and obtaining esti-

mates using the usual filtering methodology. Both of these

simple stochastic filtering strategies exhibited high skill

in the atmospheric and oceanic regimes compared with

contemporary ensemble-based data assimilation schemes,

and have been extensively validated in a number of strin-

gent idealized test problems (Gershgorin et al. 2010a,b).

The present study focuses on the difficult but realistic

ocean case where much of the eddy kinetic energy lies

below the scale of resolution of the observations. In

contrast to Harlim and Majda (2010), who sought to

reconstruct turbulent spectra and streamfunctions from

observations of the barotropic velocity field, we will

principally be interested in the poleward heat transport

in baroclinic flows—a more challenging quantity to

constrain, even in the time mean. We utilize an algo-

rithm developed by Majda and Grote (2007) and Harlim

and Majda (2008b) that actually exploits the spatial

sparseness of the observations by utilizing the fact that a

coarse observation network will alias high-wavenumber

information into the resolved wave band. By appropri-

ately filtering sparse observations to extract this in-

formation, one can derive stochastically super-resolved

velocity fields with a nominal resolution increase of

a factor of 2 or more, leading to considerable improve-

ment in the eddy transport estimate. Likewise, the ver-

tical sparseness of satellite observations is addressed

by modeling the vertical structure of the flow using

empirical orthogonal functions (EOFs), which project

the layer streamfunctions onto a basis set aligned with

the maximum and minimum energy modes (e.g., De

Mey and Robinson 1987; Gavart and De Mey 1997).

Observations of the upper-layer streamfunction are then
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projected onto each of the EOFs to produce filtered es-

timates for both upper- and lower-layer streamfunctions,

and, hence, the net heat transport.

In section 2 the Phillips model is discussed in the

context of two parameter regimes corresponding to

ocean turbulence at low and high latitudes. The pole-

ward eddy heat transport is calculated under a range of

spatiotemporally sparse sampling scenarios and com-

pared with the ‘‘true’’ heat transport obtained from the

fully resolved model simulations. In section 3 we de-

scribe a suite of filtering strategies for vertically, hori-

zontally, and temporally sparse satellite observations.

The results of these filtering strategies are presented in

section 4. Finally, in section 5 we summarize our con-

clusions and discuss potential issues associated with the

application of these techniques to the real ocean.

2. Poleward eddy heat transport in the Phillips
model

The Phillips (1954) model consists of an advection-

diffusion equation for the potential vorticity qi in each of

two immiscible layers with fractional layer thicknesses

d1 5 H1/H0 and d2 5 H2/H0, densities r2 . r1, and mean

zonal velocities U1 . U2:

›tqi 1 J(ci, qi) 1 Ui›xqi 1 Pi›xci 5 2di2r=2
Hci, i 5 1, 2,

(2.1)

and an inversion relation that relates the potential vor-

ticity (PV) to the streamfunction ci:

qi 5 =2ci 1 (R2di)
21(c32i 2 ci), R 5

ffiffiffiffiffiffiffiffiffiffiffi
g9H0

q
/f0,

(2.2)

where kD 5 R21(d1d2)21/2 is the baroclinic deformation

wavenumber (or inverse deformation radius), f 5 f0 1

by is the Coriolis parameter, g9 5 g(1 2 r1/r2) is the

reduced gravity of the interface, and r is the bottom

drag, which only acts on the lower layer. The mean

meridional PV gradient is P
i
5 b 1 k2

Dd
32i

U
0
, where

U0 5 U1 2 U2 is the mean shear.

The numerical model is periodic in the horizontal,

uses a dealiased, pseudospectral method to compute the

nonlinear terms, and dissipates enstrophy with an ex-

ponential cutoff filter [see Smith et al. (2002); Smith and

Vallis (2002) for details]. We set the fractional layer

thicknesses to be d1 5 0.2, d2 5 0.8, consistent with

a typical pycnocline depth of 1 km and total ocean depth

of 5 km, although in the context of this crude two-layer

model the correspondence should not be interpreted

too broadly [for a more in-depth discussion of typical

pycnocline depths in the ocean, see, e.g., Gnanadesikan

(1999)]. The deformation radius in the ocean varies from

about 10 km at the highest latitudes to a few hundred

kilometers in the subtropics. A reasonable scale sepa-

ration between the deformation scale and the domain

scale is desired in order to avoid domain-scale inter-

actions in our simulations and allow for some inverse

cascade. To that end we allow the domain scale to vary

with the deformation radius, but hold their ratio fixed so

that the deformation wavelength l 5 2p/kD is 1/10 times

the size of the domain.

The remaining physical quantities in the model can be

expressed in terms of two nondimensional parameters:

the supercriticality parameter ~b 5 b/d1U0k2
D, which de-

termines the strength of the baroclinic instability, and

the nondimensionalized bottom drag ~r 5 r/kDU0. We

consider two contrasting parameter regimes for ~b and ~r :

d Low latitudes: Observations and numerical models

(e.g., Richards et al. 2006) show nearly supercritical

flow at low latitudes, forming zonal jets with widths

slightly larger than the deformation scale. In this case,

the numerical model requires only a small drag (~r� 1)

to absorb the energy injected by baroclinic instability,

since the eddy scale is effectively set by b. Specifically

we choose ~b 5 0:9 and ~r 5 0:3, and take l 5 320 km, so

that the domain size is 3200 km.
d High latitudes: Linear stability analysis (e.g., Smith

2007) indicates strong supercriticality at high latitudes

and a significant inverse cascade. However, observa-

tions show high-latitude eddies at most an order of

magnitude larger than the deformation scale (e.g.,

Stammer 1998; Tulloch et al. 2011) and not particularly

anisotropic, suggesting that the cascade is arrested by

some mechanism other than b. Here, we use the drag

to set the eddy scale to be near the observed scale.

Specifically, we set ~b 5 0:2 and ~r 5 0:9, and choose

l 5 80 km, so that the domain scale is 800 km.

Time-averaged streamfunctions for each case are plot-

ted in Figs. 1 and 2 . The model parameters for these two

cases are summarized in Table 1.

The spatial and temporal resolution capability of alti-

metric observations depends upon the number of satel-

lites used, their orbital configurations, and the subsequent

smoothing and interpolation of the raw sea level mea-

surements. Determining the effective resolution of the

resulting processed velocity fields—by which we mean

the range of frequencies and wavelengths that can be

distinguished on a given spatiotemporal mesh (i.e., the

Nyquist wave band)—is a nontrivial problem (see, e.g.,

Wunsch 1989; Greenslade et al. 1997; Ducet et al. 2000;

Chelton et al. 2001). Tai (2004) demonstrates that the

‘‘midpoint grid’’ (the approximately rectilinear grid of
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points located midway between ground-track crossover

points) has the same resolution as the full sample set.

Thus, for simplicity of exposition, we adopt the expedient

of simultaneously sampling the velocity field on a regular

2N 3 2N spatial grid once every observation time, where

N is the maximum resolved (Nyquist) wavenumber. The

observation grid size and time step are chosen to coincide

with the approximate correlation length and time scales

of the satellite observations.

The spatial resolution capabilities in the meridional

and zonal directions are optimal at high latitudes, which

is also where the deformation radius and observed eddy

scale are smallest. As a reasonable estimate, we take the

grid spacing of observations to be approximately 100 km

at high latitudes and 200 km at low latitudes. This corre-

sponds to N 5 4 and N 5 8 at low and high latitudes, re-

spectively. Since the deformation wavenumber is kD 5 10

in each parameter regime, these cases provide difficult, but

plausible observation scenarios. This is illustrated in Fig. 3,

which shows the spectral ranges corresponding to N 5 4

and N 5 8 observational networks, superimposed upon

the normalized energy spectrum at low and high latitudes.

In both high- and low-latitude cases, the N 5 8 network

captures most of the energy, whereas the N 5 4 network

fails to resolve the most energetic wavenumbers. We will

also consider networks with N 5 16 as an indication of the

possible gains that might be expected from future altimetry

products such as the proposed Surface Water Ocean To-

pography mission (e.g., Durand et al. 2010).

The decorrelation time scales of altimetric maps are

set to be 15 days outside a latitudinal band that extends

108 either side of the equator (Ducet et al. 2000). This

roughly corresponds to the turnover time for mesoscale

eddies at these latitudes (Stammer 1997). Thus, we set

both the eddy turnover time (defined as Teddy 5 2pZ21/2,

where Z is the time-averaged total enstrophy) and the

FIG. 1. Upper- and lower-layer streamfunctions for the low-latitude case. White circles show approximate current-

generation satellite spatial resolution capability. The streamfunctions are normalized by ULdom, where U is the rms

velocity and Ldom is the domain scale.

FIG. 2. As in Fig. 1, but for the high-latitude case.
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observational time step to be 15 days in each of our pa-

rameter regimes. Figure 3 shows the decorrelation time

for each horizontal Fourier mode ĉ 5 ĉkl(t):

T 5 hjĉj2i21

t Re

ð‘

0
hĉ(t)ĉ*(t 1 t)it dt. (2.3)

The thick contour shows the observation time scale, so

that modes outside this contour decay rapidly compared

with the observation time. As can be seen, the spectral

range corresponding to the N 5 8 observation network

captures most of the modes that remain correlated be-

tween observation times. By contrast, the N 5 4 observa-

tion network resolves only the most slowly evolving modes.

Neglecting the effects of salinity and assuming a linear

equation of state, temperature in the ocean is pro-

portional to buoyancy. Moreover, in the two-layer

quasigeostrophic model, buoyancy is proportional to the

difference of the upper and lower streamfunctions c1 2

c2 (see e.g., Vallis 2006), and its poleward flux is directly

related to the flux of potential vorticity, as can be seen by

making use of (2.2) and introducing the baroclinic

streamfunction t 5
ffiffiffiffiffiffiffiffiffiffi
d

1
d

2

p
(c

1
2 c

2
):

hy1ti 5 2
d1

d2

� �1/2

k22
D hy1q1i, (2.4)

where h�i denotes a two-dimensional spatial average,

and the relative vorticity flux hy
1
=2

Hc
1
i vanishes in

a horizontally periodic domain. The heat flux spectra

(normalized by the time average) at low and high lati-

tudes are shown in Fig. 3. The thick contour in the low-

latitude case indicates where the heat flux contribution

changes from negative at low wavenumbers to positive

at high wavenumbers (there is no such sign change in the

high-latitude case). An N 5 4 observational network,

which only resolves low wavenumbers, will underesti-

mate the eddy heat flux in both scenarios: in the low-

latitude case, this will actually produce the wrong sign.

Conversely, we expect the N 5 8 network to perform

significantly better, as it is capable of resolving much of

the heat flux spectrum, and the N 5 16 case to perform

better still, as it resolves the full inverse cascade range.

Because the buoyancy is proportional to the differ-

ence of the upper and lower streamfunctions, knowledge

of the surface field alone is insufficient to determine the

heat flux. The use of satellite altimetry to estimate eddy

fluxes therefore requires an estimate of the vertical

structure of the flow; in the present case, this means

estimating c2 given (sparse) observations of c1. The

simplest possible estimate (which we will show to be

insufficient) uses optimal interpolation (Daley 1991). In

this approach the vertical structure of the flow is mod-

eled by projecting the Fourier transform of the layer

streamfunctions onto vertical mode empirical orthogo-

nal functions:

~x1
kl

~x2
kl

 !
5 V(k, l)

~c
1
kl

~c
2
kl

 !
, (2.5)

where V(k, l) diagonalizes the time-averaged covariance

matrix for the energy-weighted vertical modes (see the

appendices for details). The EOFs are ordered so that

x̂1 has the maximum energy or variance. If we assume

that only the most energetic EOF contributes to the

vertical structure of each horizontal wavenumber (i.e.,

x̂2 ’ 0) then both ~c1 and ~c2 can be expressed solely in

terms of x̂1. In that case, (2.5) provides a relationship

between the upper and lower streamfunctions:

~c
2
kl ’ 2

V21(k, l)

V22(k, l)
~c

1
kl, (2.6)

which then can be used to estimate the eddy flux using

observations of the upper-layer velocity field alone.

Time series of the true and optimally interpolated eddy

heat flux (normalized by the true time-averaged value)

are shown in Fig. 4 for the high-latitude and low-latitude

cases. Observational scenarios corresponding to N 5 4,

8, and 16 networks are considered. The true heat fluxes

were calculated using 2.5-day snapshots of the velocity

field, that is, 6 times faster than the observation time

scale used for the optimally interpolated estimates. As

expected, the N 5 4 case drastically underestimates the

eddy heat flux in both scenarios, and in the low-latitude

case, the estimate produces the wrong sign due to dom-

inant negative contributions from low wavenumber

Rossby modes. The estimate is better in the N 5 8 and

N 5 16 cases, which are capable of resolving the most

energetic eddies. Also shown in Fig. 4 are the normal-

ized energy spectra in the zonal and meridional di-

rections estimated using optimal interpolation. At high

TABLE 1. Parameter regimes for low- and high-latitude observation

scenarios.

Physical parameter Low latitude High latitude

Supercriticality parameter 0.9 0.2

Bottom drag 0.3 0.9

Domain scale (km) 3200 800

Deformation wavelength (km) 320 80

Observation resolution (km) 200 100

Deformation wavenumber 10 10

Nyquist wavenumber 8 4

Eddy turnover time (day) 15 15

Observation time (day) 15 15
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spatial resolution, optimal interpolation accurately rep-

resents the energy spectra, but at N 5 4 the coarse ob-

servations alias higher wavenumbers into the resolved

wave band and so optimal interpolation overestimates

the energy spectra.

We conclude that a reliable estimate of the poleward

eddy heat flux requires detailed information about the

vertical and horizontal structure of the turbulent flow.

Since satellite observations are restricted to the upper-

ocean velocity field and are coarsely resolved with respect

FIG. 3. (top) Log of the normalized energy spectrum for (left) low- and (right) high-latitude cases. The spectral

range shown corresponds to the wavenumbers resolved by an N 5 16 observation network; the dashed–dotted and

dashed regions correspond to N 5 8 and N 5 4 networks, respectively. (middle) Log of the correlation time expressed

in units of the eddy turnover time. Only the correlation time of the largest EOF for each horizontal wavenumber is

shown. The thick contour shows the observation time scale (equal to one turnover time) so that modes outside this

contour decay rapidly compared with the observation time. (bottom) Log of the normalized heat flux spectrum. The

thick contour indicates where the contribution to the heat flux switches from negative (at low wavenumbers) to

positive (at high wavenumbers). There is no sign change in the high-latitude case.
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to the scales of the most energetic eddies (especially at

high latitudes), it is natural to seek a turbulence filtering or

data assimilation approach, in which a model for the full

three-dimensional streamfunction is combined with ob-

servations of the upper layer to produce a best estimate of

the true state of the full system. Standard data assimilation

approaches, such as three-dimensional variational data

assimilation (3DVAR), four-dimensional variational data

assimilation (4DVAR), and ensemble Kalman filters, in-

volve a considerable computational overhead and signifi-

cant model error, particularly in the ocean (Harlim and

Majda 2010). A suite of cheap, skillful alternative filtering

methodologies is described in the next section.

3. Filtering methodology for sparse observations

Filtering (or data assimilation) seeks to obtain an es-

timate of the true system state zs at time t 5 ts by com-

bining incomplete, noisy observations ys 5G(zs) with

an internal forecast model xs 5F (xs21). An important

body of research in applied mathematics, engineering,

and the geosciences is concerned with filtering real-world

turbulent flows with many interacting degrees of free-

dom. In these applications, the forecast model (which can

be a general circulation model in the case of atmospheric

or oceanic flows) often has significant model errors due to

unresolved dynamical processes, and the resulting high-

dimensional inverse problem must be solved approxi-

mately. Here, we adopt an alternative strategy: rather

than seeking to represent the full nonlinear dynamics as

accurately as possible, we utilize a forecast model incor-

porating judicious model error that dramatically increases

the speed and stability of the filter while preserving the

essential structure of the turbulent system (Majda et al.

2010). Specifically, for each element of the state vector

xs 5 fx̂
a
(ts)g, we replace the nonlinear governing equa-

tion with a linear stochastic model of the following form:

›tx̂a
5 2(g

a
2 iv

a
)x̂

a
(t) 1 s

a
_W(t), a 5 f6, k, lg,

(3.1)

where ga and va are linear damping rates and fre-

quencies, sa is a stochastic noise strength, and _W is

circularly symmetric complex white noise forcing. While

FIG. 4. (top) Time series of the poleward eddy heat transport at (left) low latitudes and (right) high latitudes. The

true eddy heat flux is indicated by a solid gray line. Also shown are OI estimates of the heat flux from coarse

observations with N 5 16 (dashed line), N 5 8 (dashed–dotted line), and N 5 4 (dotted line). In each case, the heat

flux has been normalized by the respective time-averaged true heat flux. (bottom) Normalized energy spectra in the

zonal (black) and meridional (gray) directions, estimated using OI.
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there is no formal justification for the form of the sto-

chastic forecast model in (3.1), it is perhaps the simplest

possible stochastic parameterization of the turbulent

exchange of energy from and to a background ‘‘sea’’ of

eddies of different scales, and has found wide applica-

tion and validation in turbulence modeling (see, e.g.,

DelSole 2004; Harlim and Majda 2010).

The linear stochastic forecast model in (3.1) offers two

key advantages for turbulence filtering: first, it is ex-

tremely cheap to implement, and second, the inverse

problem can be solved exactly using the Kalman (1960)

filter algorithm, which provides the optimal filtered (or

analysis) estimate when the observation and forecast

model take the following form:

ys 5 Gzs 1 sobs
s , xs 5 Fxs21 1 ssys

s , (3.2)

where F, G in (3.2) are, respectively, the linear dynamics

operator and the observation operator (which need not

sample the entire state space), and ssys
s , sobs

s are mean-

zero Gaussian random variables representing system

noise and observation noise with covariance tensors Rsys

and Robs. Under these conditions, the forecast f and

analysis a states are Gaussian random variables with

mean and covariance satisfying the following:

hxf
si 5 Fhxa

s21i, Rf
s 5 FRa

s21F* 1 Rsys, (3.3)

hxa
s i 5 (1 2 KsG)hxf

si 1 Ksys, Ra
s 5 (1 2 KsG)Rf

s ,

(3.4)

where Ks 5 Rf
s G*(GRf

sG* 1 Robs)21 is the Kalman gain

matrix and * denotes the conjugate transpose. For more

details on the Kalman filter, see Chui and Chen (1999) or

Wunsch (2006), for example.

From (3.1), it is straightforward to show that

F 5 diag[e2(g
a
2iv

a
)Dt],

Rsys 5 diag[g21
a jsa

j2(1 2 e22g
a
Dt)/2], (3.5)

with integration time step Dt. The stochastic parameters

ga, va, sa can be determined either offline, via long-time

averages of the turbulent flow, or adaptively, by as-

suming that the parameters are themselves governed by

a stochastic differential equation. Strategies for offline

and adaptive parameter estimation are described below.

a. Super-resolution of sparse observations

Majda and Grote (2007) and Harlim and Majda

(2008b) describe a novel turbulence filtering algorithm

for sparse observations that produces a ‘‘super re-

solved’’ estimate of the state with a higher nominal

resolution than the observing network. This is achieved

by exploiting the fact that sparse observations preserve

information about high-wavenumber modes due to the

effect of aliasing. To see this, consider the discrete Fourier

transform of the field fmn 5 f (m ~h, n ~h) evaluated on a

coarse grid with spacing ~h 5 p/ ~N:

~f kl 5
1

(2 ~N)2 �
2 ~N21

m,n50

fmnei ~h(km1ln),

fmn 5 Re �
~N21

k,l52 ~N

~fkle
2i ~h(km1ln). (3.6)

The Fourier coefficients ~f kl will differ from the corre-

sponding coefficients f̂ kl defined on a finescale grid with

spacing h 5 p/N # ~h, because the coarse Fourier trans-

form samples, with equal weight, all Fourier modes that

reside in the aliasing set of each horizontal wavenumber:

~f kl 5 �
P

i,j51

f̂ k
i
l
j
, ki mod ~N 5 k, lj mod ~N 5 l, (3.7)

where P 5 N/ ~N. Thus, an observation of the mode (k, l)

on the coarse network can be thought of as a superpo-

sition of aliased wavenumbers (ki, lj) plus some obser-

vational noise:

~f obs
kl (tm) 5 Gzkl(tm) 1 ~sobs

kl (tm), (3.8)

where G 5 [1 . . . 1] is the observation operator and

zkl(tm) 5 [ f̂ k1l1
(tm) � � � f̂ k

P
l
P
(tm)]T is the P2-dimensional

state vector. The Kalman filter then provides an esti-

mate for both resolved and unresolved wavenumbers

by combining the incomplete observation in (3.8) with

the stochastic forecast model (3.5). Since the aliasing

sets for each primary mode (k, l) are disjoint, the full

N2-dimensional system reduces to independent P2-

dimensional filtering problems for each of the ~N2 pri-

mary modes.

We emphasize that the Kalman filter does not create

new information; rather, it produces an estimate for the

unresolved modes based upon the information avail-

able. Because the nominal grid resolution of the result-

ing state estimate is a factor P times higher than the

original observations, we refer to this technique as sto-

chastic super-resolution. Figure 5 demonstrates how

stochastic super-resolution can be used to double the

nominal resolution of a coarse observational network by

filtering four aliased modes per observed wavenumber.

In the present application, we sample the upper layer

on a coarse grid so that
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~c
obs
kl 5 [ 1 0 ]

~c
1
kl

~c
2
kl

 !
1 ~sobs

kl , (3.9)

where observations of the (k, l) mode sample all modes

in the aliasing set:

~c
1
kl

~c
2
kl

 !
5 [I2 � � � I2]

~c
1
k

1
,l

1

~c
2
k

1
,l

1

..

.

~c
1
k

P
,l

P

~c
2
k

P
,l

P

0
BBBBBBBBBB@

1
CCCCCCCCCCA

. (3.10)

Note that the vector [� � �] contains P2 copies of the 2 3 2

identity matrix I 2 and so is a matrix of size 2 3 2P2. In

terms of EOFs, the state vector is zkl 5 [x̂
1
k1l1

, x̂ 2
k1l1

, � � � x̂ 1
kPlP

,

x̂ 2
kPlP

]T and

~c
1
kl

~c
2
kl

 !
5 [V21(k1, l1) � � �V21(kP, lP)]

~x1
k

1
,l

1

~x2
k

1
,l

1

..

.

~x1
k

P
,l

P

~x2
k

P
,l

P

0
BBBBBBBBB@

1
CCCCCCCCCA

,

(3.11)

where V(k, l) is the transformation matrix from layer

streamfunctions to EOFs and again the vector [� � �] is a

matrix of size 2 3 2P2. Thus, the observed stream-

function is

ĉ
obs
kl 5 G(k, l)zkl 1 ~sobs

kl ,

G(k, l) 5 [ 1 0 ] 3 [V21(k1, l1) � � � V21(kP, lP)],

(3.12)

where the observation operator G(k, l) is a 1 3 2P2

matrix (i.e., there are 2P2 filtered modes for each ob-

served wavenumber).

b. Offline and adaptive parameter estimation

Harlim and Majda (2008a) outline a simple procedure

for uniquely determining the stochastic parameters in

the forecast model in (3.5) from the long-time statistics

of the turbulent flow. In the mean stochastic model

(MSM), the parameter set (ga, va, sa) is chosen to re-

produce the correct energy spectrum and decorrelation

time for each EOF x̂
a
:

e
a

5 hjx̂
a
j2it, T

a
1 iQ

a
5 e21

a

ð‘

0
hx̂

a
(t)x̂

a*(t 1 T)it dT.

(3.13)

Substituting the stochastic model (3.1) into (3.13) yields

expressions for the stochastic parameters (ga, va, sa) in

terms of the turbulent statistics (ea, Ta, Qa):

g
a

5
T

a

T2
a 1 Q2

a

, v
a

5 2
Q

a

T2
a 1 Q2

a

, s
a

5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g

a
e

a

q
.

(3.14)

FIG. 5. (left) Stochastic super-resolution of an 8 3 8 observation network. The resolved wavenumbers all lie inside

the inner dashed box jkj, jlj# N 5 4. The wavenumbers indicated by the white circles show the first eight horizontal

wavenumbers in the aliasing set of the horizontal wavenumber (23, 0), indicated by the filled circle. To obtain

a nominal resolution of 16 3 16 (corresponding to the outer dashed box jkj, jlj # 8), one must filter the primary

wavenumber (23, 0) plus the three aliased wavenumbers closest to the origin: (5, 0), (23, 28), and (5, 28). (right)

The aliasing set of the mode (23, 0). The observation (dashed line with circles) samples, with equal weight, each

member of the aliasing set. Note that the largest contribution actually comes from aliased mode (5, 0).
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A limitation of the MSM and other simple autore-

gressive stochastic processes for filtering turbulent flows

is model error. This arises in two principal ways. First,

obtaining the stochastic model parameters requires

knowledge of the long-time statistics of the full state

vector, including the lower layer and unresolved high-

wavenumber modes. In practice, these statistics will be

only partially or imperfectly known. Second, the sto-

chastic parameters are estimated offline and held fixed

throughout the filtering process, and thus are unable to

adjust to temporal intermittency in the flow.

A standard approach to deal with model error is to

estimate the model parameters ‘‘on the fly’’ by allowing

them to evolve in time and augmenting the system state

to filter them as if they were unobserved state variables

(e.g., Dee and Da Silva 1998; Baek et al. 2006; Dowd

2006; Anderson 2007; Harlim and Majda 2010). Typi-

cally, the resulting augmented system will involve non-

linear dependencies between the original state variables

and the stochastic model parameters, so a linear tangent

approximation is often used. A particular form for the

nonlinear augmented system with exactly solvable sta-

tistics was recently studied by Gershgorin et al. (2010a,b):

›tx̂ 5 2m(t)x̂(t) 1 a(t) 1 s _W(t), (3.15a)

›tm 5 2lm[m(t) 2 m] 1 sm
_Wm(t), (3.15b)

›ta 5 2la[a(t) 2 a] 1 sa
_Wa(t). (3.15c)

Here m(t) and a(t) are complex multiplicative and ad-

ditive bias corrections and _Wm(t) and _Wa(t) are circularly

symmetric complex white noise forcings. The aug-

mented state vector zkl 5 [x̂
1
k1l1

, x̂ 2
k1l1

, � � � x̂ 1
kPlP

, x̂ 2
kPlP

, m 1
k1l1

,

m 2
k1l1

, � � � a 1
kPlP

, a 2
kPlP

]T is then filtered using the modified

observation operator:

G(k, l) 5 [1 0] 3 [V21(k1, l1) � � �V21(kP, lP)O2 � � � O2],

(3.16)

where there are 2P2 copies of the 2 3 2 zero matrix O
2
,

reflecting the fact that the bias correction terms cannot

be observed directly. The modified observation operator

is a matrix of size 1 3 6P2 (i.e., there are 6P2 filtered

variables per observed wavenumber). The resulting sto-

chastic parameterized extended Kalman filter (SPEKF)

algorithm provides an estimate of the mean and co-

variance of the full state vector (including unobserved

high-wavenumber and lower-layer variables) at time t 5 ts
and an on-the-fly estimate of the stochastic parameters

m(t) and a(t) for each mode.1

Following Harlim and Majda (2010), we set the equi-

librium mean multiplicative and additive bias correc-

tions and the energy spectrum to their MSM values:

m 5 gMSM 2 ivMSM, a 5 0, s 5 sMSM, (3.17)

so that SPEKF acts as an adaptive learning algorithm for

the MSM parameterization (see Fig. 6). Because the bias

terms m(t) and a(t) are filtered from the observations

themselves, SPEKF can correct for significant model

error in the original MSM parameterizations. The re-

maining augmented model parameters lm 5 gm 1 ivm,

la 5 ga 1 iva, sm and sa do not have a direct inter-

pretation in terms of the turbulent statistics of the

physical system; rather, they can be tuned to mimic a

FIG. 6. Time series of the real and imaginary components of the multiplicative and additive noise terms for mode

(23, 0, 1) in the low-latitude case. Superimposed are the MSM values for these terms, for comparison.

1 We note that the nonlinearity in the forecast model in (3.15)

permits nontrivial correlations between real and imaginary com-

ponents of the state vector and these should be treated separately

in (3.16) and the Kalman filter solution in (3.4). For the sake of

expedience we will not write this out explicitly.
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range of turbulent behaviors including strong intermit-

tency, transient instability, and laminar flow (Branicki

et al. 2011). Crucially, there exists a robust regime of

parameter values for which SPEKF has high filtering

skill when compared with MSM, as was demonstrated by

Gershgorin et al. (2010a,b) in comprehensive numerical

studies. A more limited study for the flows under consid-

eration here yielded the following values, which are held

constant for all wavenumbers:

sm 5 5sMSM, sa 5 sMSM, gm 5 ga 5 0:1gMSM,

vm 5 va 5 5vMSM. (3:18)

As we have indicated, a significant advantage of the

form of (3.15) is that exact nonlinear expressions for the

mean and covariance of the non-Gaussian forecast dis-

tribution can be derived using the mathematical prop-

erties of conditionally Gaussian processes (Gershgorin

and Majda 2008; Gershgorin et al. 2010b). Branicki et al.

(2011) have also developed a simpler quasi-Gaussian clo-

sure approximation to the SPEKF algorithm with similarly

high skill for a wide range of parameter values. In this

article, we adopt a hybrid quasi-Gaussian scheme in which

the forecast mean values of x̂, m, and a are calculated using

the exact nonlinear statistics of the augmented model,

while the forecast covariance tensor is obtained from

a Monte Carlo estimate using the pathwise solutions of

(3.15):

x̂(ts) 5 x̂(ts21)e2j(t
s21,ts

)
1

ðt
s

t
s21

dt[a(t) 1 s _W(t)]e2j(t,t
s
),

(3.19a)

m(ts) 5 m 1 [m(ts21) 2 m]e2l
m

(t
s
2t

s21
)

1 sm

ðt
s

t
s21

dt _Wm(t)e2l
m

(t
s
2t), (3.19b)

a(ts) 5 a 1 [a(ts21) 2 a]e2l
a
(t

s
2t

s21
)

1 sa

ðt
s

t
s21

dt _Wa(t)e2l
a
(t

s
2t), (3.19c)

with j(t0, t1) 5
Ð t1

t0
dt m(t). The forecast covariance is

then estimated from an ensemble of solutions of (3.19)

generated using 100 normally distributed initial values

x̂(t
s21

), m(ts21), a(ts21) with mean and covariance

tensor equal to that obtained at the previous analysis

step:

xa
s21 5 hxa

s21i 1 Ps21ws21, Ps21PT
s21 5 Ra

s21,

(3.20)

where P
s21

is the Cholesky decompostion of the analysis

covariance tensor and ws21 is a vector of Gaussian un-

biased uncorrelated random numbers with mean zero

and unit variance.

Figure 6 shows filtered estimates of the multiplicative

and additive noise terms m(t) and a(t) for mode (23, 0, 1).

For comparison, the MSM values for these terms in (3.17)

have been superimposed on top of these estimates. As can

be seen, the SPEKF noise parameters fluctuate about the

equilibrium values, and, in the case of the multiplicative

noise, display temporally intermittent bursting behavior

(Branicki et al. 2011). This temporal variability is partic-

ularly important in the multiplicative term because it

drives a rectified contribution to the forecast mean of x̂

due to the nonlinearity in (3.15a), and hence directly in-

fluences the eddy heat transport.

4. Results

The filtering strategies described in the previous sec-

tion were tested by calculating the poleward eddy heat

transport hy1ti from the filtered estimates for the upper

and lower streamfunctions, and comparing this with the

same quantity calculated from the true three-dimensional

streamfunction. The filtered streamfunctions were esti-

mated from observational networks with Nobs 5 4, Nobs 5

8, and Nobs 5 16 using the MSM and SPEKF described in

the previous section. The MSM stochastic model pa-

rameters were calculated from long, fully resolved time

series of the upper and lower streamfunctions, while the

SPEKF model parameters were assigned according to

the rules in (3.17) and (3.18). The filters were run for

400 assimilation steps (’400 eddy turnover times) after

a transient adjustment period of 100 assimilation steps.

Each final streamfunction estimate was averaged over

10 independent filter runs.

Filtered streamfunctions were calculated with nomi-

nal resolution Nfilt equal to that of the observation net-

work Nobs. These were compared with stochastically

super-resolved (SSR) streamfunctions with nominal

resolutions of up to Nfilt 5 16 by filtering either one or

three aliased modes per primary wavenumber in each

direction (see Fig. 5). Thus, to obtain a nominal reso-

lution of Nfilt 5 8 from an Nobs 5 4 observational net-

work, a total of eight modes (four in each layer) were

filtered for every observed mode. To obtain a nominal

resolution of Nfilt 5 16 from the same network, 18

modes (9 in each layer) were filtered. In all cases the

observational noise covariance was set at 5% of the

total kinetic energy and distributed evenly among all

observed Fourier modes.

Figures 7 and 8 depict time series of the estimated

eddy heat transport after the initial transient adjustment
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phase. As with the optimal interpolation (OI) estimates,

the MSM algorithm tends to underestimate the eddy

heat flux, and predicts the incorrect sign at low latitudes

with Nobs 5 4 due to the dominance of low-wavenumber

zonal modes there. The inclusion of SSR modes im-

proves the estimate at both high and low latitudes and

captures about 20%–25% of the time-mean eddy heat

flux. When the baseline observation resolution is in-

creased to Nobs 5 8, over half of the time-mean eddy

heat flux is captured, again a result that could have been

anticipated from the OI estimates at this resolution.

Likewise, when the observation resolution is increased

further to Nobs 5 16, over 90% of the eddy heat flux is

obtained. Note that, for observation resolutions of both

Nobs 5 4 and Nobs 5 8, little further improvement is

seen when stochastic super-resolution increases the

nominal resolution from Nfilt 5 8 to Nfilt 5 16. This is

consistent with the intuition that wavenumber modes

FIG. 7. Time series of the poleward eddy heat transport estimated using the MSM at (left) low latitudes and (right)

high latitudes. The true eddy heat flux is indicated by a solid gray line. Also shown is the heat flux calculated using

filtered velocity fields with nominal resolutions of Nfilt 5 4, 8, and 16. In each case, the heat flux has been normalized

by its respective true heat flux average.
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with 4 # jkj, jlj# 8 dominate the total eddy heat flux. In

all cases, the temporal variability of the filtered output is

considerably less than the truth signal because the long

observation time step is unable to resolve rapid variations

in the true heat flux.

In the case of SPEKF, the addition of SSR modes to

the Nobs 5 4 observational network leads to consider-

able improvement in the time-mean eddy heat transport

estimate, up to 50% at low latitudes and 75% at high

latitudes. This is likely because the inclusion of aliased

modes means the filters are better able to adapt to in-

termittent bursts of instability near the deformation

radius (i.e., 4 # jkj, jlj # 8), which would otherwise be

unresolved. While it is unreasonable to expect an exact

reconstruction of the temporal variations of the signal

with such a long observational time step, the temporal

variability of the eddy heat flux estimated from SPEKF

are at least statistically closer to the truth. Once more,

the Nobs 5 8 and Nobs 5 16 observational networks gain

little by filtering aliased modes, because in these cases

the bulk of the eddy field is already captured by the

observations. An important observation to make from

both Figs. 7 and 8 is that SSR tends to improve the es-

timate of the time-mean heat flux (particularly in the

FIG. 8. As in Fig. 7, but using the SPEKF.
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case of SPEKF), but it is no substitute for increased

baseline observational resolution.

Depth-averaged meridional and zonal kinetic energy

spectra estimated using MSM and SPEKF are shown in

Figs. 9 and 10. In both low- and high-latitude cases, the

Nobs 5 8 and Nobs 5 16 observational networks capture

most of the kinetic energy, while the Nobs 5 4 network

overestimates the kinetic energy at low wavenumbers

because the coarse observations alias high-wavenumber

energy into the resolved wave band. The SSR algorithm

redistributes this kinetic energy to higher wavenumber

aliased modes and successfully reconstructs the peak of

the spectra. Note that the total energy estimated by the

filter tends to be less than the true total energy, as would

FIG. 9. Normalized energy spectra in the zonal (black) and meridional (gray) directions, estimated using MSM

at (left) low latitudes and (right) high latitudes. Also shown is the energy spectrum calculated using filtered

velocity fields with Nfilt 5 4, 8, and 16. In each case, the energy spectrum has been normalized by the true total

energy.
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be expected from low-resolution observations. SPEKF

does a better job of reconstructing the energy spectrum

from coarse observations, particularly at low wave-

numbers.

Figure 11 summarizes the time-mean heat transport

estimates for the low- and high-latitude cases with

Nobs 5 4, Nobs 5 8, and Nobs 5 16. For each of the fil-

tering strategies considered, the equilibrium heat flux,

normalized by the true time-mean heat flux, was aver-

aged over 400 eddy turnover times and plotted against

the maximum resolved (Nyquist) wavenumber Nobs. We

find that SSR gives significant improvement over the OI

estimate of the time-mean heat transport at the lowest

spatial resolution considered (Nobs 5 4). This is because

the unresolved modes are better represented in the SSR

velocity fields. Of the filtering strategies considered at

this resolution, the SPEKF algorithm with maximum

stochastic super-resolution performs best, capturing over

75% of the time-mean signal at high latitudes. This re-

sult should be compared with ’ 13% captured without

filtering (i.e., with optimal interpolation) at spatial res-

olutions corresponding to current satellite capabilities.

FIG. 10. As in Fig. 9, but using the SPEKF.
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Likewise, using approximate current satellite resolu-

tions, almost 75% of the time-mean heat flux at low

latitudes is captured by the SPEKF algorithm with

maximum stochastic super-resolution. While this is en-

couraging, it is not as significant as at high latitudes

because the observational network in this case success-

fully captures the bulk of the mesoscale eddy field, and

so gains little by the inclusion of SSR modes.

In summary, we find that the combination of SSR and

SPEKF provides a simple, computationally inexpensive

method of estimating the three-dimensional stream-

function from spatiotemporally sparse observations of

the upper-ocean velocity field. The time-mean eddy heat

transport calculated from the filtered streamfunction

shows significant improvement over both optimal in-

terpolation and mean stochastic model estimates in the

scenarios we have investigated. With such a long ob-

servational time step, we do not expect to reconstruct

the exact temporal variations of the heat flux, however,

and the filtered estimates still underrepresent the tem-

poral variability of the heat transport. Even so, the skill

of the SPEKF algorithm is particularly promising, be-

cause it is capable of learning the appropriate stochastic

model parameters on the fly, effectively learning the

appropriate subgrid-scale parameterization from the

observations themselves. This lends the algorithm sig-

nificant flexibility in dealing with model error in the

forecast model, for instance by using the incorrect en-

ergy spectrum for the linear stochastic model in (3.1).

5. Conclusions

We have tested the performance of a suite of novel

filtering strategies for estimating poleward eddy heat

transport from spatially and temporally sparse obser-

vations of the upper-ocean velocity field. Baroclinically

unstable, eddy-rich flow fields were generated using the

Phillips (1954) model in parameter regimes corre-

sponding to oceanic mesoscale turbulence at high and

low latitudes. Net heat transport was calculated by

projecting observations of the upper-layer stream-

function onto vertical mode empirical orthogonal func-

tions (EOFs) calculated from climatological data.

Plausible space–time sampling scenarios were consid-

ered, representing current-generation satellite resolu-

tion capability. These scenarios constitute stringent test

cases for the filtering strategies considered, particularly

at high latitudes where contemporary satellite observa-

tions are barely capable of resolving the most energetic

eddies. In addition, we studied higher-resolution ob-

servation scenarios with the goal of anticipating the

possible gains that might be expected from the proposed

Surface Water Ocean Topography altimetry mission

(e.g., Durand et al. 2010).

The filtering strategies considered incorporate a number

of features that improve their performance when com-

pared with standard Kalman, extended Kalman, and en-

semble data-assimilation techniques (Harlim and Majda

2010). Nonlinear interaction terms in the forward model

FIG. 11. Time mean of the heat flux in the low- and high-latitude case (normalized with respect to the truth) vs

maximum observable (Nyquist) wavenumber: OI estimate (circles), MSM (squares), and SPEKF (circles). Also

shown are stochastically super-resolved filter estimates with a nominal resolution double (32) or quadruple (34) that

of the original observing network. The approximate current satellite resolutions at these latitudes are indicated by

dashed boxes.

1718 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



are replaced by a simple autoregressive stochastic model

for each mode, so that the dynamical operator is diag-

onalized and the inverse problem can be solved exactly

using the usual Kalman (1960) algorithm. Thus, by em-

bracing ‘‘judicious’’ model error, the speed and stability

of the filters is greatly increased without compromis-

ing the essential structure of the turbulent interactions

among modes. The parameters appearing in the sto-

chastic forecast model are determined either offline using

the mean stochastic model (MSM), in which the param-

eters are regression fitted to reproduce the climatological

energy spectrum and correlation times of the turbulent

flow, or adaptively using the stochastic parameterized

extended Kalman filter (SPEKF), which augments the

system state to produce an ‘‘on the fly’’ estimate of the

stochastic model parameters from the observations

themselves. In addition, the filtering strategies exploit

the fact that a coarse observation network will preserve

information about unresolved high wavenumbers due

to the effect of aliasing. Hence, by extracting high-

wavenumber information aliased into the resolved band,

one can obtain stochastic super-resolution (SSR) esti-

mates for unresolved modes, boosting the nominal reso-

lution of the observation network by a factor of 2 or more

and improving the eddy transport estimated from sparse

satellite observations.

The filtering strategies were tested by comparing the

poleward eddy heat flux calculated using the filtered

streamfunctions and the true, fully resolved flow. In

addition, we calculated the heat transport one would

obtain from optimal interpolation (OI) by projecting

sparse observations of the upper layer onto the most

energetic EOF to estimate the lower-layer stream-

function, thus allowing us to quantify the gain provided

by filtering sparse observations. We found that SSR

gave significant improvement over the OI estimate of

the time-mean heat transport at the lowest spatial res-

olution considered (N 5 4). This is because the un-

resolved modes are better represented in the SSR

velocity fields, a result of particular relevance at high

latitudes, where the Nyquist wave band excludes the

peak of the kinetic energy spectrum. Particularly en-

couraging is the performance of SPEKF, since this al-

gorithm is considerably more adaptable to large-scale

instabilities and seasonal modulations in the turbulent

flow. An intriguing by-product of the SPEKF algorithm

is a real-time stochastic parameterization of the un-

resolved scales, which might prove valuable for devel-

oping more skillful eddy parameterization schemes for

ocean climate models.

The results at low latitudes are also positive, although

the improvement over OI is not as large because the

observational network in this case successfully captures

the bulk of the mesoscale eddy field. However, there are

two reasons to believe that SSR and SPEKF might give

better results with altimetric velocity fields at low lati-

tudes than is obtained here. First, in this preliminary

study, we have repeatedly used the perfect model pa-

rameters for the vertical structure, and these values will,

in practice, be subject to some uncertainty, if they are

known at all. The full SPEKF filter can overcome this

important model error and learn these parameters di-

rectly from the data (Harlim and Majda 2010). Second, it

is believed that surface-trapped modes might play

a more significant role in the subtropics, which would

lead to a shallower submesoscale energy spectrum than

is represented by the Phillips model (Tulloch et al.

2011). Recently, Keating et al. (2011) demonstrated that

eddy transports in flows with a strong surface compo-

nent are much more sensitive to the spatial and temporal

sampling resolution, so results obtained using the Phil-

lips model might not be appropriate for this region. We

plan to explicitly examine this issue in the context of

quasigeostrophic model simulations incorporating non-

trivial stratification and surface intensification in the

near future.

It should be emphasized that the stochastic filtering

strategies studied here should not be considered as

a substitute for existing variational and ensemble-based

data assimilation systems such as 3DVAR, 4DVAR, or

ensemble Kalman filter techniques. Rather, they should

be viewed as an inexpensive, complementary approach

to dealing with sparse satellite observations that could

easily be ‘‘nested’’ within contemporary assimilation

frameworks, a subject we will take up in a later study. A

number of additional hurdles remain before practical

filtering algorithms incorporating these techniques can

be developed for use with real altimetry data, however.

In particular, the use of a Cartesian grid in this study

meant that the aliasing condition assumed a particularly

simple form. Aliasing conditions for irregular (non

Cartesian) satellite orbits are also known (Tai 2004), but

they are more complicated and it is yet to be determined

if they can be exploited to produce ‘‘super resolved’’

altimetry maps. Moreover, irregularly spaced observa-

tions also lead to subtleties in the construction of a re-

duced forecast model with a diagonal covariance matrix

as in (3.5) (Harlim 2011); this needs to be further studied

in the context of repeat ground-track satellite orbits.

Finally, for expediency we assumed that the observa-

tions were made simultaneously at all grid points once

every observational time step. In reality, the sampling

pattern has a complex spatiotemporal evolution with

shorter subcycles within each exact repeat period, and so

the temporal resolution of satellite observations is more

subtle than we have represented here (Chelton et al.
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2001). These caveats notwithstanding, the results of our

study suggest that cheap, simple filtering techniques

such as SSR and SPEKF can enhance the ability of

current-generation altimetry products to constrain the

role of ocean eddies in the global heat budget, and can

provide a valuable measure of the ‘‘return on invest-

ment’’ that might be expected from advances in satellite

altimetry in the coming decades.
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APPENDIX A

Subsurface Geostrophic Current

The geostrophic current at arbitrary depth z is related

to the horizontal gradient of pressure via

f u(x, y, z) 5 r21ẑ 3 $p. (A.1)

Under the assumption of hydrostatic balance (a good

approximation in the ocean away from regions of strong

convection near the surface), the density r(x, y, z) and

pressure p(x, y, z) are related by

p(x, y, z) 5 P 1 g

ðh(x,y)

z
r x, y, z9) dz9,ð (A.2)

where P is the pressure at the sea surface z 5 h(x, y). The

subsurface geostrophic current is, by Leibniz’s rule,

f u(x, y, z) ’ r21(x, y, z)fgr0ẑ 3 $h

1 g

ðh

z
ẑ 3 $r(x, y, z9) dz9g, (A.3)

where we have used r(x, y, h) 5 r0(x, y). Sufficiently

close to the surface, the last term disappears and we

obtain

f u(x, y, 0) ’ gẑ 3 $h. (A.4)

This surface current contribution is present throughout

the water column, although it is slightly compensated by

changes in the density field through a multiplicative

factor r0(x, y)/r(x, y, z). At depth, the last term in (A.3)

become increasingly important, ultimately dominating

(and potentially reversing) the subsurface current at

depths comparable with the depth of the pycnocline

(Wunsch and Stammer 1998). In the absence of a model

for the pressure field throughout the water column,

therefore, observations of sea surface height anomalies

do not constrain the subsurface geostrophic current.

APPENDIX B

Empirical Orthogonal Functions

The empirical orthogonal functions (EOFs) at each

horizontal wavenumber (k, l) are constructed so that the

variance of the first EOF ~x1
kl is maximal and contains the

majority of the energy at that wavenumber. We first

construct the energy-weighted barotropic streamfunction

c and baroclinic streamfunction t at each wavenumber:

~ckl

~tkl

 !
5 M

~c
1
kl

~c
2
kl

 !
, M(k, l) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2
p

0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2 1 l2
p

 !
d1 d2ffiffiffiffiffiffiffiffiffiffi
d1d2

p
2

ffiffiffiffiffiffiffiffiffiffi
d1d2

p
 !

. (B.1)

Writing ~c
kl

1 c, etc., and assuming that hci 5 0 5 hti,
we now seek eigenvectors of the covariance matrix of

the energy-weighted vertical modes:

C 5 cov
c

t

� �
5
hjcj2i hct*i
hc*ti hjtj2i

 !
. (B.2)

Angle brackets h�i represent a long-time average. The

matrix of eigenvectors N 5 N(k, l) diagonalizes the co-

variance matrix so that

D 5 N*CN 5 diag(e
1

, e
2

). (B.3)

Here * denotes the conjugate transpose. The EOFs are

obtained by projecting the vertical modes onto the eigen-

space defined by N :

x1

x2

� �
5 N*(k, l)

c

t

� �
, hjx6j2i 5 e

6
. (B.4)

Finally, the EOFs are expressed in terms of the layer

streamfunctions via
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x1

x2

� �
5 V(k, l)

c1

c2

� �
, V(k, l) 5 N*(k, l)M(k, l).

(B.5)

APPENDIX C

Forecast Mean Solutions to the Stochastic
Parameterized Extended Kalman Filter

The forecast means of the multiplicative and additive

noise biases at time t 5 t1 are straightforwardly obtained

from the pathwise solutions (3.19b,c),

hm1i 5 m 1 (hm0i 2 m)e2l
m

(t
1
2t

0
),

ha1i 5 ha0ie
2l

a
(t

1
2t

0
), (C.1)

where hm0i, ha0i are the initial (analysis) means at time

t 5 t0. The forecast mean of x̂ is

hx̂1i 5 hx̂0e2j(t
0
,t

1
)i 1

ðt
1

t
0

dt ha0e2j(t,t
1
)ie2l

a
(t2t

0
).

(C.2)

The quantities in angle brackets can be calculated using

the statistics of conditionally Gaussian processes: in

particular, for real s, t, and real, mean-zero, Gaussian

random variables x, y, z it can be shown (Gershgorin

et al. 2010b) that

hx exp(sy 1 itz)i

5 (shxyi1 ithxzi) exp
s2

2
hy2i2 t2

2
hz2i1 isthyzi

� �
.

(C.3)

Using m90 5 m0 2 hm0i, a90 5 a0 2 ha0i, and t 5

l21
m [e2lm(t2t0) 2 e2lm(t12t0)], we find

hx̂0e2j(t
0
,t

1
)i5 hx̂0ie

2m(t
1
2t

0
), (C.4)

ha0e2j(t,t
1
)i5 (ha0i2 hm90a90it)e2hm

0
it2m(t

1
2t2t)1h(a9

0
)2it2/2.

(C.5)
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