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ABSTRACT

This paper investigates the energy budget of mesoscale eddies in wind-driven two-layer quasigeostrophic

simulations. Intuitively, eddy energy can be generated, dissipated, and fluxed from place to place; regions

where the budget balances generation and dissipation are ‘‘local’’ and regions that export or import large

amounts of eddy energy are ‘‘nonlocal.’’ Many mesoscale parameterizations assume that statistics of the

unresolved eddies behave as local functions of the resolved large scales, and studies that relate doubly pe-

riodic simulations to ocean patches must assume that the ocean patches have local energetics. This study

derives and diagnoses the eddy energy budget in simulations of wind-driven gyres. To more closely ap-

proximate the ideas of subgrid-scale parameterization, the authors define the mean and eddies using a spatial

filter rather than the more common time average. The eddy energy budget is strongly nonlocal over nearly

half the domain in the simulations. In particular, in the intergyre region the eddies lose energy through

interactions with the mean, and this energy loss can only be compensated by nonlocal flux of energy from

elsewhere in the domain. This study also runs doubly periodic simulations corresponding to ocean patches

from basin simulations. The eddy energy level of ocean patches in the basin simulations matches the level

in the periodic simulations only in regions with local eddy energy budgets.

1. Introduction

Mesoscale eddies are a ubiquitous feature of ocean

dynamics and have been the subject of myriad in-

vestigations. Gill et al. (1974) showed that the potential

energy of the large-scale-mean circulation is much

greater than its kinetic energy and argued that the

conversion of large-scale available potential energy by

baroclinic instability is primarily responsible for the

ubiquity of mesoscale eddies. Diagnostic studies of eddy

energetics in numerical simulations began in the 1970s;

Harrison (1979) reviews the results. Early attention

(e.g., Holland 1978) was focused on the partition of

energy between kinetic and potential, mean and eddy,

and on domain-integrated budgets. A notable exception

is Harrison and Robinson (1978), who analyzed the

energy budget over a few subregions of a single-gyre

basin. Subsequent work by Hall (1986) and Treguier

(1992) also analyzed the energy budget over subregions

of their computation domains. Each of these energy

budget analyses demonstrates that the eddy energy

budget of an ocean patch balances local generation,

local dissipation, and nonlocal import or export of

energy. However, none of these analyses directly ad-

dresses the question of energy locality, namely, the

extent to which local eddy generation is balanced by

local eddy dissipation.

The question of eddy energy locality bears on the

subject of mesoscale parameterization because the ef-

fects of unresolvedmesoscale eddies on a resolvedmean

flow depend on the eddy energy. Visbeck et al. (1997)

and Cessi (2008) both relate the transfer coefficient k in

the Gent and McWilliams (1990) parameterization to

eddy energy using amixing-length approximation k’ yele
where le is a mixing length and ye is an eddy velocity de-

pendent on the eddy energy. These parameterizations are

local in the sense that ye and le are functions only of the

local values of the resolved, large-scale variables and of

external parameters like the strength of bottom friction

and the local Coriolis frequency.1 In contrast, Eden and

Greatbatch (2008) and Marshall and Adcroft (2010)
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propose parameterizations that allow for nonlocality in

the eddy energy budget by solving prognostic equations

for eddy energy on the coarse grid. A recent multiscale

asymptotic analysis by Grooms et al. (2012) shows that

nonlocal components, including an advective flux of

energy from one place to another, can be comparable to

local generation and dissipation in the eddy energy

budget.

Energy locality is also important in relating the results

of doubly periodic simulations to patches of ocean. Be-

cause doubly periodic simulations always have local

energetics, they are unable to correctly model patches of

ocean that have nonlocal energetics. For example, Arbic

and Flierl (2004b) and Arbic and Scott (2008) make

inferences about the type and strength of bottom friction

operative in the oceans by comparing doubly periodic

simulations to observational data. The relevance of

these results is contingent on the energetic locality of

the observed eddies.

The question of locality is also connected to the results

of doubly periodic simulations with imposed nonzonal

baroclinic shear on a b plane. Doubly periodic simula-

tions with imposed nonzonal baroclinic shear often de-

velop unrealistically large energy levels (Arbic and

Flierl 2004a; Smith 2007). A simple explanation of the

mechanism is that the flow, under the influence of b,

tends to organize into zonal jets that extract energy from

imposed nonzonal shear more efficiently than from im-

posed zonal shear. One possible explanation for the

unrealistically high energy levels in doubly periodic

simulations with nonzonal shear is that the eddy energy

budget in these ocean patches is nonlocal: rather than

being balanced by dissipation, efficient eddy energy

generation in these patches could be balanced by a net

export of energy, which is lacking in doubly periodic

simulations.

Venaille et al. (2011) investigate locality by comparing

eddies from ocean patches in a general circulation model

(GCM) with eddies in doubly periodic quasigeostrophic

(QG) simulations. Though able to demonstrate locality

by agreement between the QG and GCM eddies, this

approach has difficulty in conclusively demonstrating

nonlocality because any failure of the QG simulations to

match their GCM counterparts can potentially be at-

tributed to a mismatch in the dynamics (QG versus

primitive equations) rather than to nonlocality per se.

We address the question of energy locality of meso-

scale eddies by diagnosing the energy budget of eddies

in simulations of two-layer quasigeostrophic dynamics

in a wind-driven basin configuration. We say that the

eddy energy budget is ‘‘local’’ if it comprises a balance

between local energy generation (through interaction

with the mean flow, wind forcing, etc.) and dissipation.

This question is formally distinct from the parameteri-

zation question of whether the eddy fluxes of momen-

tum and tracers are local functions of the large scale,

which we do not address directly; we simply assume that

nonlocality in the eddy energy budget suggests some

degree of nonlocality in the fluxes.

There are many ways of defining ‘‘mean’’ and ‘‘eddy.’’

In the context of energetics, the most popular definition

of the mean is the time average. This has several ad-

vantages, including analytical tractability and ease of

implementation. But in the context of mesoscale ocean

dynamics, and in particular in the context of parame-

terization, the concepts of mean and eddy are more

intuitively connected to spatial scale than to a time

average, and the time-average definition of mean and

eddies is only indirectly connected to spatial scale. For

example, time-mean analysis allows nonstationary large-

scale features, like fast barotropic Rossby waves or os-

cillating gyres, to appear in the eddy field and small-scale

standing features, like thin stationary jets, to appear in the

mean. In addition, topographic interactions and Rossby

wave reflection at boundaries are able to transfer energy

from large to small scales, but in the time-mean analysis

topography and boundaries cannot mediate energy

transfer between the mean and eddies.

In zonal channels and doubly periodic domains, the

zonal mean is often preferred to a time average for de-

fining mean and eddies. As with the time average, this

has advantages in terms of computational and analytical

tractability, but the zonal-mean analysis allows features

with small zonal scales (e.g., jets) to appear in the mean

and features with large meridional scales (e.g., large-

scale vortices) to appear as eddies. These disadvantages

distance the results of time-mean and zonal-mean anal-

yses from the spatial-scale concept of mean and eddies

and particularly from the application of subgrid-scale

parameterization.

In addition to deviations from a zonal mean or time

mean, the term eddy can also refer to nonlinear coherent

vortices; indeed, it is natural to think of these as the

eddies regardless of the definition of the mean. Analysis

of large altimetric datasets shows that these eddies typi-

cally propagate westward over long distances (Chelton

et al. 2007, 2011), which suggests that the eddy energy

budget is nonlocal. But eddy propagation only suggests

energetic nonlocality and does not necessarily imply it. If,

for example, an eddy enters and leaves a quiescent region

without significantly changing amplitude, then its passage

has no effect on the time-averaged energy budget for

that region. Similarly, in the case of eddy formation or

lysis, the energy flux associated with a coherent eddy

entering or leaving a region can be balanced by a flux of

incoherent small-scale eddy energy. Thus, the formation,
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propagation, and decay of nonlinear coherent vortical

eddies can only be viewed as suggestive of energetic

nonlocality—an intuition that requires confirmation.

To avoid the difficulties inherent in the time-mean

and zonal-mean formulations, we use a purely spatial

filter of the type used by Nadiga (2008); we are unaware

of other local energetic analyses of mesoscale eddies

that define the mean by a spatial filter.2 We also address

the question of locality by comparing doubly periodic

simulations to patches of ocean in basin simulations.

Venaille et al. (2011) forced doubly periodic quasigeo-

strophic simulations with mean baroclinic shear profiles

taken from patches of ocean in a primitive equation

simulation and compared the results with the eddies in

the primitive equation patches. Many of the doubly

periodic simulations developed excess eddy energy

(suggesting nonlocal behavior) but the need to tune the

balanced quasigeostrophic simulations to approximate

the primitive equation dynamics meant that disagree-

ment between the QG and primitive equation simula-

tions could not be unambiguously attributed to nonlocal

effects. Our doubly periodic simulations use the same

governing quasigeostrophic dynamics as the basin and

channel simulations, thereby avoiding this difficulty.

As expected, we find that the energy level of the quasi-

geostrophic simulations correlates with the eddy en-

ergy in the ocean patches when the patches have local

energetics.

As noted above, there is reason to expect that the

eddy energy budget is nonlocal in regions of nonzonal-

mean shear, because doubly periodic simulations with

nonzonal shear are often unrealistic. Some regions of

nonzonal shear in our simulations do have nonlocal eddy

energy budgets, in particular those at the eastern edges

of the wind-driven gyres, where doubly periodic simu-

lations bear essentially no resemblance to these ocean

patches. However, other regions of nonzonal shear have

local eddy energy budgets and are modeled well by

doubly periodic simulations.

The outline of the paper is as follows. We present

the eddy energy budget of two-layer quasigeostrophic

equations based on a spatial filter in section 2, with the

details of the derivation sequestered in an appendix. In

section 3 we describe the experimental setup, including

the details of the code, basin dimensions, etc. In section 4,

we present and analyze the results of the energetic anal-

ysis and of the comparison with doubly periodic simula-

tions. We conclude in section 5.

2. Eddy energy equations (analysis/theory)

We analyze the energetics of the following two-layer

QG equations:

›tq11$ � (u1q1)1by15Fw 1Ah=
4c1 , (1)

›tq21$ � (u2q2)1by252r=2c21Ah=
4c2 , (2)

q15=2c1 1F1(c22c1)2F0c1, and (3)

q25=2c21F2(c12c2) , (4)

where F0 5 f 20 /(gH1), F1 5 f 20 /(g
0H1), and F2 5 f 20 /(g

0H2).

The velocity is ui 5 (2›yci, ›xci), and Fw denotes wind

forcing. The potential vorticity in each layer is qi (i5 1 is

upper and i 5 2 is lower), the streamfunction is ci, the

depth of each layer is Hi, the local Coriolis frequency is

f0, the gravitational acceleration is g, and reduced

gravity is g0; Ah is the turbulent viscosity coefficient, r is

the Ekman drag coefficient, and b is the meridional

gradient of planetary vorticity. We include the effect of

a free surface through the inclusion of nonzeroF0 (which

is much smaller than F1 and F2), but this has minimal

impact on the dynamics because the external deforma-

tion radius is close to the domain scale. The internal

(baroclinic) and external (barotropic) deformation radii

are the reciprocal of the square root of the eigenvalues of

the matrix [(F1 1 F2) 2F1; 2F2F2] (in MATLAB nota-

tion); the larger radius is barotropic. We use Laplacian

vorticity diffusion rather than the more common bi-

harmonic vorticity diffusion for reasons discussed below.

The values taken by the parameters in our simulations

are discussed in section 3.

We define the large-scale-mean potential vorticity to

be the solution of the following elliptic problem:

(12L2
f=

2)qi 5 qi , (5)

with boundary condition qi 5 0. The filter scale is Lf:

larger scales aremean and smaller scales are eddies. This

is essentially the same as the filter used by Nadiga

(2008). The eddy potential vorticity is defined by

q0i 5 qi 2 qi. The overbar and prime notation are defined

as above for any dependent variable, not just potential

vorticity.

Some insight into the behavior of the filter may be

gained by examining its behavior in a periodic domain.

In a periodic domain, application of the low-pass filter

is equivalent to scaling the Fourier coefficients of qi
by (11L2

f k
2)21, where k is the modulus of the wave-

number. Large wavenumbers with Lfk� 1 are damped

approximately as (Lfk)
22, while small wavenumbers are

2Nadiga and Straub (2010) use a spatial filter defined by Fourier

truncation to diagnose domain-integrated energetics, but such

a filter is unable to produce a meaningful local energetic analysis.
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approximately unchanged. For comparison, note that

a low-pass filter defined by averaging over a circle is

equivalent to scaling the Fourier coefficients by a Bessel

function of the first kind J0(Lfk), and that the amplitude

of this Bessel function decays as (Lfk)
21/2 (with oscil-

lation). Similarly, a low-pass filter defined by convolu-

tion with a Gaussian is equivalent to scaling the Fourier

coefficients by a Gaussian, which decays faster than

exponentially with k. Our elliptic filter is thus more scale

local than the circular average but less so than aGaussian

filter. Although these considerations formally apply only

in a periodic domain, the qualitative aspect of scale lo-

cality is transferred to nonperiodic domains. Finally,

we note that Nadiga and Straub (2010) investigate eddy

energetics in a barotropic, wind-driven basin using a

spectral-truncation filter; this filter epitomizes scale lo-

cality but is not spatially local, which is consistent with

their investigation of the area-integrated energy budget.

The disadvantage of our filter is that it is inho-

mogeneous: it does not commute with spatial deriva-

tives; this is a problem endemic to spatial filters in

domains with boundaries. To make analytical progress

in deriving an energy budget one must commute the

filter with derivatives, which incurs errors. These errors

are tracked in our diagnostic code and are generally

limited to the region within a distance Lf from the

boundary. Because using different boundary conditions

on the elliptic inversion results in changes primarily near

the boundaries where errors are already large, the use of

a different boundary condition like qi 5 qi would have

a negligible effect on our results. Analysis of the viscous

dissipation requires formally commuting the spatial fil-

ter with several derivatives; because commuting the fil-

ter with derivatives incurs errors, we choose to minimize

these errors by using Laplacian instead of higher-order

dissipation.

To alleviate the difficulties introduced by the in-

homogeneity, we define the eddy streamfunction ~ci to

be the solution of

q015=2~c11F1(
~c22

~c1)2F0
~c1 and (6)

q025=2~c21F2(
~c12

~c2) , (7)

with a boundary condition on the eddy streamfunction

inversion ~ci 5 0; this guarantees that the eddy velocity

normal to the boundaries is zero. The more common

mass-conserving integral boundary condition would in-

troduce a large-scale barotropic component to ~ci (as-

sociated with the finite barotropic deformation radius),

which is undesirable. In addition, the effect of mass-

conserving boundary conditions on the baroclinic com-

ponent of ~ci would be confined to the boundaries, where

errors are already large. The eddy velocity ~ui and vor-

ticity ~vi are defined by ~ui 5 (2›y~ci, ›x~ci) and ~vi 5=2~ci.

Note that c0
i 6¼ ~ci, u

0
i 6¼ ~ui, and ~vi 6¼ v0

i, but the errors are

concentrated near the boundaries.

The instantaneous eddy energy budget for an in-

homogeneous spatial filter is

1

2
›t

~E5G1F1D1 x , (8)

where the eddy energy density is

~E5
r0f

2
0

g0
(~c12

~c2)
2 1

r0f
2
0

g
~c
2
11 r0�

i
(Hij~uij2) , (9)

the local generation rate due to wind forcing and inter-

actions with the mean is

G52r0H1
~c1F

0
w1 r0�

i
Hi

~ui 3 (uiqi)
0 , (10)

the local dissipation rate by Ekman friction and vis-

cosity is

D52r0rH2j~u2j22 r0Ah�
i
Hi~v

2
i , (11)

the nonlocal divergence of the energy flux is F, and x is

the collection of terms that result from inexact com-

muting of the filter with spatial derivatives. Details of

the derivation and the precise forms of F and x are in-

cluded in the appendix.

The general form of the energy budget derived using

a temporal filter (specifically, a long-time average) in-

stead of a spatial filter is similar, except that it does not

include local eddy generation by the steady wind forcing

and it does not include filter error because the temporal

filter commutes with spatial derivatives. Details of the

mean and eddy energy budgets defined for a time filter

can be found in Holland (1978). Although the form of

the temporal-filter budget is similar to that of the spatial-

filter budget, the budgets themselves can be different for

the reasons described above (e.g., large-scale Rossby

waves appear in the mean of the spatial filter but in the

eddies of the temporal filter). Furthermore, the spatial-

filter budget is instantaneously meaningful, in contrast

to the temporal-filter budget.

3. Experimental setup

a. Basin simulations

The numerical experiments are performed using a

model based on the QG equations truncated to two layers,

Eqs. (1) and (2). The free-slip conditions appropriate for
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harmonic viscosity are imposed at lateral walls: ›2nc5 0,

where ›n is the derivative normal to thewall. A third-order

Adams–Bashforth scheme is used for time derivatives,

centered differencing in space, Arakawa (1966) for the

Jacobians, and a multigrid method for the elliptic in-

versions. Mass conservation is achieved by assuming

that the domain-averaged layer thicknesses are constant

(McWilliams 1977); this is imposed as a boundary condi-

tion on the potential vorticity inversion, Eqs. (3) and (4).

We perform experiments in a square domain of width

Lx5Ly5 6144 kmwith a 20-km baroclinic deformation

radius. A large domain scale is chosen to allow a large

interior area free of filter errors, because these are

concentrated near boundaries, and to allow a large scale

separation between the eddies and the gyres. The filter

scale Lf 5 180 km is chosen to be as small as possible

given the constraint that only the gyres show up in the

large-scale-mean streamfunction. Note thatLf is defined

as an inverse wavenumber, so, for example, jets with

a peak-to-trough distance of pLf ’ 565 km would lie at

the filter scale and jets with a peak-to-trough distance

of Lf 5 180 km would lie well within the eddy range

of scales.

We perform experiments using two different wind-

forcing profiles: zonal and nonzonal. In the experiments

using zonal wind, the forcing takes the form

Fw5

8>><
>>:

2
t0
a
sin

�
2

a

�
y2

Ly

9

��
for y 2 [Ly/9,Ly]

0 for y 2 [0,Ly/9)

,

(12)

where a 5 8Ly/9p. Note that there is no wind forcing

in the southernmost 1/9 of the domain. This makes for

slightly more interesting asymmetric dynamics and

allows some nonzonality in the westward flow of the

subtropical gyre.

The nonzonal-wind forcing takes the form

Fw52
t0
b
sin

�
2y

b
2 f (x, y)

�
, (13)

where b 5 Ly/p and f(x, y) 5 (2Ly/b)(0.8x/Lx 2 0.4) sin

(y/b). The amplitude of the zonal and nonzonal wind

stress are both t05 0.4Nm22, which is much larger than

the average zonal wind over the midlatitudes. However,

considering that the wind stress curl is scaled by a large

meridional extent Ly in Eqs. (12) and (13), this gives

a moderate forcing large enough to produce eddies in

the eastern half of the domain. The nonzonal form of the

wind forcing follows Rhines and Schopp (1991) and is

designed to produce a nonzonal intergyre jet. A sum-

mary of the model parameters can be found in Table 1.

Once the equilibrium is reached, the terms in the eddy

energy budget are evaluated five times per day and

are averaged over a period of 10 years. Although the

budget is well defined instantaneously, we find that the

smoothing effect of a 10-yr average clarifies the results.

b. Doubly periodic simulations

As an independent measure of locality, we compare

the local eddy kinetic energy density from the basin

simulations to the kinetic energy density from a set of

doubly periodic simulations, each using the same model

parameters, and driven by the local baroclinic shear at

each coarse-grained point in the domain. Specifically, we

compute the large-scale streamfunction from the two

primary gyre simulations by averagingCi [ci 2 ~ci over

a period of 10 years. This is used to compute the baro-

clinic shearU(cosu, sinu)5=?(C12C2), whereU is the

magnitude of the shear, =? 5 (2›y, ›x), and u is its

counterclockwise angle from eastward. A joint histo-

gram of U and u (from both simulations) is used to de-

termine the range of shear magnitudes and angles in the

simulations, from which 48 representative combinations

are chosen. Each of these is used to drive a doubly pe-

riodic simulation. The simulations, using a standard

spectral model (described, e.g., in Smith 2007) at a res-

olution of 5122, use the same values of F1, F2, b, and r as

the primary gyre simulation (although the enstrophy

dissipation is accomplished by a spectral filter, rather

than biharmonic viscosity used in the gyre simulations).

Each simulation is set in a domain of 10 Rossby wave-

lengths, and where possible, is brought to steady state; in

cases with larger and very nonzonal shears, the simula-

tions do not equilibrate. The results are discussed in

section 4, below.

TABLE 1. Model parameters.

Parameter Symbol Value

Rossby deformation radius Lr 20 km

Horizontal resolution Dx 5 Dy 8 km

Domain scale Lx 5 Ly 6144 km

Top layer H1 1000m

Bottom layer H2 4000m

Wind stress amplitude t0 0.4Nm22

Coriolis parameter f0 9.3 3 1025 s21

Beta parameter b 1.74 3 10211 m21 s21

Gravitational acceleration g 9.81m s22

Reduced gravity g 0 0.0043m s22

Reference density r0 1028 kgm23

Bottom friction coefficient r 1027 s21

Dissipation coefficient Ah 50m2 s21

Spatial-filter scale Lf 180 km
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4. Results

Figure 1 shows snapshots of upper-layer potential

vorticity q1 overlaid by contours of the instantaneous

large-scale upper-layer streamfunction c1 2 ~c1. In the

zonal-wind experiment (left), vigorous eddies are evi-

dent throughout the domain except the far east. Zonal

jets are evident in the central part of the domain, but not

the northern and southern quarters of the domain. In the

nonzonal-wind experiment (right), eddies are evident in

all regions except the southeast quarter. Strong zonal

jets are evident in the eddy field superposed on the

nonzonal large-scale intergyre jet. Because a spatial filter

instead of a time average is used to separate mean and

eddies, the instantaneous large-scale upper-layer stream-

function contours clearly show large-scale Rossby waves,

but have almost no signature from the zonal jets. The use

of a spatial filter also causes the western boundary cur-

rents to be slightly thicker than would be expected from

a time-mean analysis.

Figure 2 shows the 10-yr average of eddy kinetic en-

ergy density r0�iHij~uij2 overlaid with contours of the

baroclinic part of the 10-yr-averaged large-scale stream-

function. In both experiments, the eddy kinetic energy

FIG. 1. Upper-layer potential vorticity and large-scale streamfunction. Snapshots of the upper-layer potential

vorticity q1 from the (left) zonal-wind and (right) nonzonal-wind experiments are overlaid by snapshots of the

contours of large-scale upper-layer streamfunction c1 2 ~c1. The potential vorticity has been scaled by 1024 s21 and

the streamfunction contour interval is 104m2 s21. Axes in this and all subsequent maps are labeled in megameters.

FIG. 2. Basin eddy kinetic energy density. The logarithm of the 10-yr average of eddy kinetic energy density

(kg s22), that is, log(r0�iHihj~uij2it), where h�it denotes a 10-yr average, is shown for the (left) zonal-wind and (right)

nonzonal-wind experiments, overlaid by contours of the time-averaged large-scale baroclinic streamfunction, that is,

hci 2 ~ciit . The contour interval is 104m2 s21.
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varies over several orders of magnitude between the

western boundary and the basin interior. Zonal jets are

evident in the intergyre region of both experiments,

though more weakly in the zonal-wind case. The zonal-

wind basin shows turbulent double-gyre flow, with al-

most no energy in the easternmost portion of the gyres

and no jets. Nonzonal shear exists primarily in the

eastern halves of the gyres, but also in the southwest-

ward flow in the southern half of the subtropical gyre.

The nonzonal-wind basin displays turbulent double-gyre

flow but tilted on a northeast–southwest slant. Themean

shear is nonzonal both in the intergyre flow and in the

southeastern half of the subtropical gyre.

a. Energy diagnostics and nonlocality

Similar to the eddy kinetic energy, the terms in the

energy budget vary by several orders of magnitude over

the domain. To clarify the results, we present in Fig. 3

the terms in the energy budget scaled by the local eddy

energy density for the basin simulations. The left column

of Fig. 3 shows the zonal-wind results, and the right

column shows the nonzonal-wind results. From top to

bottom, the panels show the local generation, nonlocal

terms, local dissipation, and filter error.

In both experiments there is a near cancellation be-

tween generation and flux, with weak overall dissipa-

tion; the energy budget is thus almost completely

nonlocal from this perspective (we later reanalyze lo-

cality by coarse graining). Regions of blue generation

indicate nonlinear transfer of energy from the eddies to

the mean. Although such regions are found nearly ev-

erywhere, they are most pronounced in the region of the

separating western boundary current, which presumably

indicates a strengthening of the large-scale intergyre jet

by the eddies. In order for a nonzero eddy energy level

to be maintained in the presence of negative ‘‘genera-

tion,’’ eddy energy must be fluxed in from elsewhere;

this accounts for the strong influx of eddy energy to the

westernmidlatitudes (indicated by red in the second row

of Fig. 3). In both experiments the local eddy energy

generation is more uniformly positive in the westward

return flow of the gyres, and the local eddy dissipation is

also stronger. This conspires to make the energetics

more local, which is further verified by coarse graining,

discussed below. The filter error, shown in the bottom

row of Fig. 3, is negligible everywhere except in thin

regions near the boundaries, though the error is some-

what more pronounced near the northern and southern

edges of the western boundary.

Further quantification of the eddy energy budget is

provided by Fig. 4, which plots the unscaled terms in the

10-yr-averaged eddy energy budget for the zonal-wind

case along the three lines of longitude shown in the

lower left panel of Fig. 3; the lines lie at x 5 Lx/8, Lx/4,

and Lx/2.

Every panel of Fig. 4 shows significant variation with

latitude. The leftmost panel shows the budget at x5Lx/8,

which cuts through the high-energy region just down-

stream of the boundary current separation. The terms in

the budget in this region are an order of magnitude larger

than anywhere to the east, and the budget is strongly

nonlocal because of loss of eddy energy to the mean. This

energy loss is compensated by a strong import of energy

from the western boundary. The middle panel shows the

budget 768km further east at x 5 Lx/4; the terms in the

budget in this region are an order of magnitude smaller

than in the leftmost panel. Thewestward flow in the north

and south is approximately local because generation is

positive and approximately balances dissipation. In the

central eastward flow the generation is primarily negative

and three jetlike structures are observed, with a strong

nonlocal influx of energy. It is tempting to compare the

budgets of these structures with theories of eddy-mean

interactions in jet formation, but such theories inevitably

treat the jets as part of the mean flow whereas both the

jets and the waves of such theories are small enough to be

part of our eddy field. The three bumps in the center

panel of Fig. 4 have a wavelength of approximately

500 km, which is much less than the cutoff wavelength

of the filter 2pLf ’1130 km. The rightmost panel shows

that the terms in the eddy energy budget are quite small

by x 5 Lx/2; indeed, the terms in the central latitudes

are probably ‘‘noise’’ rather than a true signal and would

deteriorate further under a longer-time average. Thus,

very little net generation, dissipation, or flux is taking

place in the central part of the domain. Nevertheless, there

remains a signature of local balance between generation

and dissipation at the northern and southern edges, in the

gyres’ westward return flow.

Clearly, a great deal of spatial variation remains de-

spite the ten-year average; indeed, Fig. 4 indicates that

nonlocality is the rule rather than the exception when

considering the budget at a single grid point of the do-

main. To clarify the level of nonlocality, and consistent

with the concept of subgrid-scale parameterization, we

coarse grain the eddy energy budget by averaging it over

square boxes of width 384 km, leaving 163 16 averaged

subdomains; the qualitative results are not changed by

using boxes of size 256 km. The level of nonlocality is

then assessed by plotting the ratio of the coarse-grained

nonlocal terms to the coarse-grained dissipation, shown

as a percentage in Fig. 5 for both basin experiments. Any

region with nonlocal terms greater than or equal to 50%

of the dissipation are considered to have nonlocal en-

ergetics so the grayscale is saturated at 50% in Fig. 5.

Regions with an eddy energy density less than 103 kg s22
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FIG. 3. Scaled terms in the eddy energy budget (s21). (from top to bottom) The scaled generation

rate ahGit/h ~Eit, the scaled nonlocal flux rate ahFit/h ~Eit, the scaled dissipation rate ahDit/h ~Eit , and the
scaled filter error rate ahxit/h ~Eit, where h�i denotes a 10-yr average and a5 107 is a scaling factor. The

zonal-wind (left) and the nonzonal-wind (right) experiments are shown.
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are indicated by vertical lines, and regions with upscale

energy transfer (i.e., where the coarse-grained local

generation is negative) are indicated by horizontal

lines. Note that horizontal lines can only appear in re-

gions of strong nonlocality, shown in white in Fig. 5,

although exceptions are possible immediately adjacent

to the boundaries, because of contamination by filter

error.

In both experiments the northern half of the subpolar

gyre displays local energetics, indicated by dark shading

(the boxes adjacent to the walls appear to be nonlocal,

but are contaminated by filter error). In the zonal-wind

experiment the southern half of the subtropical gyre is

also approximately local despite some weak nonzonality

in the large-scale baroclinic shear, but the central part

of the basin displays strongly nonlocal energetics, with

nonlocal terms depositing eddy energy in that region to

make up for the losses due to dissipation and interaction

with the large scales. In the nonzonal-wind experiment,

the southeastern part of the subtropical gyre displays

local energetics despite the nonzonal-mean shear.

b. Comparison with doubly periodic simulations

We assess the ability of doubly periodic simulations to

model ocean patches with nonlocal energetics and/or

with nonzonal-mean shear by performing doubly peri-

odic simulations as described in section 3. A range of 48

values of baroclinic shear are chosen to cover the ob-

served range of large-scale, time-averaged shear in the

basin simulations; the doubly periodic simulations are

then mapped to patches of ocean in the basin simula-

tions with similar shear profiles. Figure 6 shows the eddy

kinetic energy density obtained from the 48 periodic

simulations and mapped into the basin configuration;

the left panel shows the zonal-wind experiment, and the

right panel shows the nonzonal-wind experiment.

FIG. 4. Terms in the eddy energy budget (m3 s23). Plots of the terms in the 10-yr-average eddy energy budget of the zonal-wind case

plotted along the lines of longitude shown in the bottom left panel of Fig. 3. (from left to right) The budget at x 5 Lx/8, Lx/4, and Lx/2

is shown. The solid line is hGit/r0, the dashed line is hFit/r0, the dotted line is hDit/r0, and the dash–dot line is hxit/r0, where h�it denotes
a 10-yr average. The vertical axis measures the distance from the southern boundary in megameters.
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The results of the periodic simulations shown in Fig. 6

are clearly quite different from the basin results shown in

Fig. 2. The most striking contrasts are evident in the

central part of the basins and in the eastern edges of the

gyres, where the eddy energy budgets are strongly non-

local as shown in Fig. 5. In the central part of the basin

the shear is predominantly zonal, but is subcritical and

the doubly periodic simulations do not generate any

eddy energy. In the eastern part of the gyres where the

shear is strongly nonzonal the basin simulations have

minimal eddy energy and strongly nonlocal budgets,

whereas the doubly periodic simulations display the

typical high-energy levels of simulations forced by strongly

nonzonal shear. The regions of westward flow at the

northern and southern edges of the basin display agree-

ment between the eddy energy density of the doubly pe-

riodic and basin simulations, which is again consistent with

the fact that the eddy energybudget is local in those regions

(Fig. 5). The baroclinic shear in the southern half of the

subtropical gyre has a nonzonal component in both zonal-

wind and nonzonal-wind experiments, yet the eddy energy

budget in these regions is local, and the energy levels of the

basin and periodic simulations are in agreement; thus,

nonzonal shear does not always imply nonlocality.

FIG. 5. Basin nonlocality. The ratio of coarse-grained nonlocal terms hFit to local dissipation hDit shown as

a percentage for the (left) zonal-wind and (right) nonzonal-wind cases. Regions where the nonlinear energy transfer

is upscale (negative generation hGit) are indicated by horizontal lines. Regions where the coarse-grained energy

density h ~Eit is less than 103kg s22 are indicated by vertical lines. Coarse-graining is performed by averaging over 163 16

square regions of width 384km, and h�it denotes a 10-yr average.

FIG. 6. Eddy kinetic energy density in periodic simulations. The logarithm of the average eddy kinetic energy

density (kg s22) from the suite of doubly periodic simulations is shown for the (left) zonal-wind and (right) nonzonal-

wind experiments.
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Finally, it is worth noting that the energy level of the

doubly periodic simulations in the purely nonzonal

western boundary current is comparable to that seen in

the basin simulations. This result cannot be correlated

with locality though, because the energy budget in the

western boundary current is contaminated by filter er-

rors and doubly periodic simulations are less relevant in

direct proximity to the boundary.

5. Discussion and conclusions

This paper aims to diagnose the degree to which the

energy budget of mesoscale eddies is local (i.e., to di-

agnose the degree to which it comprises a balance be-

tween local generation and dissipation) and to relate the

degree of locality to the success of doubly periodic simu-

lations. In contrast tomost studies of energetics, we define

the mean and eddies using a spatial filter instead of a time

average, which connects more naturally to the concept of

subgrid-scale parameterization. (Also note that our eddy

field includes all small-scale features, including but not

limited to nonlinear coherent vortices.) We derive the

eddy energy budget and identify local (generation and

dissipation) and nonlocal terms that consist of the di-

vergence of an energy flux. The budget is then diagnosed

in two simulations of wind-driven double-gyre simulations

in square basins, one simulation with zonal-wind forcing

and the other with nonzonal wind. Both simulations use

two-layer quasigeostrophic dynamics.

A significant degree of nonlocality is found in both

simulations, primarily in the intergyre jet region where

eddies lose energy through nonlinear interactions with

the mean. This energy loss and the loss caused by dis-

sipation can only be balanced by a nonlocal import of

eddy energy from elsewhere in the basin. The regions of

westward flow to the north and south of the gyres display

predominantly local energetics.

We run a suite of doubly periodic quasigeostrophic

simulations using the same quasigeostrophic dynamics

as the basin simulations, and forced by baroclinic shear

taken from the basin simulations. The energy level in

these doubly periodic simulations agrees with the eddy

energy only in regions of the basin simulations that have

local energetics, which is to say that the doubly periodic

simulations are incompatible with ocean patches over

approximately half the area of the basins. The periodic

simulations generate far too little energy in the intergyre

regions of the basin and far too much energy in the re-

gions of nonzonal flow at the eastern edges of the gyres.

It is not surprising that the doubly periodic simulations

fail to model regions with nonlocal energetics; indeed,

this can be viewed as confirming to some extent the

validity of the results of the spatial-filter diagnostics.

It is well known that doubly periodic quasigeostrophic

simulations forced by nonzonal baroclinic shear can

develop unrealistically high energy levels (Arbic and

Flierl 2004a; Smith 2007). Possible explanations are that

such simulations have unrealistically low friction or re-

quire nonlinear friction (Arbic and Scott 2008), that they

lack the effects of smaller-scale non-QG dynamics

(Venaille et al. 2011), or that they lack the ability to

export energy. By comparing patches of ocean with

doubly periodic simulations using the exact same gov-

erning equations, we remove the possibility of incorrect

friction or of non-QG dynamics. The failure of the

doubly periodic simulations corresponding to regions of

nonzonal shear at the eastern edges of the gyres and

the diagnosed nonlocality of the eddy energy budget in

these regions is thereforemore likely to be caused by the

inability of the doubly periodic simulations to export

energy.

We note, though, that although the failure of some

doubly periodic simulations with nonzonal shear can be

linked to nonlocal energetics, it is not true that nonzonal

shear is always associated with nonlocal energetics, or

that zonal shear is always associated with local ener-

getics. For example, the intergyre region in the zonal-

wind experiment has zonal baroclinic shear but nonlocal

energetics. The southern edge of the subtropical gyre in

both experiments, and in particular in the nonzonal-

wind experiment, has nonzonal baroclinic shear but lo-

cal energetics. The only regions of nonzonal shear with

nonlocal energetics are those at the eastern edges of the

gyres where the baroclinic shear is weak and almost

purely meridional; in these regions the inaccuracy of the

doubly periodic simulations might also be explained by

the presence of a strong barotropic shear that is absent

from the periodic simulations. Alternatively, the inac-

curacy of the doubly periodic simulations in these re-

gions might be explained by failure to incorporate the

time dependence of the large-scale background flow;

Poulin et al. (2010) demonstrate that such time de-

pendence can have a profound effect. We conclude

that the eastern edges of the gyres cannot be correctly

modeled by periodic simulations with time-independent-

mean shear, and a less idealized approach is called for

(e.g., Spall 2000; Poulin et al. 2010).

The failure of doubly periodic simulations in Venaille

et al. (2011) was difficult to attribute unambiguously

because of the mismatch between the QG and primitive

equation dynamics. The fact that in our experiments the

success of doubly periodic simulations correlates well

with energetic locality suggests that the failure of doubly

periodic simulations in Venaille et al. (2011) is indeed an

indication of nonlocal behavior rather than other pos-

sible causes (like time dependence of the mean flow,
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or a mismatch between QG and primitive equation

dynamics).

Although our experiments are idealized and do not

examine a range of forcing and drag parameters, our

results suggest that eddy energy nonlocality is a poten-

tially important feature of the ocean. Parameterizations,

which allow nonlocality, like those of Eden andGreatbatch

(2008) and Marshall and Adcroft (2010), may therefore

be more successful in modeling the behavior of un-

resolved mesoscale eddies than parameterizations that

assume locality. Similarly, because the degree of non-

locality in the real ocean is unknown, the validity of

studies using doubly periodic simulations to interpret

observations is uncertain (e.g., Arbic and Flierl 2004b;

Arbic and Scott 2008).
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APPENDIX

Derivation of the Eddy Energy Budget

The derivation begins by applying the high-pass filter

to the eddy PV Eqs. (1) and (2):

›tq
0
1 52$ � (u1q1)0 2b~y11F 0

w 1Ah=
4~c11Error1 and

(A1)

›tq
0
252$ � (u2q2)0 2b~y22 r~v21Ah=

4~c21Error2 .

(A2)

The Errori terms result from noncommutation of the

filter with spatial derivatives; the relative RMS error in

each layer, defined by

ð
jErrorij2 dtð
j›tq0ij2 dt

, (A3)

is tracked in the code and found to be less than 1% ex-

cept in a thin region near the boundaries.

The derivation proceeds by multiplying Eq. (A1) by

2r0H1
~c1, multiplying Eq. (A2) by2r0H2

~c2, and adding

the results. Subsequent simplifications are primarily

applications of the chain rule in the form ~c$ � F5
2$~c � F1$ � (~cF).
The local generation G is defined by

G5 r0�
i
fHi[~ui(yiqi)

02 ~yi(uiqi)
0]g2 r0H1

~c1F
0
w . (A4)

The terms corresponding to interaction with the mean

and wind generation are tracked separately in the code,

and the latter is found to be negligible.

The local dissipation D is defined by

D52r0rH2j~u2j22 r0Ah�
i
Hi~v

2
i , (A5)

and the Ekman and viscous dissipation terms are tracked

separately in the code.

The nonlocal terms are equal to the divergence of an

energy flux, defined as follows

F5 r0$ �
(
rH2

2
$(~c2)

21AhFA
h

1 �
i
Hi[

~ci›t$
~ci1

~ci(uiqi)
01bx̂~c

2
i /2]

)
. (A6)

The terms corresponding to b, nonlinearity, and ~ci›t$~ci

are tracked separately in the code, while the Ekman and

viscous nonlocal terms are tracked as one term, because

they are both small in comparison to the other terms.

The divergence of the viscous-induced energy flux is

defined by

$ � FA
h
5 �

i
Hi(~v

2
i 2 ~ci=

4~ci) . (A7)

The effect of filter error on the energetics is defined by

x52r0�
i
Hi

~ciErrori . (A8)
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