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Motivation

Q: What’s the most complex surface?

A: Probably too complicated to draw:

Q: What’s the most complex surface in Rn?

A: You can always add more complexity:

Q: What’s the most complex surface in Rn of a given area?
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I Warm-up: Lipschitz functions
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Warm-up: Lipschitz functions

f : [0, 1]→ R is L–Lipschitz if |f (x)− f (y)| ≤ L|x − y | for all x , y .

What’s the most complex 1–Lipschitz function?

Maybe something like this:
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Warm-up: Lipschitz functions

Let ε > 0, let
1� r1 � r2 � · · · � rk .

Let f =
∑k

i=1 βi , where βi is a wave with wavelength ri and
amplitude ai = εri .

Then

‖f ′‖22 ≈ ‖β′1‖22 + · · ·+ ‖β′k‖22

≈
(
a1
r1

)2

+ · · ·+
(
ak
rk

)2

≈ kε2.

As long as kε2 � 1
10 , f is mostly 1–Lipschitz. So there’s a

1–Lipschitz function which is ε–bumpy at ≈ ε−2 different scales.
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How do you decompose a Lipschitz function?

Let f be 1–Lipschitz on [0, 1]. For each i , let fi be the
piecewise-linear approximation of f such that fi (k2−i ) = f (k2−i )
for all k .

Let gi = (fi+1 − fi )
′. Then ‖gi‖ measures “bumpiness” at scale

2−i and 〈gi , gj〉 = 0 for all i 6= j . So:

‖f ′‖22 = ‖g1 + g2 + . . . ‖22 = ‖g1‖22 + ‖g2‖22 + · · · ≤ 1.

That is, f can only be ε–bumpy at ε−2 different scales.
(See also: Fourier, Littlewood–Paley, Dorronsoro, Jones,
David–Semmes, among many others)
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How can we measure nonorientability?

Let d < n, let K be a d–cycle with coef-
ficients in Z2 (a closed d–dimensional sur-
face) in Rn.

K is orientable if and only if we can lift it to
an integral cycle (a cycle with coefficients
in Z) with the same support.

Otherwise, we can construct a pseudo-
orientation of K : an integral cycle P such
that K ≡ P (mod 2), but area(P) ≥
area(K ).

In this case,

area(P) = area(K ) + area of two discs.
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Quantitative nonorientability for cellular cycles

Let d < n, let τ be the unit grid in Rn, and let Zd(τ ; S) be the set
of cellular d–cycles with coefficients in S (i.e., d–chains with zero
boundary).

For A ∈ Zd(τ ;Z2),

NO(A) = min{areaP | P is a pseudo-orientation of A}
= min{areaP | P ∈ Zd(τ ;Z),P ≡ A (mod 2)}.

I If A is orientable, then NO(A) = area(A).

I NO(A + B) ≤ NO(A) + NO(B) for any A,B.

What’s the most nonorientable surface? How large can NO(A)
area(A) be?
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What’s the most nonorientable surface?

One possibility:

1. Let M be a cube of side length R.

2. Let R � r1 � r2 � · · · � rk � 1.

3. Add ∼ R2

r21
cross-handles of scale r1 on all sides.

4. Repeat for each ri .

Then

NO(M) ≈
k∑

i=1

r2i
R2

r2i
≈ kR2.

But

area(M) ≈ R2 +
k∑

i=1

r2i
R2

r2i
≈ (k + 1)R2,

so NO(M)
area(M) stays bounded!
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Nonorientability is bounded by area

Theorem (Y.)

For every A ∈ Zd(τ ;Z2), we have NO(A) . areaA.

And we can bound the nonorientability of non-cellular surfaces by
approximating by cellular surfaces.

Corollary (Y.)

If D is an area-minimizing surface with boundary T , then there is
an ε > 0 such that any area-minimizing surface E with boundary
2T satisfies

area(E ) ≥ ε area(D).
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Proof: Decomposing surfaces in Rn

Let M ∈ Zd(τ ;Z2), let M1 = M.

1. Find the smallest set B1 ⊂ Rn on which M1 can be deformed
into a set of much smaller area. (M1 is not a quasiminimizer
on B1)

2. Deform M1 and call the result M2. Let A1 = M1 −M2

3. Repeat until Mk = 0. Write M =
∑

i Ai .

Then:

I area(Mi ) is a decreasing sequence of integers, so this process
terminates.

I area(M) ≈
∑

i area(Ai ).

I Mi is a quasiminimizer on any set smaller than Bi .
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Proof: Uniform rectifiability

Theorem (David–Semmes)

A quasiminimizer in Rn is uniformly rectifiable.

Definition (David–Semmes)

A set E ⊂ Rk is uniformly rectifiable if and only if there is a
“small” collection of Lipschitz graphs that approximate E on most
balls (a corona decomposition).



Proof: Conclusion

Therefore:

Proposition

Any mod–2 d–cycle M in Rn can be written as a sum M =
∑

i Ai

of mod–2 d–cycles Ai with uniformly rectifiable support such that∑
areaAi . areaM.

And:

Proposition

Any mod–2 d–cycle P with uniformly rectifiable support satisfies
NO(P) . area(P).

So NO(M) ≤
∑

i NO(Ai ) .
∑

i area(Ai ) . area(M).
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A surface of area A can be decomposed into uniformly rectifiable
surfaces of total area ≈ A, which can be described by Lipschitz
graphs of total area ≈ A.
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The Heisenberg group

Let H2k+1 ⊂ Mk+2 be the (2k + 1)–dimensional nilpotent group

H2k+1 =




1 x1 . . . xk z
0 1 0 0 y1

0 0
. . . 0

...
0 0 0 1 yk
0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣
xi , yi , z ∈ R


.

This contains a lattice

H2k+1
Z = 〈X1, . . . ,Xk ,Y1, . . . ,Yk ,Z

| [Xi ,Yi ] = Z , all other pairs commute〉.
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
.

This contains a lattice

H2k+1
Z = 〈X1, . . . ,Xk ,Y1, . . . ,Yk ,Z

| [Xi ,Yi ] = Z , all other pairs commute〉.
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Nonembeddability of the Heisenberg group

Theorem (Pansu, Semmes)

There is no bilipschitz embedding from H to RN .

Theorem (Cheeger–Kleiner)

There is no bilipschitz embedding from H to L1.

Cheeger and Kleiner’s proof is based on approximating the level
sets of functions H→ R by planes. Our methods let us decompose
these sets into Lipschitz graphs, leading to:

Theorem (Naor–Y.)

Sharp quantitative bounds on Lipschitz maps from H to L1.
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Applications (with Naor)

I The integrality gap for the Goemans–Linial relaxation of
Sparsest Cut is at least

√
log n.

I The ball of radius r in the three-dimensional Heisenberg group
H3

Z embeds into L1 with distortion 4
√

log r , while the same ball
in the higher-dimensional Heisenberg groups H5

Z,H7
Z, . . . has

distortion
√

log r .

I There is a metric space M that has a bilipschitz embedding
into L1 and L4, but not Lp for 1 < p < 4.
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Surfaces in H

Some of the most complex Lipschitz graphs in H3.


