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a  b  s  t  r  a  c  t

Multiscale  analysis  is  used  to  derive  two  sets  of  coupled  models,
each  based  on  the  same  distinguished  limit,  to  represent  the  inter-
action  of  the  midlatitude  oceanic  synoptic  scale—where  coherent
features such  as  jets  and  rings  form—and  the  mesoscale,  defined  by
the  internal  deformation  scale.  The  synoptic  scale  and  mesoscale
overlap  at  low  and  mid  latitudes,  and  are  hence  synonymous  in
much  of the  oceanographic  literature;  at  higher  latitudes  the  synop-
tic  scale  can  be  an  order  of  magnitude  larger  than  the  deformation
scale, which  motivates  our  asymptotic  approach  and  our nonstan-
dard  terminology.  In the  first  model  the  synoptic  dynamics  are
described  by  ‘Large  Amplitude  Geostrophic’  (LAG)  equations  while
the  eddy  dynamics  are  quasigeostrophic.  This  model  has  order  one
isopycnal  variation  on  the  synoptic  scale;  the  synoptic  dynam-
ics respond  to  an  eddy  momentum  flux  while  the eddy  dynamics
respond to the  baroclinically  unstable  synoptic  density  gradient.
The  second  model  assumes  small  isopycnal  variation  on  the syn-
optic  scale,  but  allows  for a  planetary  scale  background  density
gradient that  may  be  fixed  or  evolved  on a slower  time  scale.  Here
the  large-scale  equations  are  just  the  barotropic  quasigeostrophic
equations,  and  the  mesoscale  is  modeled  by  the  baroclinic  quasi-
geostrophic  equations.  The  synoptic  dynamics  now  respond  to both
eddy  momentum  and  buoyancy  fluxes,  but  the  small-scale  eddy
dynamics  are  simply  advected  by  the  synoptic-scale  flow—there  is
no  baroclinic  production  term  in  the  eddy  equations.  The  energy
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budget  is  closed  by deriving  an  equation  for  the  slow  evolution  of
the  eddy  energy,  which  ensures  that energy  gained  or  lost  by  the
synoptic-scale  flow  is reflected  in  a corresponding  loss  or  gain  by
the eddies.  This  latter  model,  aided  by  the  eddy  energy  equation—a
key  result  of  this  paper—provides  a  conceptual  basis  through  which
to  understand  the  classic  baroclinic  turbulence  cycle.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, extensive observations and high-resolution numerical models have revealed a
rich array of coherent structures—jets, vortices and Rossby waves (e.g. Chelton et al., 2011)—on scales
larger than the deformation scale but well below the scale of the gyres. Such features characterize
what we will call the “oceanic synoptic scale” and have a major impact on ocean mixing and trans-
port. Understanding their generation and maintenance is therefore necessary to refine theories of the
oceanic general circulation. Moreover, accurately representing such features is a major goal of com-
putational physical oceanography, particularly as global scale ocean climate models move into the
eddy-permitting regime.

Our understanding of such features (at least, in mid- and high-latitudes) is primarily based on their
ability to be modeled by the quasigeostrophic (QG) equations—equations that result from a single-scale
asymptotic expansion of the primitive equations. Likewise, much of our theoretical understanding of
the gyre-scale circulation is essentially grounded in the planetary geostrophic (PG) equations, which
are derived in the same way but involve a different distinguished limit. The problem of understanding
the generation, maintenance and rectification of the synoptic scale is ultimately a question of how the
processes in these two regimes interact.

One approach to disentangling dynamical interactions across disparate scales is through the use
of multiple scale asymptotics (MSA). Multiple scale asymptotic analysis has recently been applied to
a number of atmospheric regimes (Majda and Klein, 2003; Majda, 2007a,b), offering insight into, for
example, the hurricane embryo problem (Majda et al., 2010). See also Klein (2010) for a review of
single- and multi-scale asymptotic results for the atmosphere.

For the midlatitude ocean, Pedlosky (1984) used MSA  to derive QG and PG as, respectively,
the small-scale, fast-time and large-scale, slow-time components of a two-scale model. Grooms
et al. (2011) revisited this approach and generalized the model, delineating the conditions under
which the interaction was from large-to-small, small-to-large, and two-way. In the latter case,
which only occurs when the large-scale flow is anisotropic, the slowly evolving local PG mean state
generates baroclinic instability in the QG model, producing eddy fluxes that feed back on the PG
flow.

The PG–QG interaction models describe the connection between the gyre-scale flow, on the one
hand, and the entire network of unstable mesoscale flows and the synoptic-scale features they produce
on the other. There is little distinction, if any, between the oceanic synoptic scale and the mesoscale
at low and mid  latitudes; indeed the terms are synonymous in most of the oceanographic literature.
But at higher latitudes the baroclinic deformation radius can be much smaller than the scale of the
energy-containing eddies, the synoptic scale; rather than develop a new term for the scale of the
baroclinic deformation radius, as distinct from the synoptic scale, we prefer to bend the standard
terminology by referring to the deformation scale as the ‘mesoscale’. The goal of the present work is
to derive models that represent the interaction of the synoptic scale with the mesoscale—how eddy
fluxes generate synoptic-scale features, and how rectified synoptic flows then alter the baroclinically
unstable background affecting the mesoscale. In the Antarctic Circumpolar Current (ACC), for example,
the baroclinic deformation radius is between 10 and 20 km (Chelton et al., 1998: Fig. 6) while the mean
eddy scale is between 60 and 90 km (Chelton et al., 2011: Fig. 12); the ratio of these scales, between
1/3 and 1/9, suggests an asymptotic approach.

Setting the large scale equal to the synoptic scale—smaller than the planetary scale but larger than
the deformation scale—and the small scale equal to the deformation radius, two  possible limits arise.
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In the first, we consider a mean flow defined by O(1) isopycnal variations on the synoptic scale. This
parameter regime is described by the ‘Large Amplitude Geostrophic’ (LAG) equations (Benilov, 1993).
In its original derivation, LAG arises from single-scale asymptotic analysis, in a third distinguished
limit between PG and QG. In the multiscale approach, the LAG equations arise naturally as the mean
model, with QG as the small-scale dynamics.

In the second limit, we assume small isopycnal variations on the synoptic scale. In contrast to
the above case, however, we here allow for a slowly evolving planetary-scale mean flow, described
perhaps by the PG equations, but whose evolution we do not consider. In this case, the synoptic-
scale mean flow is barotropic QG with a passive baroclinic field, and the small-scale flow is baroclinic
QG. We  can think of this case as a multiscale model for the barotropic–baroclinic eddy cycle model
of Salmon (1980):  the fixed background mean planetary flow generates baroclinic instability in the
baroclinic mesoscale model, which results in an inverse cascade that alters the synoptic scale, and this
subsequently alters the baroclinic instability.

An important distinction between the two models is the following. In the first model, the synoptic-
scale dynamics respond only to eddy momentum fluxes in the barotropic vorticity equation—there is
no eddy buoyancy flux term in the synoptic-scale buoyancy equation, thus lateral density gradients
cannot be relaxed by eddy fluxes, despite that the eddies are being continually generated by baroclinic
instability in the eddy equation. By contrast, in the second limit, the synoptic-scale responds to both
eddy momentum and buoyancy fluxes, but now the eddy equation has no baroclinic production term.
This second model, however, allows for the derivation of an equation determining the slow-time
evolution of the eddy energy, which ensures that energy gained or lost by the synoptic-scale flow is
reflected in a corresponding loss or gain by the eddies. This second model—appended by the eddy
energy evolution equation—provides a diagnostic tool set through which synoptic–eddy interactions
may  be analyzed. For example, one may  use the energy equation to assess the relative importance
of mean advection, local production, and local dissipation in setting eddy energy at a given region
in the midlatitude oceans; experimentally assessing the importance of local (dissipation, baroclinic
production) and nonlocal (mean advection and wave radiation) terms in the eddy energy budget is a
topic of current research to be published in a subsequent paper.

The paper is organized as follows. In Section 2 we  derive the general MSA  framework on which our
two models are based. In Section 3 we consider the first limit, with strong synoptic-scale isopycnal
gradients (the LAG–QG model), and in Section 4 we  present the second limit, with weak synoptic-
scale isopycnal gradients and an imposed, fixed planetary-scale gradient (the barotropic–baroclinic
QG model). We  discuss and conclude in Section 5.

2. Asymptotic framework for midlatitude ocean eddies

We frame our investigation in the context of the inviscid, adiabatic hydrostatic primitive equations
on a ˇ-plane

∂tuh + u · ∇uh + (f0 + ˇy)ẑ × uh + 1
�0

∇hp = 0 (1)

∂tb + u · ∇b = 0 (2)

1
�0
∂zp = b (3)

∇ · u = 0. (4)

Here uh = (u, v) is the horizontal velocity and u = (u, v, w)  is the full velocity; ∇h is the horizontal
part of the gradient operator; f0 + ˇy is the Coriolis parameter linearized about a reference latitude;
�0 is a constant reference density; p is pressure; b = − gı�/�0 is buoyancy. We  allow topography and
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an active free surface, and we impose wind forcing and bottom friction via linear Ekman layers1 using
the following boundary conditions

w − u · ∇h�b − dEω = 0 at z = �b (5)

w − ∂t�t − u · ∇h�t − curl[�]
f0

= 0 at z = H + �t. (6)

Here � = (�x, �y) is a two component vector denoting the wind stress applied at the surface, �b is the
height of topography, and �t is the height of dynamic surface deformation above the mean depth H;
ω is the vertical component of relative vorticity, and dE is the Ekman layer depth.

Since we are allowing a free surface, it is convenient to account explicitly for its effect on the
barotropic pressure. Integrating (3) from z to H + �t and assuming the atmospheric pressure at the
surface to be constant (which we set to zero without loss of generality) we  arrive at

− 1
�0
p = −g(H + �t − z) +

∫ H+�t

z

b dz′. (7)

The momentum equations make use of the horizontal gradient of pressure, which is

− 1
�0

∇hp = −g∇h�t +
∫ H+�t

z

∇hb dz′ + (∇h�t)b(z = H + �t). (8)

In anticipation of the relative smallness of the surface height deformation, we  linearize (8) as follows

− 1
�0

∇hp = −g∇h�t +
∫ H

z

∇hb dz′. (9)

Substituting this into the horizontal momentum equation yields

∂tuh + u · ∇uh + (f0 + ˇy)ẑ × uh + g∇h�t −
∫ H

z

∇hb dz′ = 0. (10)

We nondimensionalize the equations using the eddy velocity scale2 U, a generic horizontal length
scale L, the horizontal advective time scale L/U and a generic buoyancy scale N2H. We  also scale the
vertical velocity so that w∼HU/L. At the risk of confusion, we make no notational distinction between
dimensional and nondimensional quantities; past this point all our equations are nondimensional
unless the surrounding text makes clear otherwise. The nondimensional equations and boundary
conditions are

∂tuh + u · ∇uh +
(
Ro−1 +

(
L

Lˇ

)2

y

)
ẑ × uh + Fr−2

e A�,t∇h�t − Fr−2
i

∫ 1

z

∇hb dz′ = 0 (11)

∂tb + u · ∇b = 0 (12)

∇ · u = 0 (13)

and

w − A�,bu · ∇h�b − E1/2ω = 0 at z = 0 (14)

w − A�,t(∂t�t + u · ∇h�t) − Awcurl[�] = 0 at z = 1. (15)

1 The analysis could equally well be carried out using quadratic friction.
2 Note that we do not use an externally imposed velocity scale; this is in contrast to common practice in studies of quasi-

geostrophic turbulence which often use the velocity scale afforded by an imposed background shear.
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The surface boundary conditions have been linearized to apply at z = 0, 1. The Rhines scale is Lˇ =√
U/ˇ, and the nondimensional numbers are

Ro = U

f0L
, Fre = U√

gH
, Fri =

U

NH
, E1/2 = dE

H
, A�,t = �∗

t

H
, A�,b = �∗

b

H
, Aw = |�|

UHf0
.

(16)

We add extra space and time coordinates so that T is the slow time variable, t is fast, X, Y are large,
and x, y are small; |�|, �∗

t , and �∗
b

denote the characteristic dimensions of the applied wind stress,
free surface deviations, and topography, respectively. The slow time scale is advective on the large
spatial scale, i.e. T* = LX,Y/U. This makes the time scale separation equal to the space scale separation.
The addition of extra independent variables yields

Ah(∂Tu + ∇h · (uu)) + ∂tu + ∇h · (uu) + ∂z(wu)  + (Ro−1 + AhA
2
ˇY)ẑ × u

+ (RoAhAe)
−2A�,t(∇h + Ah∇h)�t − Fr−2

i

∫ 1

z

(∇h + Ah∇h)b dz′ = 0 (17)

Ah(∂Tb + ∇h · (ub)) + ∂tb + ∇h · (ub) + ∂z(wb) = 0 (18)

Ah∇h · u + ∇h · u + ∂zw = 0 (19)

w − A�,b(Ahu · ∇h�b + u · ∇h�b) − Eẑ · (∇ × +Ah∇h×)u = 0 at z = 0 (20)

w − AhA�,t(∂T�t + u · ∇h�t) − A�,t(∂t�t + u · ∇h�t) − Aw ẑ · (∇ × +Ah∇h×)� = 0 at z = 1 + A�,t�t.

(21)

Here ∇h = (∂X, ∂Y ) is the horizontal gradient acting on the large scale variables. The new nondimen-
sional parameters are

Ah = Lx,y
LX,Y

, Aˇ = LX,Y
Lˇ
, Ae = LX,Y

Le
(22)

where Le =
√
gH/f0 is the external deformation radius; note Fre = RoAhAe.

We set the small scale equal to the baroclinic deformation radius Lx,y = Ld = NH/f0. The separation
between LX,Y and Ld defines a small asymptotic parameter �, which is related to the other nondimen-
sional parameters by the distinguished limit

Ah ≡ � � 1, Fri∼�, E∼�2, Ro∼�, A�,t∼�2, A�,b∼�2, Aw∼�2, Aˇ∼O(1),  Ae∼O(1).

(23)

The distinguished limit sets the large scale LX,Y comparable to both the Rhines scale and the external
deformation radius, but this is merely a convenience which allows us to investigate the effects of ˇ and
a free surface simultaneously. The ratios of the large scale to the Rhines scale (Aˇ) and to the external
deformation radius (Ae) should be considered free parameters which are only constrained to be order
one or less. This is made clear by the fact that the essentials of the following analysis are unchanged
on an f-plane with a rigid lid, by setting either or both of Aˇ and Ae to zero (more precisely, one may

take Ae =
√
A�,t/� and then let A�,t become smaller than �2).

The main requirement of the distinguished limit is that the Rhines scale Lˇ be greater than Ld; for
this reason our analysis does not apply in the tropics where Ld exceeds the Rhines scale. The large
scale LX,Y is also required to be smaller than the planetary scale, because the gradient of the Coriolis
parameter on the large scale is not order one as it would be, for example, in planetary geostrophy (PG).
The large scale is thus constrained by the distinguished limit, but is not as yet explicitly tied to any
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external parameters. In the following we will derive two equation sets; in the first the large scale is
implicity defined to be the scale on which isopycnal variations are order one, and in the second it is
the scale where kinetic energy is predominantly barotropic.

Having defined extra scales and introduced corresponding independent variables to the equations,
we proceed to formulate mean (large scale) and eddy (small scale) equations as follows. We  first define
a formal multiscale average

u(X, Y, z, T) = lim
L→∞,t′→∞

1
4t′L2

∫ t′

0

∫ L

−L

∫ L

−L
u(X, x, Y, y, z, T, t) dx dy dt. (24)

This allows the formal separation of all dependent variables into mean and eddy components, denoted
by an overbar ( · ) and a prime (·)′ respectively. This formal average has the same properties as a

Reynolds average, i.e. A = A and AB = A B + A′ B′. We  apply it to the multiscale equations (17)–(21) to
arrive at equations for the mean variables.

�(∂Tu + ∇h · (u u)) + ∂z(w u) + �−1(1 + A2
ˇ�

2Y)ẑ × u

+ �−1A−2
e ∇h�t − �−1

∫ 1

z

∇hb dz′ = −∇h · (u′u′) − ∂z(w′u′) (25)

�∇h · u + ∂zw = 0 (26)

�(∂Tb+ ∇h · (u b)) + ∂z(w b) = −∇h · (u′b′) − ∂z(w′b′) (27)

w − �3(u · ∇h�b + ẑ · ∇h × u) = �2(�u′ · ∇h�′
b

+ u′ · ∇h�′
b
) at z = 0 (28)

w − �3(∂T�t + u · ∇h�t) = �2u′ · ∇h�′
t + �3(u′ · ∇h�′

t + ẑ · ∇h × �) at z = 1. (29)

This derivation of the mean equations may  be thought of as the application of a necessary solvability
condition for the small-scale fast dynamics, since it requires ∂�u′ = 0, and likewise for the averages of
other small-scale derivatives.

We  subtract the mean equations from the multiscale equations to arrive at the following equations
for the eddies

�(∂Tu′ + ∇h · (uu)′) + ∂tu′ + ∇h · (uu)′ + ∂z(wu)′ + (�−1 + A2
ˇ�Y)ẑ × u′

+ �−2A−2
e (∇h + �∇h)�′

t − �−2

∫ 1

z

(∇h + �∇h)b′ dz′ = 0 (30)

�∇h · u′ + ∇h · u′ + ∂zw′ = 0 (31)

�(∂Tb′ + ∇h · (ub)′) + ∂tb′ + ∇h · (ub)′ + ∂z(wb)′ = 0 (32)

w′ − �2(�(u · ∇h�b)′ + (u · ∇h�b)′) − �2ẑ · (∇ × +�∇h×)u′ = 0 at z = 0 (33)

w′ − �3(∂T�′
t + (u · ∇h�t)′) − �2(∂t�′

t + (u · ∇h�t)′) − �2ẑ · (∇ × +�∇h×)� ′ = 0 at z = 1. (34)

The resulting eddy-mean system of Eqs. (25)–(29) and (30)–(34) may  now be reduced simultaneously
using standard asymptotic methods, e.g. the expansion of all dependent variables in asymptotic power
series, etc.
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3. The strong synoptic-scale isopycnal gradient limit

At leading order, the large scale equations are

ẑ × u0 + A−2
e ∇h�t,0 −

∫ 1

z

∇hb0 dz′ = 0 (35)

∫ 1

0

[∂Tω0 + u0 · ∇hω0 + A2
ˇv0] dz − ∂T�t,0 + ω0|z=0 = curl[�] −

∫ 1

0

[curl[∇h · u′
0u′

0]] dz (36)

∂Tb0 + u0 · ∇hb0 = 0. (37)

Here and below subscripts denote asymptotic order, and ω denotes the horizontal component of
relative vorticity, i.e. ω0 =curl[u0].

These equations have been called ‘Large Amplitude Geostrophic’ by Benilov (1993, 1994) because
they allow order-one isopycnal deviations and ‘Frontal Geostrophic’ by (Zeitlin, 2008) due to their
analogy with layered FG dynamics Cushman-Roisin (1986).  We  prefer the terminology of Benilov
(1993) because the FG equations of Cushman-Roisin (1986) are valid to a higher order than the LAG
equations, and contain cubic nonlinearities making them fundamentally distinct from LAG despite
their similarities. It is worth noting that the LAG equations are derivable as a long-wave limit of the
QG equations (Benilov et al., 1998), which implies that the QG approximation is consistent with large
amplitude isopycnal deviations over long horizontal scales.

The large scale LX,Y in this system is implicitly equal to the scale on which isopycnal variation is
order one, a situation common in, for example, the core of the Antarctic Circumpolar Current (ACC),
arguably the region where mesoscale eddies exert the largest influence on the general circulation of
the ocean. Note also that in the ACC the order one meridional variation of the isopycnals occurs on
scales smaller than the planetary scale, yet much larger than the internal deformation radius.

Because the single-scale LAG equations are valid at scales just above those of baroclinic QG dynam-
ics, their baroclinic instability to a mean geostrophic shear exhibits an ultraviolet catastrophe where
the growth rate is unbounded at small scales (Benilov, 1993); the same is true for the PG equations
(de Verdière, 1986). The asymptotics predict that the primary effect of deformation-scale dynamics
on the synoptic dynamics is through the curl of a depth-averaged horizontal momentum flux. If this
small-scale interaction term is sufficiently dissipative it might quell the ultraviolet catastrophe.

The leading-order eddy dynamics are quasigeostrophic dynamics on an f-plane with the influence
of a horizontally uniform and time-independent background flow (supplied by the mean equations)

ẑ × u′
0 + A−2

e ∇h�′
t,1 −

∫ 1

z

∇hb′
1 dz′ = 0 (38)

∂tq′ + (u0 + u′
0) · ∇hq′ + u′

0 · ∂z

(
∇hb0

∂zb0

)
= 0 (39)

q′ = ω′
0 + ∂z

(
b′

1

∂zb0

)
(40)

∂tb′
1 + (u0 + u′

0) · ∇hb′
1 + u′

0 · ∇hb0 = 0 at z = 0, 1. (41)

The system (35)–(41) includes two-way coupling between LAG and QG: large-scale baroclinic shear
provided by LAG generates small-scale baroclinic instability in QG, and the resulting momentum flux
in turn affects the LAG dynamics. However, the large-scale buoyancy equation does not include an eddy
flux term, thus eddies cannot directly alter the stratification. Although only the depth-integrated com-
ponent of the momentum flux appears at this order in the asymptotics, one could add next order terms
to the system, for example by including the heat flux generated by the QG eddies in the LAG buoyancy
equation, or by including Ekman layer dissipation in the QG equations. This system is potentially use-
ful for the study of the interaction of large-scale fronts with deformation-scale eddies. A similar set of
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equations wherein the small scale dynamics are geostrophic but not hydrostatic has been previously
derived by K. Julien and G. Vasil (personal communication).

4. The weak synoptic-scale isopycnal gradient limit

The above equations are valid when the scale of isopycnal variation is smaller than the planetary
scale, for example in the vicinity of large-scale fronts. Away from such fronts the isopycnal variation
becomes order one only on the planetary scale, which by assumption is much larger than LX,Y. In these
regions the dynamics on the scale of isopycnal variation are described by PG, and the small-scale
coupling is investigated using MSA  by Pedlosky (1984) and Grooms et al. (2011).  However, in those
same regions it is possible to examine dynamics at a scale intermediate between the deformation
radius and the planetary scale; at high latitudes for example there is a very great disparity in scale
between the planetary scale and the deformation radius.

Because our large scale LX,Y is not explicitly tied to any external parameters, we can proceed in
the same framework to examine the dynamics with small isopycnal variation at scales between the
planetary scale and the deformation radius. Two  properties of the LAG equations allow us to proceed:
they do not evolve the horizontal mean of the stratification, and if supplied with a horizontally uniform
initial buoyancy they will not generate horizontal buoyancy variations. That is to say, b0 = b0(z) is an
exact, linearly stable solution of the LAG equations. We  may  thus consistently proceed to next order
in the asymptotics of the large scale buoyacy equation by setting b0 = b0(z). In order to include the
effects of a gyre-scale buoyancy gradient whose slow evolution we  do not specify, we modify the
ansatz to b0 = b0(z, �ıX, �ıY)  where ı is a parameter of at most order one which controls the strength
of the externally imposed planetary scale isopycnal tilt.

Setting b0 = b0(z, �ıX, �ıY), the eddy-mean system becomes

ẑ × u0 + A−2
e ∇h�t,0 = 0, b0 = b0(z, �ıX, �ıY)  (42)

∂Tq + u0 · ∇hq − curl[�] + ω0 = −curl[∇h ·
∫ 1

0

u′
0u′

0 dz] (43)

∂Tb1 + u0 · ∇hb1 + ıu0 · ∇hb0 = −∇h · (u′
0b

′
1) (44)

q = (ω0 − �t,0 + �b + A2
ˇY) (45)

ẑ × u′
0 + A−2

e ∇h�′
t,1 −

∫ 1

z

∇hb′
1 dz′ = 0 (46)

∂tq′ + (u0 + u′
0) · ∇hq′ = 0 (47)

q′ = ω′
0 + ∂z

(
b′

1

∂zb0

)
(48)

∂tb′
1 + (u0 + u′

0) · ∇hb′
1 = 0 at z = 0, 1 (49)

To derive the mean equations we have used w′
1b

′
1 = 0, which is a necessary solvability condition on

the eddy dynamics: lacking friction, the average rate of generation of eddy kinetic energy (equal to
w′

1b
′
1) must be zero or the eddy kinetic energy will grow secularly on the fast time scale.

Although these equations are closed, they are missing a key ingredient: the above equations do
not account for changes in eddy energy due to interactions with the mean flow, because there is no
baroclinic instability term in the small-scale equations. On the other hand, the large-scale buoyancy
equation now includes an eddy flux term, thus eddies can directly affect the stratification. Energy
transfer to and from the large scales in the above system occurs only on the slow time scale, whereas
the eddy equations describe evolution only on the fast time scale; if one can account for the slow-time
evolution of the eddy energy, it will be possible to close the energy budget.
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4.1. Slow-time evolution of the eddy energy

In the appendix we derive an equation for the slow-time, large-scale evolution of eddy energy as
a necessary solvability condition on the next-order eddy dynamics. The resulting energy evolution
equation is

∂T 〈E〉 + u0 · ∇h〈E〉 + ∇h · 〈u′
0E〉 − ∇h × 〈p′

1(∂tu′
0 + u0 · ∇hu′

0)〉 = −〈u′
0 · (u′

0 · ∇hu0)〉

−
〈

u′
0b

′
1 · (∇hb1 + ı∇hb0)

∂zb0

〉
+ u′

0|z=1 · � − |u′
0|2|z=0 + p1|′z=0(u0 · ∇h�′

b
). (50)

where E = (1/2)(|u′
0|2 + ((b′

1)2/(∂zb0))) and 〈 · 〉 denotes averaging over depth in addition to the mul-

tiscale average ( · ).  The above equation guarantees energetic consistency for the eddy-mean system,
so that energy gained or lost by the mean flow due to eddy forcing is reflected in a corresponding loss
or gain by the eddies. Application of the same methods to homogeneous isotropic turbulence yields a
similar equation for the slow evolution of small scale energy (McLaughlin et al., 1985).

The large scale dynamics in this system are simply the large scale dynamics which occur in regimes
of QG turbulence with an extended inverse cascade: the large scale vorticity is primarily barotropic,
and the large scale buoyancy field is passively advected by the barotropic flow. The inverse cascade
is accomplished by the eddy momentum flux, which provides small-scale forcing to the large-scale
barotropic vorticity equation. The generation and forward cascade of potential energy3 is accom-
plished by passive advection of large scale buoyancy by the barotropic flow, being ultimately absorbed
by the eddy buoyancy flux divergence. The eddy dynamics are highly energetic; so much so, in fact,
that their nonlinear self interaction occurs on a timescale faster than the timescale of baroclinic insta-
bility. Energy exchange with the mean flow occurs slowly in comparison with advection on the small
scales, and this effect is included through the eddy energy equation (50).

5. Discussion and conclusions

We have used MSA  with a single distinguished limit to derive two  systems of equations describing
the interaction of synoptic scales and mesoscales in the oceans. In both systems the small scale is
comparable to the deformation radius, and bottom friction acts at leading order on the large scale
velocity. The distinguished limit requires the synoptic ˇ-scale and external deformation radius to be
larger than the internal deformation radius, so the analysis is not applicable to the tropics. The synoptic
scale (our relative large scale) in both systems is smaller than the planetary scale, while the large scale
in Pedlosky (1984) and Grooms et al. (2011) is equal to the planetary scale. The first system, (35)–(41),
describes the interaction of large scale ‘Large Amplitude Geostrophic’ (LAG) dynamics with small
scale eddies (QG). The dynamics are coupled by an eddy momentum flux in the LAG equations and
by baroclinic instability of the small scale dynamics to the large-scale shear. This system is applicable
to regions where the scale of order one isopycnal variation is larger than the deformation radius but
smaller than the planetary scale, for example in the vicinity of moderately large scale baroclinic fronts
or near the boundaries of wind driven gyres.

Mathematically, the equations are in need of regularization, principally because the QG equa-
tions include baroclinic instability but lack dissipation, but also because of the catastrophic baroclinic
instability present in the LAG equations (Benilov, 1993). This situation is similar to the difficulties
encountered with the PG equations, which require the addition of frictional and dissipative terms (e.g.
de Verdière, 1986, 1988; Samelson and Vallis, 1997; Samelson et al., 1998). Our asymptotic analy-
sis shows that the small-scale contribution to the large-scale dynamics in this regime is dominantly
through the divergence of the horizontal momentum flux; indeed it is possible that this term may  be

3 Quasigeostrophic available potential energy, to be precise, which is equal to half the square of the buoyancy variance.
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sufficient to regularize the instability of LAG if it is sufficiently dissipative though a simple demonstra-
tion is lacking due to the nonlinearities involved. The inclusion of next-order asymptotic terms like
Ekman friction in the QG equations and eddy buoyancy flux in the LAG equations would improve the
ability of this system to reliably model the interactions between dynamics at these scales.

The second system, (42)–(50), describes the interaction of large scale barotropic QG dynamics with
deformation-scale baroclinic QG dynamics in quasigeostrophic turbulence with an extended inverse
cascade. The dynamics are coupled by eddy momentum and buoyancy fluxes in the synoptic equations
and by an equation for the slow evolution of eddy energy (50). This system is applicable in regions
where isopycnal variation remains small on the synoptic scale.

The second system can be thought of as a model for the classic QG baroclinic turbulence cycle, with
forcing by a mean shear and dissipation by weak drag (e.g. Salmon, 1980, 1998; Held and Larichev,
1996; Larichev and Held, 1995, and many others). The large scale flow is primarily barotropic. Large
scale potential energy is generated by the interaction of the barotropic flow with the background
‘planetary’ buoyancy gradient, and cascades downscale as the buoyancy is passively advected by the
barotropic flow. Near the deformation scale potential energy is converted to kinetic energy through
baroclinic instability, which undergoes an upscale cascade and barotropizes before being dissipated at
the large scales by bottom friction. In our second system, the large scale buoyancy is passively advected
by the barotropic flow, and is generated by the background ‘planetary’ buoyancy gradient. As buoyancy
variance (QG available potential energy) cascades downscale, it is absorbed by the eddies through the
divergence of a buoyancy flux. The slow, large scale eddy energy equation (50) captures this exchange
of energy with the mean flow. The QG eddy dynamics generate a momentum flux that provides a small
scale forcing term in the large scale barotropic vorticity equation, resulting in a cascade of energy to
larger scales, where it is ultimately absorbed by the bottom friction, or some other process.

A potential weakness of this system is that on the fast time scale the eddy dynamics only feel the
barotropic mean flow; since these fast dynamics do not know about the direction of the large scale
buoyancy gradient, it is unreasonable to suspect that they will produce a buoyancy flux which is down
the mean gradient on average. This is consistent with the results of Nadiga (2008) who  found that the
eddy PV flux in a quasigeostrophic system was only weakly correlated with the mean PV gradient,
being weakly downgradient only in an average sense. Our multiple scale asymptotic analysis provides
a description only of the direct interaction between motions at the deformation radius and motions
at the synoptic scale. In QG turbulence the interaction between the deformation scale and the largest
scales is not primarily direct, but rather goes through the intermediate scales which are ignored by
the asymptotics.

In both systems the eddies drive the mean momentum through a depth-integrated momentum
flux of the form

curl[∇h ·
∫ 1

0

u′u′ dz] =
∫ 1

0

[∂X∂Y ((v′)2 − (u′)2) + (∂2
X − ∂2

Y )u′v′] dz. (51)

This may  be written in terms of the horizontal Fourier transform of the eddy streamfunction  ̂′
k
(z, �)

curl[∇h ·
∫ 1

0

u′u′ dz] =
∫ 1

0

[∂X∂Y ((k2
y − k2

x )| ̂k|2
k

) − (∂2
X − ∂2

Y )kykx| ̂k|2
k

] dz, (52)

where ( · )
k

denotes integration over horizontal wavenumbers in addition to a time average. The time-

averaged 2D eddy kinetic energy spectrum at any depth is �
∫ �−1

0
(k2
x + k2

y )| ̂k|2 d�; thus, (an)isotropy
in the time averaged eddy kinetic energy spectrum corresponds to (an)isotropy in the time average of
| ̂k|2. If the time and depth averaged eddy energy spectrum is isotropic, then by symmetry∫ 1

0

((k2
y − k2

x )| ̂k|2
k

) dz =
∫ 1

0

kykx| ̂k|2
k

dz = 0, (53)

which implies that (u′)2 = (v′)2 and u′v′ = 0; in such a case the eddy terms drop out of the synoptic
scale vorticity equation in both systems. Our analysis thus links nontrivial eddy momentum forcing
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to anisotropy in the time and depth averaged eddy energy spectrum. In the first system, (35)–(41),
anisotropy is generated by baroclinic interaction terms in the eddy equations and nontrivial eddy
forcing is expected. In the second system, (42)–(50), eddy anisotropy is not expected at leading order,
except as random fluctuations around an isotropic ensemble mean.

With sufficient regularization, the first model may  serve as a useful testbed for the “superparam-
eterization” of mesoscale eddies, and for the investigation of the interaction of strong, synoptic-scale
fronts with smaller-scale QG eddies. We  intend to use the second model to investigate the question
of eddy locality (cf. Venaille et al. (2011))  by diagnosing local and nonlocal terms in the eddy energy
budget of simulations, to see how well local baroclinic eddy energy generation is balanced by local
eddy energy dissipation. The second model also suggests a stochastic approach: because large-scale
interaction terms are absent from the leading order eddy equations in this model, the fluxes generated
by the eddies are expected to have a significant random component, being only weakly correlated with
the gradients of the mean variables. Stochastic models of QG dynamics are well developed (see DelSole,
2004 for a review); development of a parameterization based on stochastic modeling in conjunction
with multiscale methods like superparameterization Majda (2012) and an eddy energy equation in
the style of Large Eddy Simulation (LES) is a subject of further research.
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Appendix A. Details in the derivation of Eq. (50)

The derivation of Eq. (50) for the slow evolution of the eddy energy proceeds from the following
set

ẑ × u′
0 = −∇hp′

1 (A.1)

∂zp′
1 = b′

1 (A.2)

∇h · u′
0 + ∇h · u′

1 + ∂zw′
1 = 0 (A.3)

∇h · u′
1 + ∇h · u′

2 + ∂zw′
2 = 0 (A.4)

∂tu′
0 + (u0 + u′

0) · ∇hu′
0 + ẑ × u′

1 = −∇hp′
2 − ∇hp′

1 (A.5)

∂Tu′
0 + ∂tu′

1 + (u0 + u′
0) · ∇hu′

1 + u1 · ∇u′
0 + (u0 · ∇hu0)′ + (w′

1∂zu
′
0)′

+ ẑ × u′
2 + A2

ˇY ẑ × u′
0 = −∇hp′

3 − ∇hp′
2 (A.6)

∂tb′
1 + (u0 + u′

0) · ∇hb′
1 + w′

1∂zb0 = 0 (A.7)

∂Tb′
1 + ∂tb′

2 + (u0 + u′
0) · ∇hb′

2 + u1 · ∇hu′
1 + ıu′

0 · ∇hb0 + w′
1∂zb1 + w′

2∂zb0 + (w′
1∂zb

′
1)′ = 0.

(A.8)

For brevity of notation, we have re-introduced the nondimensional pressure p. It is also useful to recall

w′
1b

′
1 = w′

1(b′
1)2 = 0 (A.9)

which can be derived by multiplying (A.7) by b′
1 or (b′

1)2 and requiring the multiscale average of exact
derivatives to vanish. The relevant boundary conditions are

w′
1 = 0, w′

2 = (u0 · ∇h�b)′ + ẑ · (∇ × u′
0) at z = 0 (A.10)

w′
1 = 0, w′

2 = ẑ  · ∇ × � ′ at z = 1. (A.11)
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The derivation proceeds by taking the dot products of u′
1 with (A.5) and u′

0 with (A.6) and averaging
over small scales, fast time, and the vertical coordinate. In this final step the averages of small scale
and fast time derivatives are set to zero; this is effectively the application of a necessary solvability
condition. The resulting equation describes the large scale evolution of eddy kinetic energy. The evo-
lution of quasigeostrophic available potential energy is derived by multiplying (A.7) by b′

2 and (A.8)

by b′
1, adding the results, dividing by ∂zb0, and averaging over small scales, fast time, and the vertical

coordinate. The net eddy energy equation is derived by summing the kinetic and potential energy
equations.

The main difficulty in the otherwise straightforward derivation concerns the pressure terms; we
therefore present that portion of the derivation here. Summing the contractions of (A.5) with u′

1 and
(A.6) with u′

0 generates the following

1
2
∂t |u′

0|2 + . . . + u′
0 × u′

2 = −u′
0 · ∇hp′

3 − u′
0 · ∇hp′

2 − u′
1 · ∇hp′

2 − u′
1 · ∇hp′

1. (A.12)

Recalling that ẑ × u′
0 = −∇hp′

1, we have u′
0 × u′

2 = u′
2 · ∇hp′

1. We  insert this above and average over
fast times and small scales. Integrating terms of the form u′ · ∇ hp′ by parts and making use of (A.3)
and (A.4) results in

1
2
∂t |u′

0|2 + . . . = −∇h · (p′
1u′

1) − ∇h · (p′
2u′

0) − p′
2∂zw

′
1 − p′

1∂zw
′
2. (A.13)

Again recalling that ẑ × u′
0 = −∇hp′

1 we have ∇h · (p′
1u′

1 + p′
2u′

0) = ∇h × (p′
1(ẑ × u′

1 + ∇hp′
2)). Eq. (A.5)

allows further simplification to

∇h · (p′
1u′

1 + p′
2u′

0) = −∇h × (p′
1(∂�u′

0 + (u′
0 + u0) · ∇hu′

0 + ∇hp′
1)) (A.14)

∇h · (p′
1u′

1 + p′
2u′

0) = −∇h × (p′
1(∂�u′

0 + u0 · ∇hu′
0)). (A.15)

This final simplification above makes use of the facts that p′
1u′

0 · ∇hu′
0 = p′

1∇h · (u′
0u′

0) =
−u′

0 × (u′
0u′

0) = 0 and ∇h × (p′
1∇hp′

1) = ∇h × ∇h(p′2
1)/2 = 0. While the final result above is not equal

to the pressure work, it is related to it, as shown by Pedlosky (1987).
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