Task-Independent Sentence Understanding Models

Sam Bowman

Sleepinyourhat

Task Output

Task Model

Representation for Each Sentence

Reusable Encoder

Input Text

A general-purpose sentence encoder

Task Model

Task Output Representation for Each Sentence **Reusable Encoder**

Input Text

To develop a general-purpose neural network sentence encoder which makes it possible to solve any new language understanding task using only enough training data to define the possible outputs.

A general-purpose encoder

- Roughly, we might expect effective encoder representations to capture:
 - Word contents and word order. Ο
 - (Rough) grammatical structure. Ο
 - Cues to connotation and social meaning. Ο
 - Ο $\forall x [\text{patient}'(x) \rightarrow \exists y [\text{doctor}'(y) \land \text{treat}'(y, x)]]$
- These are still neural networks, so all of this will be implicit.

Unambiguous propositional information (of the kind expressed in a semantic parse).

Case Study: ELMo

Train large forward and backward deep LSTM language models.

Peters et al. '18

Case Study: ELMo

Train large (~100m-param) forward and backward deep LSTM language models.

Task Output

Case Study: ELMo Best paper at NAACL 2018!

Peters et al. '18

The Rest of the Talk

- The GLUE language understanding benchmark Wang et al. '18
 - ...and successes with unsupervised pretraining and fine-tuning on GLUE Radford et al. '18 (OpenAI GPT), Devlin et al. '18 (BERT)
- The updated SuperGLUE benchmark Wang et al. '19a
- Easy transfer learning with STILTs Phang et al. '19
- A few more things we've learned about these models Wang et al. '19b, Tenney et al. '19

GLUE: What is it?

The General Language Understanding Evaluation (GLUE):

An open-ended competition and evaluation platform for general-purpose sentence encoders.

Last Spring: GLUE

GLUE, in short

- Nine English-language sentence understanding tasks based on existing data, varying in: \bullet
 - Task difficulty
 - Training data volume and degree of training set-test set similarity
 - Language style/genre
- Simple task APIs: All sentence or sentence-pair classification.
 - Easy to use!
- Simple leaderboard API: Upload predictions for a test set (Kaggle-style)
 - Usable with any kind of method/model!

GLUE: The Main Tasks

Corpus	Train	Dev	ev Test Task		Metrics	Domain				
			Single-Sentence Tasks							
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews				
		072	Similarity and Paraphrase Tasks							
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questio				
				Inference	Tasks					
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. fiction books				

400000

C

Corpus	Train	 L	300000		
CoLA SST-2	8.5k 67k				
			200000		
MRPC STS-B QQP	3.7k 7k 364k	1			
			100000		
MNLI QNLI RTE WNLI	393k 108k 2.5k 634				
			0	WNLI	RTE

GLUE: The Main Tasks

Corpus	Train	Dev	Test	Task	Metrics	Domain					
	Single-Sentence Tasks										
CoLA SST-2	8.5k 67k	1k 872	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews					
	Similarity and Paraphrase Tasks										
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questio					
				Inference	Tasks						
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia misc. fiction books					

The Corpus of Linguistic Acceptability Warstadt et al. '18

- - Who do you think that will question Seamus first? *
 - The gardener planted roses in the garden.

Corpus	Train	Dev	Test	Task	Domain							
	Single-Sentence Tasks											
CoLA	8.5k	1k	1 k	acceptability	Matthews corr.	misc.						
SST-2	67k	872	1.8k	sentiment	acc.	movie reviews						
				Similarity and	F ₁₅ aph	Wang, Singh, Michael, Hill, Levy & Bowm						

 Binary classification: Is some string of words a possible English sentence. Data of this form is a major source of evidence in linguistic theory. Sentences derived from books and articles on morphology, syntax, and semantics.

The Recognizing Textual Entailment Challenge

Corpus	Train	Dev	Test	Task	
					Single-Se
CoLA SST-2					ntence pa FE annual
MRPC STS-B QQP	accor H: Chi	ding to t	he Chris r Reeve l	topher	the actor Reeve Fo accident.
					mere
MNLI	393k	20k	20k	NLI	
QNLI	108k	5.7k	5.7k	QA/N	LI
RTE	2.5k	276	3k	NLI	
WNLI	634	71	146	corefe	rence/NL

Dagan et al. '06 et seq.

Metrics

Domain

entence Tasks

airs: Does the first sentence entail the second? I competitions.

Christopher Reeve, has died of lung cancer at age 44, oundation.

ence	ince rasks									
	matched acc./mismatched acc. acc.	misc. Wikipedia								
	acc.	misc.								
ľ	acc.	fiction books								

Multi-Genre Natural Language Inference Williams et al. '18

Corpus	 Balanced classification for pairs of sentences into <i>entailment</i>, <i>contradiction</i>, and <i>neutral</i> Training set sentences drawn from five written and spoken genres. Dev/test sets divided into a matched set and a <i>mismatched</i> set with five more. 											
CoLA SST-2	H: Ca'd	P: The Old One always comforted Ca'daan, except today. H: Ca'daan knew the Old One very well. neutral										
MRPC STS-B QQP	3.7k 7k 364k	408 1.5k 40k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions						
				Inference '	Fasks							
MNLI	393k	20k	20k	NLI	matched acc./mismatched acc.	misc.						
QNLI	108k	5.7k	5.7k	QA/NLI	acc.	Wikipedia						
RTE WNLI	2.5k 276 3k NLI ac 634 71 146 coreference/NLI ¹⁷ ac Wang, Singh, Michael, Hill, Levy & Bov											

The Winograd Schema Challenge

Corpus	Train	Dev	Test	Task	Metrics	Domain				
CoLA SST-2 MRPC STS-B QQP	 Binary classification for expert-constructed pairs of sentences: What does the pronoun refer to? Manually constructed to foil superficial statistical cues. Private evaluation data used only in GLUE. P: Jane gave Joan candy because she was hungry. H: Joan was hungry. entailment 									
MNLI QNLI RTE WNLI	393k 108k 2.5k 634	20k 5.7k 276 71	20k 5.7k 3k 146	NLI QA/NLI NLI coreference/	matched acc./mism acc. acc. /NLI acc.	hatched acc. misc. Wikipedia misc. fiction books				

NLI format, based on Levesque et al., 2011

GLUE: What methods work?

Overall GLUE Score

95

OpenAl's GPT Language Model

- including:
 - *Transformer* encoder architecture.
 - Entire network is *fine-tuned* for each task; few new parameters are added.
 - Pretraining is on long spans of running text, not just isolated sentences.

Same basic idea as ELMo, but many changes (and many open questions!),

Radford et al. '18

Radford et al. '18

OpenAl's Transformer Language Model

- Update this spring: \bullet

 - \bullet
 - sharing

• Announcement of 15x larger GPT-2 language model.

Impressive text generation results, but no transfer learning evaluations yet.

• Systems issues yet to be solved internally, security concerns prevent

Devlin et al. '18 see Baevski et al. '19 for similar concurrent work

The BERT Model

- Same basic idea as OpenAI with several changes, including:
 - Two different unlabeled data tasks in place of language modeling.
 - These allow the model to process both directions together with the same network at training time.
 - *Very* big (>300M params).

Devlin et al. '18 see Baevski et al. '19 for similar concurrent work

Devlin et al. '18

see Baevski et al. '19 for similar concurrent work

- How much headroom does GLUE have left?
- To compute a conservative estimate for each task:
 - Show crowdworkers a brief description of each task, plus twenty labeled *development set* examples in an interactive training mode.
 - Collect five crowdworker labels per example for 500 \bullet test set examples.
 - Take a majority vote and compare the result with the gold labels.

Nangia & Bowman '19

	_	Single S	Single Sentence		tence Simila	Natural Language Inference				
	Avg	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	WN.
Training Size	-	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	6
Human 🙋	87.1	66.4	97.8	80.8/86.3	92.7/92.6	80.4/59.5	92.0/92.8	91.2	93.6	95
BERT 👶	80.5	60.5	94.9	85.4/89.3	87.6/86.5	89.3/72.1	86.7/85.9	92.7	70.1	65
BigBird 🍳	83.9	65.4	95.6	88.2/91.1	89.5/89.0	89.6/72.7	87.9/87.4	95.8*	85.1	65
Δ_{bert} (🌆 - 🌞)	6.6	5.9	2.9	-4.6/-3.0	5.1/6.1	-8.9/-12.6	5.3/6.9	-1.5	23.5	30
Δ_{bird} ($\textcircled{\ }$ - $\textcircled{\ }$)	3.2	1.0	2.2	-7.4/-4.8	3.2/3.6	-9.2/-13.2	4.1/5.4	-4.6*	8.5	30

Nangia & Bowman '19

		Single S	Single Sentence		tence Simila	Natural Language Inference				
	Avg	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	WN]
Training Size	-	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	6
Human 🙋	87.1	66.4	97.8	80.8/86.3	92.7/92.6	80.4/59.5	92.0/92.8	91.2	93.6	95
BERT 👶	80.5	60.5	94.9	85.4/89.3	87.6/86.5	89.3/72.1	86.7/85.9	92.7	70.1	65
BigBird 🍳	83.9	65.4	95.6	88.2/91.1	89.5/89.0	89.6/72.7	87.9/87.4	95.8*	85.1	65
Δ_{bert} (🌆 - 🌞)	6.6	5.9	2.9	-4.6/-3.0	5.1/6.1	-8.9/-12.6	5.3/6.9	-1.5	23.5	30
Δ_{bird} (🙋 - 冬)	3.2	1.0	2.2	-7.4/-4.8	3.2/3.6	-9.2/-13.2	4.1/5.4	-4.6*	8.5	30

Nangia & Bowman '19

		Single S	Single Sentence		tence Simil	Natural Language Inference				
	Avg	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	WN
Training Size	_	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	6
Human 🙋	87.1	66.4	97.8	80.8/86.3	92.7/92.6	80.4/59.5	92.0/92.8	91.2	93.6	95
BERT 🌷	80.5	60.5	94.9	85.4/89.3	87.6/86.5	89.3/72.1	86.7/85.9	92.7	70.1	6.
BigBird 🍳	83.9	65.4	95.6	88.2/91.1	89.5/89.0	89.6/72.7	87.9/87.4	95.8*	85.1	6.
Δ_{bert} (🌆 - 👶)	6.6	5.9	2.9	-4.6/-3.0	5.1/6.1	-8.9/-12.6	5.3/6.9	-1.5	23.5	3(
Δ_{bird} (Dev	6.6 lin et al. '18:	1.0	2.2		varuau011 ser	יבוי ז'ווליווטוו	the official	GLUE S	core, sin	ce 30
Taure	I. ULUE IC	overnles	The "Av	erage" colun	nn is slightly	$\frac{11-768}{11-768}$ $\Delta = 1$	2): BERT _{BAS}	$_{SE} = (L=1)$	2, H=76	58,
numb	Δ_{bird} (C Devlin et al. '18: 1.0 2.2 -7.4/-4.8 3.2/3 \mathcal{E}_{1VCI} . Yhe 'humber below each task denotes and a state 1. OLUE rest results, scored by the OLUE evaluation \mathcal{E}_{1VCI} . Yhe 'humber official GLUE score, since number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERT _{BASE} = (L=12, H=768, A=12); BERT _{base} = (L=24, H=1024, A=16). BERT and OpenAI GPT are single model, single task and task and the state of the problematic WNLI set. OpenAI GPT and OpenAI GPT are single model, single task and the state of the state of the problematic WNLI set. Dept. A=16). BERT and OpenAI GPT are single model, single task and the state of the state of the problematic WNLI set. Dept. A=16). BERT and OpenAI GPT are single model with task and the state of the state of the problematic WNLI set. Dept. A=16). BERT and OpenAI GPT are single model with task and the state of the state of the problematic WNLI set. A=16). BERT and OpenAI GPT are single model with task and the state of the state of the problematic WNLI set. Dept. A=16). BERT and OpenAI GPT are single model with task and the state of									
we example $\Lambda = 12$	\mathbf{x} Clude the proposed of \mathbf{x}	(T - 2)	1 U_107/	1 A-16) D	L'D'L' and i f					

A revised version of GLUE with:

- A new set of six target tasks...
- ...selected from 30+ submissions to an open call for participation to be easy for humans and hard for BERT.
- A slightly expanded set of task APIs (including multiplechoice QA, word-in-context classification, and more)
- An extensible software toolkit (jiant) with built-in support for state-of-the-art methods on the tasks.

This Spring: SuperGLUE

{Wang, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bowman '19

400000

300000

Corpus	Train	
CB	250	
COPA	400	200000
MultiRC	5100	200000
RTE	2500	
WiC	6000	
WSC	554	
		100000

CB

0

COPA

WSC

RTE

MultiRC

WiC

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	SC	acc.	online blogs, photography encyclope
MultiRC	5100	953	1800	QA	$F1_m/F1_a$	various
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

SuperGLUE: The Main Tasks

{Wang, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bowman '19

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	SC	acc.	online blogs, photography encyclope
MultiRC	5100	953	1800	QA	$F1_m/F1_a$	various
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

SuperGLUE: The Main Tasks

{Wang, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bowman '19

The Commitment Bank de Marneffe et al. '19

Three-way NLI classification: Does a speaker utterance entail some embedded clause within that utterance?

Text: B: And yet, uh, I we-, I hope to see employer based, you know, helping out. You know, child, uh, care centers at the place of employment and things like that, that will help out. A: Uh-huh. B: What do you think, do you think we are, setting a trend? **Hypothesis:** they are setting a trend **Entailment:** Unknown

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	SC	acc.	online blogs, photography encycloped
MultiRC	5100	953	1800	QA	$F1_m/\Gamma^1_$	
RTE	2500	278	300	NLI	atc.	Nang, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bown

NultiRC Khashabi et al. '18

Multiple choice reading comprehension QA over paragraphs.

Paragraph: (CNN) – Gabriel García Márquez, widely regarded as one of the most important contemporary Latin American authors, was admitted to a hospital in Mexico earlier this week, according to the Ministry of Health. The Nobel Prize recipient, known as "Gabo," had infections in his lungs and his urinary tract. He was suffering from dehydration, the ministry said. García Márquez, 87, is responding well to antibiotics, but his release date is still to be determined. "I wish him a speedy recovery." Mexican President Enrique Peña wrote on Twitter. García Márquez was born in the northern Colombian town of Aracataca, the inspiration for the fictional town of Macondo, the setting of the 1967 novel "One Hundred Years of Solitude." He won the Nobel Prize for literature in 1982 "for his novels and short stories, in which the fantastic and the realistic are combined in a richly composed world of imagination, reflecting a continent's life and conflicts," according to the Nobel Prize website. García Márquez has spent many years in Mexico and has a huge following there. Colombian President Juan Manuel Santos said his country is thinking of the author. "All of Colombia wishes a speedy recovery to the greatest of all time: Gabriel García Márquez," he tweeted. CNN en Español's Fidel Gutierrez contributed to this story. **Question:** Whose speedy recover did Mexican President Enrique Peña wish on Twitter? **Candidate answers:** Enrique Peña (F), Gabriel Garcia Marquez (T), Gabo (T), Gabriel Mata (F), Fidel *Gutierrez* (F), 87 (F), *The Nobel Prize recipient* (T)

Cura	400	100	300	SC	acc.	onnue biogs, photography encyclope
MultiRC	5100	953	1800	QA	$F1_m/F1_a$	
RTE	2500	278	300	NLI	acc. 42 {Wa	ang, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bowr
WiC	6000	638	1400	WSD	42 (m 2CC	

Winograd Schema Challenge

• Same o	data and ta	sk as WN	ILI, but u	sing a sta	ndard Boolea	an coreference format, without recasting.
		<u>Pete</u> many f erence: F		himself, wh	hich Pete include	ed in his book. <u>He</u> should have been more
COPA	400	100	500	SC	acc.	online blogs, photography encycloped
MultiRC	5100	953	1800	QA	$F1_m/F1_a$	various
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

Pilehvar and Camacho-Collados et al. '19

{Wang, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bowman '19 43

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	SC	acc.	online blogs, photography encyclope
MultiRC	5100	953	1800	QA	$F1_m/F1_a$	various
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

SuperGLUE: The Main Tasks

{Wang, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bowman '19

SuperGLUE

- Preliminary public release out now:
 - super.gluebenchmark.com
- Final release coming in mid-summer.
- Expect additional tasks!

{Wang, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bowman '19

SuperGLUE Score

95

82.5

70

57.5

46 {Wang, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bowman '19

- GLUE and SuperGLUE are built only on English data. \bullet
 - Sentence representation learning may look quite different in lower-resource languages! \bullet
- GLUE and SuperGLUE don't evaluate text *generation*, and use only small amounts of context. ullet
 - Isolates the problem of extracting sentence meaning, but avoids other hard parts of NLP. lacksquare
- GLUE and SuperGLUE use some naturally occurring and crowdsourced data. ullet
- Therefore safe to presume that these datasets contain evidence of social bias (see Rudinger et al., EthNLP '17).
 - All else being equal, models that learn and use these biases will *do better on these benchmarks*. \bullet

GLUE and SuperGLUE: Limitations

- What if you want to solve a hard task with limited training data, but have access to abundant data for another task with that uses similar skills?
- Example: Commitment Bank (250) with MNLI (393k)
- Supplementary Training on Intermediate Labeled-data Tasks (STILTs) is an **easy but very robust** solution:
 - Download a large model like BERT that was pretrained on unlabeled data.
 - Fine tune that model on the *intermediate* labeled-data task.
 - Fine tune the same model further on the target task. \bullet

Muppets on STILTs?

Phang, Févry & Bowman '18

BERT on STILTs

- +1.5 on GLUE w/ MNLI and QQP
- +3.8 on SuperGLUE w/ MNLI \bullet
- Clark et al. '19: +3.7 on BoolQ w/ MNLI
- Sap et al. '18: +4 to +8 on commonsense tasks w/ SocialIQA

Phang, Févry & Bowman '18

49

BERT on STILTS

- +1.5 on and QQP +3.8 on CroerGLUE w/ W.
- E W/ M.L. O EDGQ W/ MNLI Clark •
- Sap et al. '18: +4 to +8 on commus by

sks w/ SocialIQA

Phang, Févry & Bowman '18

A Few Big Empirical Studies

- Question:

•)•)

Wang, Hula, Xia, Pappagari, McCoy, Patel, Kim, Tenney, Huang, Yu, Jin, Chen, Van Durme, Grave, Pavlick and Bowman '19

JSALT 2018 at Johns Hopkins U.:

• ~Twenty people, six weeks.

What pretraining tasks are suitable for what target tasks and why?

Today: Papers emerging from follow-up work

• NYU: What pretraining tasks work?

Google: What do big language models know?

 JHU/Brown: What do pretrained NLI models know? (*SEM best paper, tomorrow at noon)

LMO	an	
	ON	S

\mathbf{SST}^E	71.2	38.8	90.6										
\mathbf{MRPC}^{E}	<u>71.3</u>	40.0	88.4										
$\mathbf{Q}\mathbf{Q}\mathbf{P}^{E}$	70.8	34.3	88.6										
\mathbf{STS}^E	<u>71.6</u>	39.9	88.4										
\mathbf{MNLI}^E	<u>72.1</u>	38.9	89.0										
\mathbf{QNLI}^E	71.2	37.2	88.3	81.1/86.9	85.5/81.7	78.9/80.1	74.7	78.0	58.8	22.5*			
\mathbf{RTE}^E	71.2	38.5	87.7	81.1/87.3	86.6/83.2	80.1/81.1	74.6	78.0	55.6	32.4*			
\mathbf{WNLI}^E	70.9	38.4	88.6	78.4/85.9	86.3/82.8	79.1/80.0	73.9	77.9	57.0	11.3*			
DisSent WP ^E	<u>71.9</u>	39.9	87.6	81.9/87.2	85.8/82.3	79.0/80.7	74.6	79.1	61.4	23.9*			
MT En-De E	<u>72.1</u>	40.1	87.8	79.9/86.6	86.4/83.2	81.8/82.4	75.9	79.4	58.8	31.0*			
MT En-Ru E	70.4	41.0	86.8	76.5/85.0	82.5/76.3	81.4/81.5	70.1	77.3	60.3	45.1*			
\mathbf{Reddit}^{E}	71.0	38.5	87.7	77.2/85.0	85.4/82.1	80.9/81.7	74.2	79.3	56.7	21.1*			
${f SkipThought}^E$	<u>71.7</u>	40.6	87.7	79.7/86.5	85.2/82.1	81.0/81.7	75.0	79.1	58.1	52.1*			
MTL GLUE ^{E}	<u>72.1</u>	33.8	90.5	81.1/87.4	86.6/83.0	82.1/83.3	76.2	79.2	61.4	42.3*			
MTL Non-GLUE ^E	<u>72.4</u>	39.4	88.8	80.6/86.8	87.1/84.1	83.2/83.9	75.9	80.9	57.8	22.5*			
MTL All ^{E}	<u>72.2</u>	37.9	89.6	79.2/86.4	86.0/82.8	81.6/82.5	76.1	80.2	60.3	31.0*			
		BERT with Intermediate Task Training											
Single-Task ^{B}	78.8	56.6	90.9	88.5/91.8	89.9/86.4	86.1/86.0	83.5	87.9	69.7	56.3			
\mathbf{CoLA}^B	78.3	61.3	91.1	87.7/91.4	89.7/86.3	85.0/85.0	83.3	85.9	64.3	43.7*			
\mathbf{SST}^B	78.4	57.4	92.2	86.3/90.0	89.6/86.1	85.3/85.1	83.2	87.4	67.5	43.7*			
\mathbf{MRPC}^{B}	78.3	60.3	90.8	87.0/91.1	89.7/86.3	86.6/86.4	83.8	83.9	66.4	56.3			
$\mathbf{Q}\mathbf{Q}\mathbf{P}^B$	<u>79.1</u>	56.8	91.3	88.5/91.7	90.5/87.3	88.1/87.8	83.4	87.2	69.7	56.3			
\mathbf{STS}^B	<u>79.4</u>	61.1	92.3	88.0/91.5	89.3/85.5	86.2/86.0	82.9	87.0	71.5	50.7*			
\mathbf{MNLI}^B	<u>79.6</u>	56.0	91.3	88.0/91.3	90.0/86.7	87.8/87.7	82.9	87.0	76.9	56.3			
QNLI ^B	78.4	55.4	91.2	88.7/92.1	89.9/86.4	86.5/86.3	82.9	86.8	68.2	56.3			
\mathbf{RTE}^B	77.7	59.3	91.2	86.0/90.4	89.2/85.9	85.9/85.7	82.0	83.3	65.3	56.3			
\mathbf{WNLI}^B	76.2	53.2	92.1	85.5/90.0	89.1/85.5	85.6/85.4	82.4	82.5	58.5	56.3			
DisSent WP ^B	78.1	58.1	91.9	87.7/91.2	89.2/85.9	84.2/84.1	82.5	85.5	67.5	43.7*			
MT En-De B	73.9	47.0	90.5	75.0/83.4	89.6/86.1	84.1/83.9	81.8	83.8	54.9	56.3			
MT En-Ru B	74.3	52.4	89.9	71.8/81.3	89.4/85.6	82.8/82.8	81.5	83.1	58.5	43.7*			
\mathbf{Reddit}^B	75.6	49.5	91.7	84.6/89.2	89.4/85.8	83.8/83.6	81.8	84.4	58.1	56.3			
SkipThought B	75.2	53.9	90.8	78.7/85.2	89.7/86.3	81.2/81.5	82.2	84.6	57.4	43.7*			
MTL GLUE ^B	<u>79.6</u>	56.8	91.3	88.0/91.4	90.3/86.9	89.2/89.0	83.0	86.8	74.7	43.7*			
MTL Non-GLUE ^B	76.7	54.8	91.1	83.6/88.7	89.2/85.6	83.2/83.2	82.4	84.4	64.3	43.7*			
MTL All ^B	<u>79.3</u>	53.1	91.7	88.0/91.3	90.4/87.0	88.1/87.9	83.5	87.6	75.1	45.1*			
				Test Set	Results								
Non-GLUE ^E	69.7	34.5	89.5	78.2/84.8	83.6/64.3	77.5/76.0	75.4	74.8	55.6	65.1			
MNLI ^B	77.1	49.6	93.2	88.5/84.7	70.6/88.3	86.0/85.5	82.7	78.7	72.6	65.1			
GLUE ^B	77.3	49.0	93.5	89.0/85.3	70.6/88.6	85.8/84.9	82.9	81.0	71.7	34.9			
DEDT D	70.4	EQ 1	02.5	00.0/03.5	71.0/00.0	07 1/05 0	04.0	01.0	(CE 1			

Avg CoLA SST

70.5

71.2

ELMo

38.5 87.7

39.4 **90.6**

39.4 87.3

Intermediate Task

 \mathbf{Random}^E

 $CoLA^E$

Single-Task^E

Wang, Hula, Xia, Pappagari, McCoy, Patel, Kim, Tenney, Huang, Yu, Jin, Chen, Van Durme, Grave, Pavlick and Bowman '19

BERT Base STILTS

- Most intermediate tasks *harm* performance, especially with BERT.
 - This includes most of the GLUE tasks, MT, Reddit prediction, DisSent, and several more!
- BERT with MNLI or BERT with GLUE (multi-task) work best, and show consistent improvements.

Pretr.	Avg	CoLA	SST					_		_	
					Dr	etr	'	ir)F	jU	STMS Contractions
Random Single-Task	68.2 69.1	16.9 21.3	84.3 89.0								
	07.1	21.5			Ducturinin	Taalaa					
			GL	UE Tasks a	s Pretraining	g Tasks					
CoLA	68.2	21.3	85.7	75.0/83.7	85.7/82.4	79.0/80.3	72.7	78.4	56.3	15.5*	
SST	<u>68.6</u>	16.4	89.0	76.0/84.2	84.4/81.6	80.6/81.4	73.9	78.5	58.8	19.7*	
MRPC	68.2	16.4	85.6	77.2/84.7	84.4/81.8	81.2/82.2	73.6	79.3	56.7	22.5*	
QQP	68.0	14.7	86.1	77.2/84.5	84.7/81.9	81.1/82.0	73.7	78.2	57.0	45.1*	
STS	67.7	14.1	84.6	77.9/85.3	81.7/79.2	81.4/82.2	73.6	79.3	57.4	43.7*	
MNLI	<u>69.1</u>	16.7	88.2	78.9/85.2	84.5/81.5	81.8/82.6	74.8	79.6	58.8	36.6*	Overall result:
QNLI	67.9	15.6	84.2	/ 010/ 0 112		80.6/81.8	73.4	78.8	58.8	56.3	Overan result.
RTE	68.1	18.1	83.9				74.1	79.1	56.0	39.4*	
WNLI	68.0	16.3	84.3	76.5/84.6	83.0/80.5	81.6/82.5	73.6	78.8	58.1	11.3*	
			N	Non-GLUE I	Pretraining	Fasks					 Nothing works as well as language modeling.
DisSent WP	68.6	18.3	86.6	79.9/86.0	85.3/82.0	79.5/80.5	73.4	79.1	56.7	42.3*	
LM WP	70.1	30.8	85.7	76.2/84.2			74.0	79.4	60.3	25.4*	
LM BWB	70.4	30.7	86.8	79.9/86.2	86.3/83.2	80.7/81.4	74.2	79.0	57.4	47.9*	
MT En-De	68.1	16.7	85.4	77.9/84.9	83.8/80.5	82.4/82.9	73.5	79.6	55.6	22.5*	 but everything works nearly as well as
MT En-Ru	68.4	16.8	85.1	79.4/86.2	84.1/81.2	82.7/83.2	74.1	79.1	56.0	26.8*	
Reddit	66.9	15.3	82.3	76.5/84.6	81.9/79.2	81.5/81.9	72.7	76.8	55.6	53.5*	language modeling.
SkipThought	<u>68.7</u>	16.0	84.9	77.5/85.0	83.5/80.7	81.1/81.5	73.3	79.1	63.9	49.3*	
				Multitas	k Pretraining	g					
MTL GLUE	68.9	15.4	89.9	78.9/86.3	82.6/79.9	82.9/83.5	74.9	78.9	57.8	38.0*	 Multi-task pretraining helps, but only slightly.
MTL Non-GLUE		30.6					72.8	78.9	54.9	22.5*	
MTL All	<u>70.4</u>	33.2					73.9	78.7	57.4	33.8*	
				Test S	et Results						
LM BWB	66.5	29.1	86.9	75.0/82.1	82.7/63.3	74.0/73.1	73.4	68.0	51.3	65.1	
MTL All	68.5	36.3	88.9				75.3	66.2	53.2	65.1	

Wang, Hula, Xia, Pappagari, McCoy, Patel, Kim, Tenney, Huang, Yu, Jin, Chen, Van Durme, Grave, Pavlick and Bowman '19

Pretrained LSTMs

Pretr.	Avg	CoLA	SST	MRPC	QQP	STS	MNLI	QNLI	RTE	WNLI			
				Bas	elines								
Random	68.2	16.9	84.3	77.7/85.6	83.0/80.6	81.7/82.6	73.9	79.6	57.0	31.0*			
Single-Task	69.1	21.3	89.0	77.2/84.7	84.7/81.9	81.4/82.2	74.8	78.8	56.0	11.3*			
	GLUE Tasks as Pretraining Tasks												
CoLA	68.2	21.3	85.7	75.0/83.7	85.7/82.4	79.0/80.3	72.7	78.4	56.3	15.5*			
SST	<u>68.6</u>	16.4	89.0	76.0/84.2	84.4/81.6	80.6/81.4	73.9	78.5	58.8	19.7*			
MRPC	68.2	16.4	85.6	77.2/84.7	84.4/81.8	81.2/82.2	73.6	79.3	56.7	22.5*			
QQP	68.0	14.7	86.1	77.2/84.5	84.7/81.9	81.1/82.0	73.7	78.2	57.0	45.1*			
STS	67.7	14.1	84.6	77.9/85.3	81.7/79.2	81.4/82.2	73.6	79.3	57.4	43.7*			
MNLI	<u>69.1</u>	16.7	88.2	78.9/85.2	84.5/81.5	81.8/82.6	74.8	79.6	58.8	36.6*			
QNLI	67.9	15.6	84.2	76.5/84.2	84.3/81.4	80.6/81.8	73.4	78.8	58.8	56.3			
RTE	68.1	18.1	83.9	77.5/85.4	83.9/81.2	81.2/82.2	74.1	79.1	56.0	39.4*			
WNLI	68.0	16.3	84.3	76.5/84.6	83.0/80.5	81.6/82.5	73.6	78.8	58.1	11.3*			
	Non-GLUE Pretraining Tasks												
DisSent WP	<u>68.6</u>	18.3	86.6	79.9/86.0	85.3/82.0	79.5/80.5	73.4	79.1	56.7	42.3*			
LM WP	70.1	30.8	85.7	76.2/84.2	86.2/82.9	79.2/80.2	74.0	79.4	60.3	25.4*			
LM BWB	<u>70.4</u>	30.7	86.8	79.9/86.2	86.3/83.2	80.7/81.4	74.2	79.0	57.4	47.9*			
MT En-De	68.1	16.7	85.4	77.9/84.9	83.8/80.5	82.4/82.9	73.5	79.6	55.6	22.5*			
MT En-Ru	<u>68.4</u>	16.8	85.1	79.4/86.2	84.1/81.2	82.7/83.2	74.1	79.1	56.0	26.8*			
Reddit	66.9	15.3	82.3	76.5/84.6	81.9/79.2	81.5/81.9	72.7	76.8	55.6	53.5*			
SkipThought	<u>68.7</u>	16.0	84.9	77.5/85.0	83.5/80.7	81.1/81.5	73.3	79.1	63.9	49.3*			
				Multitask	Pretraining								
MTL GLUE	68.9	15.4	89.9	78.9/86.3	82.6/79.9	82.9/83.5	74.9	78.9	57.8	38.0*			
MTL Non-GLUE	69.9	30.6	87.0	81.1/87.6	86.0/82.2	79.9/80.6	72.8	78.9	54.9	22.5*			
MTL All	<u>70.4</u>	33.2	88.2	78.9/85.9	85.5/81.8	79.7/80.0	73.9	78.7	57.4	33.8*			
				Test Se	et Results								
LM BWB	66.5	29.1	86.9	75.0/82.1	82.7/63.3	74.0/73.1	73.4	68.0	51.3	65.1			
MTL All	68.5	36.3	88.9	77.7/84.8	82.7/63.6	77.8/76.7	75.3	66.2	53.2	65.1			

Wang, Hula, Xia, Pappagari, McCoy, Patel, Kim, Tenney, Huang, Yu, Jin, Chen, Van Durme, Grave, Pavlick and Bowman '19

Correlations:

Task	Avg	CoLA	SST	STS	QQP	MNLI	QNLI
CoLA	0.86	1.00					
SST	0.60	0.25	1.00				
MRPC	0.39	0.21	0.34				
STS	-0.36	-0.60	0.01	1.00			
QQP	0.61	0.61	0.27	<u>-0.58</u>	1.00		
MNLI	0.54	0.16	0.66	0.40	0.08	1.00	
QNLI	0.43	0.13	0.26	0.04	0.27	0.56	1.00
RTE	0.34	0.08	0.16	-0.10	0.04	0.14	0.32
WNLI	<u>-0.21</u>	<u>-0.21</u>	<u>-0.37</u>	0.31	<u>-0.37</u>	<u>-0.07</u>	<u>-0.26</u>

Another View: Edge Probing

Tenney, Xia, Chen, Wang, Poliak, McCoy, Kim, Van Durme, Bowman, Das, & Pavlick '19

Practical Conclusions

- If you're building a language understanding model now, you have at least a few \bullet thousand training examples, and you need the best performance you can get:
 - Use **BERT.**
 - If you're aware of a big dataset for some related task, or if you're working with very limited training data, use STILTs, too!
- Keep an eye on <u>super.gluebenchmark.com</u> for future developments in this area.

Open Questions

Plenty of open questions!

- What will it take to scale these successes down to hundreds (or tens) of training examples?
- How far can we push plain unsupervised pretraining with bigger models?
- What makes a task suitable for use as as intermediate task in STILTs?
- Are we nearing the end of the line for evaluation with IID test sets?
- Is unsupervised pretraining helping us or hurting us on issues of socially-relevant bias? How do we minimize this bias?

Thanks! **Questions:** bowman@nyu.edu

Try SuperGLUE: super.gluebenchmark.com

But wait! There's more!

A bit more analysis worth mentioning:

BERT can do fairly well at acceptability judgments involving *binding*, *unusual* \bullet argument structures, and some embedded VPs and clauses, but struggles with Wh-movement and gaps.

Warstadt and Bowman '19

- BERT reaches near-human performance on a variant of the Marvin and Linzen's \bullet subject-verb agreement tests, even where past large LMs have failed.
- Multilingual variants of BERT, trained on monolingual and parallel data, are lacksquareshowing promise on cross-lingual transfer: Train a task model on English, and test it on Urdu.

Lample and Conneau '19

Final Pointers

Goldberg '19; @Thom_Wolf '19, Twitter

Devlin et al. '18

Muppets on STILTs?

Development Set Results with 1k training examples per task.

Phang, Févry & Bowman '18

Five More Views

• gradient minimal pairs: ceiling

Warstadt, Cao, Grosu, Peng, Blix, Nie, Alsop, Bordia, Liu, Parrish, Wang, Phang, Mohananey, Htut, Jeretič, and Bowman '19

General-Purpose Representation Learning

Words:

Distributional *word embeddings*: SENNA, word2vec, GloVe, fastText, etc.

Images:

ImageNet-trained deep CNNs

Sentences:

Slow start, but dramatic progress over the last eighteen months!

Scenario 1: An engineer wants to solve some English sentence classification task for which no data exists.

Examples:

. . .

- Intent detection for a new Alexa skill lacksquare
- Relation classification for information extraction lacksquare
- Customer service ticket classification for a new business

Scenario 1: An engineer wants to solve some English sentence classification task for which no data exists.

Standard approach:

- Pay to annotate 10k–1m examples at \$0.05–0.50 each
- Train a BiLSTM-based classification model over word embeddings \bullet

With effective sentence representations:

- Train a model over the outputs of an existing encoder. \bullet
- \rightarrow Comparable performance with ~1–10% the data.

Scenario 2: An engineer wants to solve some English sentence understanding task for which ample labeled data exists, but performance is still inadequate.

Examples:

English–Chinese translation

Scenario 2: An engineer wants to solve some English sentence understanding task for which ample labeled data exists, but performance is still inadequate.

Standard approach:

Train large attention-based NN model over word embeddings \bullet

With effective sentence representations:

- Use a general-purpose encoder as the input layer(s) of the model \bullet
- Prior knowledge of English makes learning more effective

A Too Brief, Very Self Interested History

- 2014: Sentence-to-vector pretraining becomes established as a task Dai and Le '14, Kiros et al. '15, Hill et al. '16, Wieting et al. '16, Conneau et al. '17, Subramanian et al. '18...
- 2017: First contextualized word vector pretraining methods appear Peters et al. '17, Monann et al. '17 (CoVe), Peters et al. '18 (ELMo)

- Summer '18: First major successes with unsupervise of pretarining and fine-tuning Badford et al. '18 (OpenAl GPT), Devlin et al. '18 (BERT)
- Spring '19: The updated SuperGLUE benchmark launches Wang et al. '19

he GLUE language ur.d cretanding benchmark launches

Choice of Plausible Alternatives Roemelle et al. '11

Premise: My body cast a shadow over the grass. **Question:** What's the CAUSE for this? **Alternative 1:** The sun was rising. Alternative 2: The grass was cut. Correct Alternative: 1

-	Corpus	Train	Dev	Test	Task	Metrics	Text Sources
	CB	250	57	250	NLI	acc./F1	various
	COPA	400	100	500	SC	acc.	online blogs, photography encycloped
	MultiRC	5100	953	1800	QA	$F1_m/F1_a$	various
	RTE	2500	278	300	NLI	acc.	
	WiC	6000	638	1400	WSD	acc. {Wai	ng, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bown

Word-in-Context Sense Matching

Pilehvar and Camacho-Collados et al. '19

Context 2: *He nailed boards across the windows.*

acc./F1	various
acc.	online blogs, photography encyclopedia
$F1_m/F1_a$	various
acc.	news, Wikipedia
acc.	WordNet, VerbNet, Wiktionary
acc. {War	ng, Pruksachatkun, Nangia}, Singh, Michael, Hill, Levy & Bowman '19

PropBank semantic roles

nsubj

Tenney, Xia, Chen, Wang, Poliak, McCoy, Kim, Van Durme, Bowman, Das, & Pavlick '19

(universal) dependency relations

BERT on STILTs

95

82.5

70

57.5 45 GloVe Bag of Words BERT

BERT on STILTS

95

82.5

70

Human Estimate

78

Training Set Size	Avg	A.Ex	CoLA 8.5k	SST 67k	MRPC <i>3.7k</i>	QQP <i>364k</i>	STS <i>7k</i>	MNLI 393k	QNLI 108k	RTE 2.5k	
Development Set Scores											
BERT	80.8	78.4	62.1	92.5	89.0/92.3	91.5/88.5	90.3/90.1	86.2	89.4	70.0	
BERT → QQP	80.9	78.5	56.8	93.1	88.7/92.0	91.5/88.5	90.9/90.7	86.1	89.5	74.7	
BERT → MNLI	82.4	80.5	59.8	93.2	89.5/92.3	91.4/88.4	91.0/90.8	86.2	90.5	83.4	
BERT \rightarrow SNLI	81.4	79.2	57.0	92.7	88.5/91.7	91.4/88.4	90.7/90.6	86.1	89.8	80.1	
BERT → Real/Fake	77.4	74.3	52.4	92.1	82.8/88.5	90.8/87.5	88.7/88.6	84.5	88.0	59.6	
BERT, Best of Each	82.6	80.8	62.1	93.2	89.5/92.3	91.5/88.5	91.0/90.8	86.2	90.5	83.4	
GPT	75.4	72.4	50.2	93.2	80.1/85.9	89.4/85.9	86.4/86.5	81.2	82.4	58.1	
GPT→QQP	76.0	73.1	48.3	93.1	83.1/88.0	89.4 / 85.9	87.0/86.9	80.7	82.6	62.8	
GPT \rightarrow MNLI	76.7	74.2	45.7	92.2	87.3/90.8	89.2/85.3	88.1/88.0	81.2	82.6	67.9	
GPT \rightarrow SNLI	76.0	73.1	41.5	91.9	86.0/89.9	89.9/86.6	88.7/88.6	81.1	82.2	65.7	
GPT \rightarrow Real/Fake	76.6	73.9	49.5	91.4	83.6/88.6	90.1/86.9	87.9/87.8	81.0	82.5	66.1	
GPT, Best of Each	77.5	75.9	50.2	93.2	87.3/90.8	90.1/86.9	88.7/88.6	81.2	82.6	67.9	
ELMo	63.8	59.4	15.6	84.9	69.9/80.6	86.4/82.2	64.5/64.4	69.4	73.0	50.9	
ELMo → QQP	64.8	61.7	16.6	87.0	73.5/82.4	86.4 / 82.2	71.6/72.0	63.9	73.4	52.0	
ELMo → MNLI	66.4	62.8	16.4	87.6	73.5/83.0	87.2/83.1	75.2/75.8	69.4	72.4	56.3	
ELMo → SNLI	66.4	62.7	14.8	88.4	74.0/82.5	87.3/83.1	74.1/75.0	69.7	74.0	56.0	
ELMo→Real/Fake	66.9	63.3	27.3	87.8	72.3/81.3	87.1/83.1	70.3/70.6	70.3	73.7	54.5	
ELMo, Best of Each	68.0	64.8	27.3	88.4	74.0/82.5	87.3/83.1	75.2/75.8	70.3	74.0	56.3	

Muppets on STILTs?

Phang, Févry & Bowman '18

