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Q: What's the most complex surface in R"?

A: You can always add more complexity:

Q: What's the most complex surface in R” of a given area?
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» Applications to metric geometry
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Let € > 0, let
I1>n>n> - >r.

Let f = Zf-;l Bi, where f3; is a wave with wavelength r; and
amplitude a; = er;. Then

1113 ~ 18113 + -+ + 11813

a 2 a 2
fw(l) +~-+<k> ~ ké2.
n i

As long as ke®> < %, f is mostly 1-Lipschitz. So there's a
1-Lipschitz function which is e-bumpy at ~ €2 different scales.
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How do you decompose a Lipschitz function?

Let f be 1-Lipschitz on [0,1]. For each i, let f; be the
piecewise-linear approximation of f such that f;(k277) = f(k2~")
for all k.

Let gi = (fix1 — f;)’. Then | gj|| measures “bumpiness” at scale
27" and (gj, gj) =0 for all i # j. So:
1115 = llgs + g2 + - - 15 = lenll3 + llgall5 + -+ < 1.

That is, f can only be e-bumpy at =2 different scales.
(See also: Fourier, Littlewood—Paley, Dorronsoro, Jones,
David-Semmes, among many others)
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How can we measure nonorientability?

Let d < n, let K be a d—cycle with coef-
ficients in Zy (a closed d—dimensional sur-
face) in R".

K is orientable if and only if we can lift it to
an integral cycle (a cycle with coefficients
in Z) with the same support.

Otherwise, we can construct a pseudo-
orientation of K: an integral cycle P such
that K = P (mod 2), but area(P) >
area(K).

In this case, . .
pseudo-orientation

area(P) = area(K) + area of two discs.
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Quantitative nonorientability for cellular cycles

Let d < n, let 7 be the unit grid in R", and let Zy(7; S) be the set
of cellular d—cycles with coefficients in S (i.e., d—chains with zero
boundary). For A € Z4(1;Z>),

NO(A) = min{area P | P is a pseudo-orientation of A}
=min{areaP | P € Zy(7;Z), P = A (mod 2)}.

» If Ais orientable, then NO(A) = area(A).
» NO(A+ B) < NO(A)+ NO(B) for any A, B.

What's the most nonorientable surface? How large can a'\r'g((i)) be?
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What's the most nonorientable surface?

One possibility:
1. Let M be a cube of side length R.
2LetR>>r1>>r2>> S>> 1.

3. Add ~ &5 cross—handles of scale r; on all sides.
l

4. Repeat for each r;.

Then
k 2 2
NO(M) =~ > r; Tk
i=1 i
But
area(M) ~ R? + Zk: r-2F\J—2 ~ (k +1)R?
i=1 ot 7
o No(m)

y stays bounded!

area(M
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Nonorientability is bounded by area

Theorem (Y.)

For every A € Z4(7;Zy), we have NO(A) < area A.

And we can bound the nonorientability of non-cellular surfaces by
approximating by cellular surfaces.

Corollary (Y.)

If D is an area-minimizing surface with boundary T, then there is
an € > 0 such that any area-minimizing surface E with boundary
2T satisfies

area(E) > earea(D).
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Proof: Decomposing surfaces in R”

Let M € Zd(T;Zg), let M7 = M.

1. Find the smallest set By C R" on which M; can be deformed
into a set of much smaller area. (Mj is not a quasiminimizer
on Bl)

2. Deform M; and call the result M,. Let Ay = My — M,
3. Repeat until M, =0. Write M =" A;.
Then:

» area(M;) is a decreasing sequence of integers, so this process
terminates.

> area(M) =~ ) area(A)).
» M; is a quasiminimizer on any set smaller than B;.



Proof: Uniform rectifiability

Theorem (David-Semmes)

A quasiminimizer in R" is uniformly rectifiable.

Definition (David—Semmes)

A set E C R¥ is uniformly rectifiable if and only if there is a
“small” collection of Lipschitz graphs that approximate E on most
balls (a corona decomposition).
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Proof: Conclusion

Therefore:

Proposition

Any mod-2 d—cycle M in R" can be written as a sum M = ). A;
of mod-2 d—cycles A; with uniformly rectifiable support such that
> areaA; < area M.

And:

Proposition
Any mod-2 d—cycle P with uniformly rectifiable support satisfies
NO(P) < area(P).

So NO(M) < >°.NO(A;) < > ;area(A;) S area(M).
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Q: What's the most complex surface in R” of a given area?

A surface of area A can be decomposed into uniformly rectifiable
surfaces of total area == A, which can be described by Lipschitz
graphs of total area ~ A.
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The Heisenberg group

Let H2k*1 C My, be the (2k + 1)—-dimensional nilpotent group

1 1 ... xx z

01 0 0 y
H**'=<d10 o 0o | |xwynzeR

00 0 1 y

0 O 0 0 1

This contains a lattice

H2 = (Xp, .o, Xe, Ve, Yis Z
| [Xi, Yi] = Z, all other pairs commute).



The Heisenberg group H,
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Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)
There is no bilipschitz embedding from H to RV.

Theorem (Cheeger—Kleiner)

There is no bilipschitz embedding from H to L;.

Cheeger and Kleiner's proof is based on approximating the level
sets of functions H — R by planes. Our methods let us decompose
these sets into Lipschitz graphs, leading to:

Theorem (Naor-Y.)

Sharp quantitative bounds on Lipschitz maps from H to L;.
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Applications (with Naor)

» The integrality gap for the Goemans—Linial relaxation of
Sparsest Cut is at least /log n.

» The ball of radius r in the three-dimensional Heisenberg group

H% embeds into L; with distortion v/log r, while the same ball
in the higher-dimensional Heisenberg groups H%,H%, ... has

distortion /log r.

» There is a metric space M that has a bilipschitz embedding
into Ly and Ly, but not L, for 1 < p < 4.



Surfaces in H

Some of the most complex Lipschitz graphs in H?3.



